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1. d-wave superconductors 
2. Vortices in superconductors and in superfluid helium-3 
3. Topological insulators 
4. Graphene 

Gap in high-Tc cuprates 
Electronic structure on  
surface of Bi2Se3 



Honeycomb lattice (graphene)  

 

 

 
 

 
 
 
 

 
 

Two equivalent sublattices,  
A and B (pseudospin) 



Massless Dirac fermions in graphene 

sp2 hybridization, π bands crossing 
the neutrality  point  

 
Neglecting intervalley scattering: 
massless Dirac fermions 
 
Symmetry protected (T and I) 
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Outline 

 
 
1.Chiral tunneling  
Tudorovkiy, Reijnders, MIK, Phys. Scr. T 146, 014010 (2012);  
Reijnders, Tudorovskiy, MIK, Ann. Phys. (NY) (2013) 
 
2.Zero-mass lines  
Tudorovskiy, MIK, Phys. Rev. B 86, 045419 (2012) 
 
3.Aharonov-Bohm effect and spectral flow for  
massless Dirac fermions  
MIK, Nazaikinskii, Theor. Math. Phys. 172, 1263 (2012) 
Tudorovskiy, Nazaikinskii, MIK, Phys. Stat. Sol. RRL 7, 157 (2013)  



Outline II 

 
 
4.Electron Veselago lenses and caustics 
Reijnders, MIK, Phys. Rev. B 95, 115310 (2017);  
Reijnders, MIK, Phys. Rev. B 96, 045305 (2017); 
 
5.Electron optics in 2D case 
Reijnders, Minenkov, MIK, Dobrokhotov, Ann. Phys.(NY) 397, 65  
(2018) 

Koen Reijnders thesis (Nijmegen, 2019) 
Semiclassical dynamics of charge carriers in graphene 

https://repository.ubn.ru.nl/handle/2066/204183 
See also 



Electronics: heterostructures (p-n-p junctions etc.) 

Chiral tunneling and Klein paradox  
MIK, Novoselov, Geim, Nat. Phys. 2, 620 (2006) 

(C) Florian Sterl 



Klein paradox II 

Ultrarelativisic 

Nonrelativistic 

Tunnel effect: momentum and coordinate  
are complementary variables, kinetic and potential 
energy are not measurable simultaneously 
 
Relativistic case: even the coordinate itself is not  
measurable, particle-antiparticle pair creation 
 



Klein paradox III 

Transmission probability 
 
Barrier width 100 nm 
 
Electron concentration 
outside barrier 0.5x1012 cm-2 
 
Hole concentration 
inside barrier 1x1012 cm-2  

(red) and 3x1012 cm-2  (blue) 
 



Klein paradox IV 

 
 

  Real-time simulations (numerical 
solution of time-dependent 

Schrödinger equation)  



Klein tunneling: Experimental 
confirmation 

 
 



Klein tunneling prevents 
localization 

 
 

Back scattering is 
forbidden for chiral 

fermions! Magic angle = 0 
Nonuniversal magic angle 

for bilayer exists! 

Electrons cannot be locked by random potential  
relief neither for single-layer nor for bilayer 

graphene – absence of localization and minimal 
conductivity?! 

Conventional semiconductors Graphene 



Ripples and puddles 
  

Graphene on SiO2 

Gibertini, Tomadin, Guinea, MIK & Polini, Phys. Rev. B 85, 
201405(R)(2012); Experimental STM data: V.Geringer et al 

(M.Morgenstern group) 

Ripples are unavoidable; ripples induce puddles; without Klein 
tunneling graphene would be  almost useless for electronic  

applications 



One-dimensional barrier 

 
 

T. Tudorovskiy, K. Reijnders & MIK, 2012, 2013 
One-dimensional potential 

Skipping tildes: the Hamiltonian 



One-dimensional barrier II 

 
 

Reduction to exact Schrödinger equations for complex 
potential  

Schrȍdinger equation with complex potential 



Classical equations 

 
 

  Classical dynamics is described by the Hamiltonian 

for electrons and holes 

Turning points 
Electron and hole Hamiltonians 
coincide for normal incidence: 

Squared Hamiltonian equations: 



Classical phase portrait 

 
 

  



Semiclassical theory 

 
 

  Exact equations (continued to the complex plane x → z) 

Semiclassical solution 



Semiclassical theory II 

 
 

  Exact: 

Zeroth order in h 

First order in h 



Semiclassical theory III 

 
 

  

Solution: 

The integral is calculated explicitly 



Semiclassical theory IV 

 
 

  Fundamental semiclassical solutions 



Stokes diagrams  

 
 

  The semiclassical solutions are divergent at the turning points 

The matching of solutions in various regions can be done in 
complex plane when we can go around the turning point at some 

safe distance 

General complex WKB: 

Fundamental semiclassical solutions  



Stokes diagrams II 

 
 

  

Anti-Stokes lines: the function s is real. Both fundamental solutions 
are comparable in their amplitude at these lines.  

