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FIG. 2: (color online) Band structure of a single graphene
layer. Solid red lines are ¢ bands and dotted blue lines are w
bands.

Symmetry protected (T and I)
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Tiransmission propability
Barrier width 100 nm

Electron concentration
outside barrier 0.5x10%% cm-=

Hole concentration
inside barrier 1x10%2 cm=
(red) and 3x10%% cm= (blue)
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PHYSICAL REVIEW B 91, 045420 (2015)

Modeling Klein tunneling and caustics of electron waves in graphene

R. Logemann, K. J. A. Reijnders, T. Tudorovskiy, M. I. Katsnelson, and Shengjun Yuan"

FIG. 4. (Color online) Transmission for a sharp rectangular n-p-n
junction with Uy = 0.3 eV, £ =0.09 eV, and d = 123 nm. (Top)
Normalized densities in the “left” (green dashed line) and “right”
(solid red line) measurement regions (see Fig. 1) as a function of
time, from which the transmission for the incidence angle ¢ = 20° is
extracted. (Bottom) Transmission as a function of incidence angle ¢.
The numerical results agree very well with the analytic solution (15).
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“vidence for Klein Tunneling in Graphene p-n Junctions
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Transport through potential barriers in graphene is investigated using a set of metallic acitively

coupled to graphene to modulate the potential landscape. When a gate-induced potential step is steep

enough, disorder becomes less important and the resistance across the step is in quantitative agreement

with predictions of Klein tunneling of Dirac fermions up to a small correction. We

magnetoresistance measurements at low mag

also perform
etic fields and compare them to recent predictions.
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Quantum interference and Klein tunnelling in
graphene heterojunctions

Andrea F. Young and Philip Kim*
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Back scattering Is
forbidden for chiral
fermions! Magic angle = 0
Nonuniversal magic angle
for bilayer: exists!

Graphene Conventional semiconductors

Electrons cannot be locked by random potential
relief neither for single-layer nor for bilayer
graphene — absence of localization and minimal
conductivity?!



Graphene on SIO2

0.24
0.16
0.08
0.00
—0.08

0.16

 (nm)

-015 0 0.15 0.3 x10'2

out-of-plane corrugations and carrier-density inhomogeneity.

Ripples are unavoidable; ripples induce puddles; without Klein
tunneling graphene would be almost useless for electronic
applications



One-dimensional potential

—thd/dx, py = py/pPo, h = R/pol, &t = u/vpo




Reduction to exact Schrodinger equations for complex
potential

(p2 +pE —v(x)? —ithox'(x))¥ =0

Schrodinger equation with complex potential



Classical dynamics is described by the Hamiltonian

$d| for electrons and holes

Electron and hole Hamiltonians
coincide for normal incidence:




Figure 2.2: (a)—(c): Effective potential —vZ(x) for the potential u(x) = —x? when (a) E <0,
(b) E=0, (c) E > 0. (d)—(f): Phase portraits of the Hamiltonian systems that originate from
L, for the energies (d) E <0, (e) E =0, (f) E > 0. The different lines in each phase portrait
correspond to different values of py,.




Exact equations (continued to the complex plane x — z)

2 h)ets(z)/h
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Fundamental semiclassical solutions

)




The semiclassical solutions are divergent at the turning points

The matching of solutions in various regions can be done in
complex plane when we can go around the turning point at some
safe distance




Antil-Stokes lines: the function s Is real. Both fundamental solutions
are comparable in their amplitude at these lines.

(Stokes lines: the function s Is imaginary — less important)

INECECRIERIBSGI G 1/ (2) = C, f1(20, 2) + C, f>(20, 2)

Stokes phenomenon: there are jumps in the coefficients (and
they are roughly associated to Stokes lines)

So, the exact solution has different representations in
different sectors of the complex plane



Figure 2.4: The Stokes diagram for a simple turning point zp. The wavy line depicts the
branch cut. The blue arrows show the direction of the growth of the action s(zg,z). The
letters ’s” and “d” indicate the sectors where the asymptotic solution ny is subdominant
and dominant, respectively.