(Stokes lines: the function s is imaginary – less important)  

At each anti-Stokes lines 

Stokes phenomenon: there are jumps in the coefficients (and 
they are roughly associated to Stokes lines) 

So, the exact solution has different representations in 
different sectors of the complex plane 



Stokes diagrams III 

 
 

  

M is the connection matrix 

Different methods to find connection matrix and thus to build 
semiclassical equations  available in almost the whole complex 
plane (Zwaan method, the method of comparison equations...) 

The coefficients of subdominant terms can be changed at the 
background of exponentially large dominant terms 



Stokes diagrams IV 

 
 

  Scattering problem: connecting propagating (not evanescent!)  
waves in different regions, that is, transition from one anti-Stokes 
line to the other anti-Stokes line, that is, calculation of connection 

matrix 



Different cases 

 
 

  

Difference between conventional case and Klein tunneling for real  
Dirac particles 



Different cases II 

 
 

Classical mechanics: 

Effective Hamiltonian 

The case of Klein tunneling 



Different cases III 

 
 

  

Klein tunneling – four real turning points; above-barrier scattering – 
four  complex turning points  



Method of comparison equations 

 
 

  

Map it to a related equation  

which we can hope to solve (Q will be specified later)  



Method of comparison equations II 

 
 

  
and compare term by term: 

etc., term by  
term  



Method of comparison equations III 

 
 

  
Suppose R0 has zeros (turning points) of the order mj at z = zj 

Then, Q can be choosen as a polynomial: 

Putting we find all constants except one 



Application to Dirac equation 

 
 

  

The single first-order turning point 



Application to Dirac equation II 

 
 

  The comparison equation is Airy equation 

For small h we can use the asymtotics: 



Application to Dirac equation III 

 
 

  

Fundamental semiclassical solutions 

They can be compared with asymptotics of Airy functions 



Application to Dirac equation IV 

 
 

  For left-propagating and right-propagating waves we find 

So, for n-p junction if one considers 
two turning points separately one has: 



Application to Dirac equation V 

 
 

  

At last, taking into account only dominant term between 
anti-Stokes lines:  



Application to Dirac equation VI 

 
 

  What happens if we take into account both turning points 
simultaneously? 

Put 

Then we find 

Similar, we find  and the conparison equation 



Application to Dirac equation VII 

 
 

  
General solution in terms of parabolic cylinder functions: 

Asymptotics for small h 

Then,  etc. 



Application to Dirac equation VIII 

 
 

  The expression for scattering matrix for n-p and p-n junctions: 



p-n-p junction 

 
 

Comparison equation with four turning points is too complicated, 
and no  analytical solution is known, therefore we consider 

p-n and n-p junctions separately 
 
 

Transmission probability 

x1,2 are turning points  



Fabri-Perot resonances 

 
 

Magic angles with 100% transmission survives only for symmetric 
barriers (except normal incidence)   

Very nice agreement with numerics 



Comparison with numerics 

Standard WKB (each turning point considered separately) 
is not good for small incident angles due to  

merging of turning points! 



Comparison with exact solution 

 
 

  

By substitution: 



Exact solution via hypergeometric 
function 

 
 

  
For above-barrier scattering the exact solution reads 



Comparison with exact solution 

 
 

  

Blue - exact, red dashed - 
semiclassics 



Zero-mass lines 
Motivation I: Graphene on hBN 
Sachs, Wehling, MIK, Lichtenstein, PRB 84, 195414 (2011) 

Moire pattern due to 
a lattice mismatch 

Oscillating energy gap with zero-mass lines 



Zero-mass lines II 
Motivation II: Quantum wells CdTe/HgTe/CdTe 
Molenkamp group, Nature Phys. 7, 418 (2011) 

Nonuniform thickness leads to oscillating mass term 



Linear dispersion modes 
Straight zero-mass line (y=0) 

Try the solution 

Linear-dispersion mode 
(LDM) 

Allowed if m is positive for positive y and negative for negative y 

Well known “zero modes” in 1D (supersymmetric QM, fractional  
charge and solitons in polyacetilene, etc). 



Tunneling between zero-mass lines 
LDM as models for  

counterpropagating edge  
states in TI, QHE, SQHE... 