M iIs the connection matrix

The coefficients of subdominant terms can be changed at the
background of exponentially large dominant terms

Different methods to find connection matrix and thus to build
semiclassical equations available in almost the whole complex
plane (Zwaan method, the method of comparison equations...)



Scattering problem: connecting propagating (not evanescent!)
In different regions, that is, transition from one anti-Stokes

line to the other anti-Stokes line, that is, calculation of connection
matrix

Figure 2.5: The Stokes diagram for two simple turning points zy and z;. The blue arrows
show the direction in which the action s(z(, z) increases and the wavy lines depict the
branch cuts. The division of the different sectors in dominant or subdominant is performed
with respect to zp. In diagram (a), we consider 1 (z) = nT (z) along v and in diagram (b)

we consider 1y (z) =17 (z) along .




1. E < up, [pyl < up — E: Klein tunneling regime, or tunneling through a
barrier supporting hole states

2. E>uy, [pyl < E—up: above-barrier scattering

3. E<upand |py| >up—E, or E > up, [pyl > E—up: conventional tunneling
regime, tunneling through a barrier without hole states.

Difference between conventional case and Klein tunneling for real
Dirac particles




) < Unax, ‘py| < Unpax— E

NN



Figure 2.3: Stokes diagrams for the three different regimes outlined in section 2.2: (a)
Klein tunneling, (b) above-barrier scattering and (c) conventional tunneling. Bold points
show the turning points, the solid lines correspond to anti-Stokes lines and the wavy
lines designate branch cuts of the function (z — zg )1/2 . This figure was created using the

potential u(z) = —z2.

Klein tunneling — four real turning points; above-barrier scattering

four complex turning points




.9
h* d—! + Rz, v (z) = ofl R(Z, h) = ZRIT (z)h"
z° n=>0

Map it to a related equation

which we can hope to solve (Q will be specified later)

V(z,h) = (_(/)"(_z))_lf’rzV(_(f)(_z)) ¢(z) is non-singular, i.e. ¢’ does not vanish

(11() . ] LY .
— ) —Q(¢.h)(@ )" +R(z,h) =0
29"




Q(p, h) = i Qn(p)h" and compare term by term:
n=~0

.9
¢(z,h) = Z ¢n(z)h". Qo(¢0) (¢hy)° = Ro(2)

n=0

Qo(¢o) and Ry(z) have the same number of turning points

Q1 (o) (g)* + Qi (Po)P1(d)* + 2Qo (o) pody = Ry (2)

dz' R, 12 (Rl — (95)*Q1 (o )) etC"té?rrnm by

Z0



Suppose R, has zeros (turning points) of the order m; at z = z;

Then, Q can be choosen as a polynomial:

N
Qo(¢) = vy0 | [(& — po(z)™
=0

¢ho(2) N 4 ..
[ as s = do@n? = | ety Ro@)]
b

¢0(20) j=0 20

Putting we find all constants [2#4E except one






The comparison equation is Airy equation




They can be compared with asymptotics of Airy functions



For left-propagating and right-propagating waves we find

So, for n-p junction if one considers
two turning points separately one has:

-




At last, taking into account only dominant term between
anti-Stokes lines:




What happens if we take into account both turning points
simultaneously?




General solution in terms of parabolic cylinder functions:

—m/2 <arg(z) <m/2

arg (z) < —m /2

arg (z) > /2,

r(—v)’

IO v (x) = (¢'(x)~?V (P (x)) Il



The expression for scattering matrix for n-p and p-n junctions:

T K K K
———|————ln(—)

4 mh mh h



Transmission probability
—iL/h

2iL/h+im—10,p,—10)

— In




Magic angles with 100% transmission survives only for symmetric
barriers (except normal incidence)

1

o C leﬂh ( I f'n..p _I,.-"'r ] 1 — I{rpﬂ ;.f'll h_, ] I {"n.p;‘f } > J— . I {rp-n.. =>> ]_

.r
=

| | U
u(x/l) = === [1 + tanh ( 10

The angular dependence of the transmission coefficient for a particle of energy
80 meV incident on an n-p-n junction of height 200 meV. The barrier width
1, = 250 nm and the n-p and p-n regions have characteristic lengths 1; = 150 nm
and 13 = 50 nm, respectively. The blue line shows the numerical results for 99
steps, while the red line shows the uniform approximation (5.77

Very nice agreement with numerics



umtulm approxims 1t1()11 (43 and the green line (large dashes) ah{ma thv WEKB approxim: mun,

Standard WKB (each turning point considered separately)
IS not good for small incident angles due to
merging of turning points!



. Ug .
me)::zf(l%-unﬂmxn

By substitution: & = (1 — tanh(x))/2

421 — 62 L gee — e — i
dé&? dé

+h™? [qa(1=26)° 4+ q1(1 —28) +qo|m =0



For above-barrier scattering the exact solution reads

n = c &PV —&)P2/F (a, b, c; £)

g PN gy /2 (1 —a,1— b, 2 —C; &)

ipy ip2 it ip ip2
=14+ — 4+ — + —, b= — ;
N + 2h + 2h + 2h 2h * 2h 2h




h=03 E=2and 11 /1 — JCEERCECEERIELE
semiclassics




Motivation |I: Graphene on hBN
Sachs, Wehling, MIK, Lichtenstein, PRB 84, 195414 (2011)
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Oscillating energy gap with zero-mass lines



Motivation Il: Quantum wells CdTe/HgTe/CdTe

In-plane
direction

= =[]

Nonuniform thickness leads to oscillating mass term



Straight zero-mass line (y=0) H=o0,p. +0,p,+0o.m(y)
Try the solution NEESSEESTEY

( pe—E 0, +m ) ( N ) _
i — {_
0y —m  py+ E )\

Linear-dispersion mode @3 . y
0

dy'm(y)

Allowed If m Is positive for positive y and negative for negative y

Well known “zero modes” in 1D (supersymmetric QM, fractional
charge and solitons in polyacetilene, etc).



LDM as models for
counterpropagating edge
states in Tl, QHE, SQHE...

m(y) =y —a"

[=07 4+ m(y)* +m'(y)|n = an

[-0; +m(y)” —m' ()] = ano

Effective potentials

vi(y) =m(y)* +m'(y)

va(y) = m(y)* —m'(y)



Tunneling splitting

proportional to Jes [_ [ m{_r)|d_r]

It does not matter whether m(y) iIs symmetric or not — you always
have a tunneling (in contrast with the standard two-well problem),
due to existence of zero mode for any m(y), p,=0 (supersymmetry)

Tunneling between edges determines accuracy of quantization in
QHE (QSHE) in ideal situation (zero temperature, etc.)



oR'(7) (1) ' N
. . —_— P, — IO’I’I T)— rT IH
The new Hamiltonian 1 — &k(1) P 0&

(exact) ikon(t) ioR'(1)EK (1)

21 —&k(r)] 21 = &k(0)P



We use adiabatic approximation and construct semiclassics

0

Symbol of the operator
In adiabatic approximation

*‘J . _I_ ﬁif}”j| X{)’}T*I)

vs

[rf R'(t)p, —ion(1)

= Lo(pr.T)x (P, 7T)-




Quantization condition
n integer, w winding #



Persistent current in a ring

If the flux through the ring is integer (in units of flux quantum)
the spectrum returns to the initial point



Dirac fermions: does coincidence of the spectrum means
coincidence of each eigenvalue separately?

No, if the spectrum is from — « to + « (e.g., n — n+1, n integer)
For Dirac fermions — the situation may be nontrivial!!!

T

SH{Bi} = ) mysign(y; — vj4+1)

g=1

# of eigenvalues crossing some
value from below to above minus
# of eigenvalues crossing some
value from above to below




Add vector potential

Quantization condition E(.i+{ )G (1) k(1) dr)

1 ]+B(S+= ) G(7) dr)

. . R ) & 'T') — 2Uvor€ve 0) ¢
Magnetic flux D = B(b + P G(7) dr.) (7, (Xo1&x02)¢

| When flux grows it works like n — n+1




Consequences of non-zero spectral flow: positron (hole) states
will move to electron region (or vice versa) — creation of e-h
pairs from vacuum by adiabatically slow increasing magnetic field

At any Fermi energy, at some flux, one of eigenvalues will coincide
with the Fermi energy — many-body instabllities, etc.

Conditions of nonzero spectral flow for massless Dirac fermions
(M. Prokhorova 2011, MIK & V. Nazaikinskii 2012): depend on
boundary conditions



Geometry of the sample

Berry-Mondragon boundary condition

1/

(mass opening at the
7 Boundary)

2 _ iBexplia(s)

B IS nonzero real number



“oauge transformation” Do — puDop ™!

Theorem 1. The spectral flow of the family (2) is given by the formula

st Dy = wind 1,
ot+X

where 97X is the part of X where B >0 and

_ 1 [ dup
wind 1 = — o
9+X 270 Jorx p

Spectral flow = number of fluxes through the holes with
positive B (flux through the external boundary is taken with
the opposite sign)



The way of realization: ring with opposite signs of masses
at inner and outer boundaries (chemically functionalized
graphene; quantum wells CdTe/HgTe/CdTe with varying

width; magnetic spots with different signs of magnetization

at the surface of 3D topological insulator)... and you will see
vacuum reconstruction and other nice stuff

In graphene: the most probably, valley polarization (electrons ->
holes in valley K and holes -> electrons for valley K’



If refraction index is negative the flat interface works like lens

)

(cos @, sin ¢

ok

E— 1'((.@‘\ “,r SN (}") q = —([(LD‘\ “! sin U))

Graphene with p-n junction as electronic
metamaterial

. ~f
sin (/

sin @

IS negative



CIEERRIREIEIM [vro -p+ UX)I]G(x,x0) = EG(X,X0) + 6(x — X0) 1>

Wave function from initially polarized source RaSSks ('{-..Kaxs..](-

o

=

electrons holes

sin ¢

sin @




Classical Hamiltonian RS ERUtS

Classical action

Classical trajectories

Singular points (caustics):k

They form the lines (caustics) where
density of trajectories is divergent



cht('xcst_) " 7 Xcusp = —nfxs

Caustics separated the regions where each point belong to one
trajectory and where it belongs to 3 trajectories

Exact Green function (without evanescent waves)
N i Pymax ([ pi$)2,~i0/2  ,—i$[2 ,~i6/2)
(;{___h,l[l_.] — / ( _?rqi), f.’“L““ E:?_i"bfzefﬂﬂ )

A h? |
VLA MIPORN  C.Ustics separate
cosl(¢ +0)/2] | regions with and
where the classical action §,,,(py.x.y) 1s given by without interference
patterns

— Py, max

Snp(Py.X.y) = —X0 ,JE 2 _ pf — X J (E — Uy)? — p‘;-'

+ (v — Yo)py. (A26)



1.0

x/L

FIG. 1. The classica
junction at x =0
envelope of the classical traiectoriec
lies on three trajectories. It consists of mnto]d ]11]6\ meetmu into a cusp pmnt at ('.. S ) .E the Luap pumt Xeusp >
the left-most point of the caustic. (b) When Uy < 2E. the cusp point Xeyp < —X 18 the 1‘igl‘1t-most ,.omt of the caustic. (¢) For Uy =2
trajectories are focused into a single point.

U, = 2E is an exceptional case, n = - 1, ideal focus
(the caustics shrink to a single point)



FIG. 7. The density |[W| for the dimensionless parameters Uy = 2.5 and h = 0.000639. For graphene, these numbers correspond to
E = 100 meV, Uy = 250 meV, and L = 10* nm. (a) The exact result obtained by numerically evaluating the exact wave function (16). (b)




This is equal to [INYCRBIIR o'y it LIS,

(Pseudo)spin polarization breaks the mirror symmetry!
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Figure 3.2: The density || computed by numerically evaluating the exact wavefunc-
tion (1.78) for the dimensionless parameters Uy = 2.5 and h = 0.0639. For graphene, these
numbers correspond to E = 100 meV, Uy = 250 meV and L = 100 nm. We consider three
different polarizations. (a) For («, x2) = (1,1)/4/2, the density is symmetric about the
x-axis. (b) When (o;, x) = (1,0), this symmetry is no longer there and the maximum
lies at y < 0. (c) For (o7, o) = (1,—1)/v/2, the density is symmetric again, but the central
resonance has disappeared. The maximum of the color scale equals (a) 70, (b) 55 and

(c) 22.
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V(x,y)= // G(x,y,xo0,¥0)J(x0, yo)dxodyo

Green's function

dp, pi(6—=0)/2  g—i(¢+0)/2

G(x,y, X0, ¥0) / cos 22 \ell6+0)/2 ¢=ilo=0)/2

—,—/_‘,_/
Amplitude f(py) Action S;p

Sap(X, Y5 X0, Y0) = [X0|1/ E? — p7 — x\/(Uo — E)? — pZ + (¥ —y0)P

h is small: we need to calculate fastly oscillating integrals

) efsn!}'(xsyﬂxoﬂyo)#fh




,1S(xn)/h

dn f(x,n)e

— O

028

CENCHGEECHN et A (xp, 1) = det
Orhan] (x0,M0)

_ fxomo)  imsgn(Alxomo))/4
VI det A(xo,no )|

x eiSxomo)/h (14 O(h))

In QM it corresponds to WKB approximation

Does not work near caustics or cusps!



J and N D
N (x0m0) N7 T (xomo)

Fold caustics: Airy approximation & 0, azf




I(x,h]_J dn f(x,m0)etS m)/h L o(n2/3),

— 00

| | Zh 1

i3 .
exp ;t“ + 1ut

J




The answer:

L | ./ 2h 1 |
I(x, h) = 2mf(xo,Mo) {/ —— exp [1 (ao + (bo,Z)]]
las] h

xAi( 2(b1,2)

2/312/3 al /3

Does not work near cusp!



Near cusp, third derivative disappears as well

Sexn) =" (xn) + O(B%) = qolz) + q1(2) B+
z)

)
q2(z) ,> . 4q3(z) 3 94(z) .4 | /05
5 R A Vi +O(p7)

&)

[ 24h
Jagl

exp [;1 (ap + (bo,«ZM]

6

.. b,z
hla.4|< ?

Pearcey function

0. @]

exp (:I:i.t4 +iut? + i.vt) dt

— X0



Expand action up to 4™ order around py = 0 (not at ideal focus)

6 X — X 24
1/4 CUSP 1/4 )
V(x,y)oc h /" f(0 “h|a4| o = A h3|a4 1—|—O h'%)

845np
6py Py = =0,

X= xcusp't

PE(u,v) = /dn exp(Ein® + iun® +ivn), ag =

Works only at small h but position of the main maximum is good
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Exact

Pearcey
(in ellipse)

Airy
(between
dashed
lines);
WKB
(outside)

density [[W] for the dimensionless parameters Uy = 2.5 and h = 0.000639




Pearcey function symmetric: include corrections

W(x) = / f(py)e >y P/h / (F(0) + F/(0)py ) 'S (=r2)

x h/4(£(0) P=(a, 8) + h/4 £/(0) PE(a, ) + O(h'/?))

Expand P* to 2" order in 3, consider the cusp point (a = 0)

h Oé]_ - @2 restore hVF Ct’]_ — 052
2E ov1 + cvp  units 2E o1 + an

Maximum of ||V||? at ymax = —

| —— Numerics | - Numerics — ] ! Numerics ——
£ ___. Semiclassics 3 i Semiclassics —--- S Semiclassics ---- ]
0 50 100 200 | 10*  10° 10°

E (meV) L (nm)




For Dirac fermions and U, = 2E
ideal focus

It is unstable in view of
catastrophe theory

Trigonal warping: correction to the linear spectrum of graphene

Ex = :I:(|p| + ap|p|? cos [3(¢p + 9)]), p<l, a=+1

a is opposite for different valleys, 6 depends on crystallographic
orientation (6 = 0 corresponds to zigzag edges along x —direction)

Figure 1.4: (a) Zigzag edges along the x-axis (0 = 0). (b) Armchair edges along the x-axis
(0 = 71t/6).




Fate of the ideal focus

Generic orientation ¢: ideal focus becomes cusp caustic

Up=2E,0=0,a=-1 Up=2E, =0, a=1

N
oy
2L

By varying Uy we obtain a butterfly caustic, not an ideal focus
Up<2E,0=0, a=1

x| Ly
Only for # = 7 /6 the ideal focus at Uy = 2E remains intact




Veselago lens with trigonal warping produces valley polarization?*;
In particular, the maxima of wave function are shifted

Semiclassical analysis similar to Dirac case + numerical TB simulations

K.J. A. REIJNDERS AND M. I. KATSNELSON PHYSICAL REVIEW B 96, 045305 (2017)

X.‘rL1

FIG. 1. (a) Simulation setup with an injector and collector lead (red) and drain leads on each side (blue). (b) Classical trajectories for
the massless Dirac Hamiltonian at Uy = 2E. (¢)—(g) Classical trajectories (red) and caustics (black) for the Hamiltonian including trigonal
warping. Unless otherwise indicated. E = 0.4 eV. (¢) K valley, Uy = 0.8 eV. # = 0: (d) K’ valley. Uy = 0.8 eV. # = 0: (e) section of the
butterfly caustic. K" valley, E = 0.6 eV. Up = 1.18 ¢V. 6 = 0: (f) K’ valley. Up = 0.795eV. 0 = 7/12: (g) Up = 0.8 eV. 0 = 7 /6.




0 ; ; ' ' 0

00 01 02 03 04 05 06 0.7 10 15 20 25 30
E (eV) Orientation 8 (degree)

FIG. 2. (a)~(c) Results of the tight-binding simulations with L; = 100 nm. The density |¥,, | is averaged over sublattices and summed
over lead modes in valley «. (a) K’ valley, E = 0.6 eV, Uy = 2E, W; = 7.5 nm: (b) K" valley, E = 0.6 eV, Uy = 1.18 eV, W; = 7.5 nm: cf.
the classical trajectories in Fig. 1(e): (¢) K" valley. E = 0.4 eV. Uy = 2E. W; = 40 nm. (d)—(f) Position, on the x axis. of the caustic (dashed
and dashed-dotted lines), semiclassical maximum (solid lines), and simulated maximum (symbols) for varying energy E. lattice orientation ¢,
and L;. The dashed gray lines indicate the Dirac result. The parameters equal (e).(f) £ = 0.4 eV, (d).(f) & =0, (d).(e) L = 100 nm, (d),(f)
W; = 40 nm, and (e) W; = 50 nm. In all cases Uy = 2E.

Semiclassical (Pearcey) approximation works very well;
gualitatively, the splitting can be understood just from classical
trajectories
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_(Ux)+m(x) p1+iapy
a = D1 —iapy,  U) —m(x)

@ = —1 for the K-valley and ¢« = +1 for the K’-valley

Only above-barrier case is considered; even this is quite
demanding, tunneling problem is extremely difficult

(U(x) —E)* —m(x)* > 0 [elgcUl:



Scattering problem

:n0 /f . . / . d .
w&( ) — ADENP X)/h + 'pscat.a(x) lim |"5|]"2 (_lh — |PG|) Yecata = 0

IX|— 00 Jd|x|

Y

Mirror symmetry: [UIGSPRSIIEERUICSMEPOY and the same for mass

Consequences:

w«-ﬂ’..ﬂ'](xlﬂ XZ) = 0x¥y.—m(X1, _XZ)

If mass term is identically zero:

wﬁ(xh XZ) — ."p—c}:(xlﬂ. _XZ) — 'Uxi’p—{r(xlﬂ XZ)

and therefore [[M44CSEEINISRILZdeS®D]



rallis a classical observable dependent on coordinates and

momenta
It can be considered as a symbol of (pseudodifferential)
operator

1 — Jyeup""_yx"shf (_.(1 —t)x + ty,'p)u(y Jdydp




(1) _

Oppositely, from operator to symbol: e

(0) = (x,p) —inh/2




Standard quantization: t =0

aV (x, P, h)u(x)

X+

P h) u(y)dydy




Symbol of adjoint operator: yEEENGLERlZICS]

Weyl symbol of self-adjoint operator is Hermitian matrix:

Commutators and Poisson
brackets




Belov et al., J Eng Math 55, 183 (2006); Littlejohn, Flynn, Phys Rev A 44,6 52390

HY = EVY, where H is an n X n matrix

1s an n-dimensional vecto

We try the solution

1 is an effective scalar wavetunction

L plays the role of the scalar Hamiltonian

Operator equation to solve




R Lrecantl Ho(x, p)xo(x, p) = Lo(x, p)xo(x,p)

which means that the principal symbols Ly and xo are the eigenvalues and

eigenvectors, respectively, of the principal symbol of the matrix Hamiltonian H.
Note that Hy is an n x n matrix and ¥ is an n-dimensional vector.

. A : «
L1 = — ixh{xo, Lo} ~3 > (Hik = Lodi){x5,» ok}

First order in h j.k
[ —
Berry part Lip Additional part Lz

2D Dirac Hamiltonian Loi(x; P) — U(x) +




Semiclassical Ansatz )(x) = ¢(x)e” XM = pg + hpy + . ..
to solve the scalar (pseudodifferential) equation Lv) = Ev

Terms of order

h” Hamilton-Jacobi equation Lo(x,3S/0x) = E: trajectories
h' Transport equation: determines g

Final solution
(x) = exp(iPsc(x))

V(%)
dDSC(x):/O Li(X(t, d), P(t. $))dt

exp (iS(x)/h)

J(x) = det(Xe, Xy),  S(x) = /0 (P, dX)

Solution to the original eigenvalue equation W(x) =

E labels initial conditions




Hamilton-Jacobi equations are
equivalent to Hamilton's equations

Lift the trajectories to phase space

Jacobian J = det(X;, X;) # 0 when

this surface can be projected onto X

Caustic: J = 0, density of trajectories infinite

Asymptotic solution 1(x) = EXP\(;‘%X)) exp (i5(x)/h)

diverges at caustic: focusing occurs

Further: Lagrange manifolds, canonical operator,
eikonal coordinates etc.
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Xq /L Xq /L x1/ L

’

Fig. 3. Trajectories obtained by integrating Hamilton’s equations (77) for different potentials 6‘(55) and masses m(x). The black
lines indicate the caustics. (a) Gaussian potential well (171) with Uy = % and m(x) = 0. (b) Gaussian potential barrier (171)

I

with Uy = —% and m(x) = 0. (¢) Gaussian mass m(x) = mg exp(—x?) with |mg| = % and U(X) = 0.




0.95 1.0 K . 0.95 1.0
X1 (10* nm) X; (10% nm)

Fig. 5. (a) Intensity ||¥||> = ¥ T¢ obtained by using the various semiclassical approximations in the appropriate regions. (b)
The intensity || ¥ ||? together with the regions in which the various approximations were used. The Pearcey approximation(156)
was used inside the green ellipse, while the Airy approximation (153) was used between the dashed purple lines. The WKB
approximation ( 145) was used to create the rest of the figure. The dotted black line represents the caustic.




A% %0

IS the Berry curvature

As used In the theory of topological matter



and classically there is no effect on electron motion.

Only semiclassical phase matters in this situation
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Figure 6.8: Comparison of the intensity |[Wk/||? for electrons in the K’-valley with E
200 meV. The incoming electrons are focused by the Gaussian potential (6.23) with Uy =
100 meV and L = 35.5 nm. In front of this potential, there is a region in which the mass
is given by equation (6.26) with X, = —10 and X; ;,, = —5 and the potential is given
by equation (6.24). (a) Result of the uniform approximation (b) Result of a tight-binding
calculation for a zigzag sample with a width of 4000 acc ~ 568 nm.
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Figure 6.9: (a) Trajectories for an electron in the K’ valley, computed using the modified
equations of motion (6.27). (b) Result of a tight-binding calculation for a zigzag sample with
a width of 4000 ac¢ ~ 568 nm. To produce these figures, we used the same parameters
as in figure 6.8.




Semiclassical approximation is not only a qualitative tool to
understand numerical data (which is very important
by itself) but also frequently gives you quite accurate
guantitative results

Still open questions:

- Tunneling in more than one dimension;
- Tunneling in bilayer graphene;
- Further issues on zero-mass lines, spectral flow etc.
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