Effective potentials 



Tunneling between zero-mass lines II 

 
 

Tunneling splitting 

General case, ZML at  y = a1,a2 

proportional to 

It does not matter whether m(y) is symmetric or not – you always 
have a tunneling (in contrast with the standard two-well problem), 
due to existence of zero mode for any m(y), px=0 (supersymmetry) 

Tunneling between edges determines accuracy of quantization in 
QHE (QSHE) in ideal situation (zero temperature, etc.)   



Bent zero-mass line 

 
 

Parametrization of the line 

New variables near the line 

τ - coordinate along the line, ξ - normal to the line  

Jacobian k - curvature 

The new Hamiltonian 
(exact)  



Bent zero-mass line II 

 
 

Smooth line:  

We use adiabatic approximation and construct semiclassics 

Symbol of the operator 
in adiabatic approximation 



Quantization rule for the bent line 

 
 
Quantization condition 
n integer, w winding # 

The linear dispersion mode, line length l  



Aharonov-Bohm effect and spectral 
flow 

Persistent current in a ring  

If the flux through the ring is integer (in units of flux quantum) 
the spectrum returns to the initial point 



Aharonov-Bohm effect and spectral 
flow II 

Dirac fermions: does coincidence of the spectrum means 
coincidence of each eigenvalue separately?  
 
No, if the spectrum is from – ∞ to + ∞ (e.g., n → n+1, n integer) 
For Dirac fermions – the situation may be nontrivial!!! 

# of eigenvalues crossing some 
value from below to above minus 
# of eigenvalues crossing some 
value from above to below 



Aharonov-Bohm effect for zero-mass 
loop 

Add vector potential 

Quantization condition 

Magnetic flux 

When flux grows it works like  n → n+1 



Aharonov-Bohm effect and spectral 
flow in graphene rings 

Consequences of non-zero spectral flow: positron (hole) states  
will move to electron region (or vice versa) – creation of e-h 

pairs from vacuum by adiabatically slow increasing magnetic field 
 

At any Fermi energy, at some flux, one of eigenvalues will coincide 
with the Fermi energy – many-body instabilities, etc.  

 
Conditions of nonzero spectral flow for massless Dirac fermions 
(M. Prokhorova 2011, MIK & V. Nazaikinskii 2012): depend on 

boundary conditions 



Aharonov-Bohm effect and spectral 
flow in graphene rings II 

Geometry of the sample 

Berry-Mondragon boundary condition 

(mass opening at the 
Boundary) 

B is nonzero real number 



Aharonov-Bohm effect and spectral 
flow in graphene rings III 

Spectral flow = number of fluxes through the holes with 
positive B (flux through the external boundary is taken with 

the opposite sign)  



Aharonov-Bohm effect and spectral 
flow in graphene rings IV 

The way of realization: ring with opposite signs of masses 
at inner and outer boundaries (chemically functionalized  
graphene; quantum wells CdTe/HgTe/CdTe with varying 

width; magnetic spots with different signs of magnetization 
at the surface of 3D topological insulator)... and you will see 

vacuum reconstruction and other nice stuff 

In graphene: the most probably, valley polarization (electrons -> 
holes in valley K and holes -> electrons for valley K’ 



Klein tunneling and Veselago lensing 

 
 

  If refraction index is negative the flat interface works like lens 
(V.S. Veselago, 1968) 

Group velocity 

In electron region: 

In hole region: 

is negative 

Graphene with p-n junction as electronic  
metamaterial 

Cheianov, Fal’ko, Altshuler, Science 315, 1252 (2007) 



Veselago lens for massless Dirac 
fermions 

 
 

  
Reijnders & MIK, Phys. Rev. B 95, 115310 (2017)  

Green function 

U is just a potential step 

Wave function from initially polarized source 

Source: 



Veselago lens for Dirac fermions II 

 
 

  Classical Hamiltonian 

Classical action 

Classical trajectories 

Singular points (caustics): vanishes 

They form the lines (caustics) where  
density of trajectories is divergent 



Veselago lens for Dirac fermions III 

 
 

  

Caustics separated the regions where each point belong to one 
trajectory and where it belongs to 3 trajectories 

Cheianov, Fal’ko & Altshuler, 2007 

Exact Green function (without evanescent waves) 

Caustics separate 
regions with and 

without interference 
patterns 



Veselago lens for Dirac fermions IV 

 
 

  

U0 = 2E is an exceptional case, n = - 1, ideal focus  
(the caustics shrink to a single point)   



Interference patterns 

 
 

  

U0>2E 



Pseudospin polarization and symmetry 
breaking 

 
 

  

This is equal to  only if 

(Pseudo)spin polarization breaks the mirror symmetry! 



Pseudospin polarization and symmetry 
breaking II 

 
 

  

x=xcusp 



WKB approximation 

 
 

  

h is small: we need to calculate fastly oscillating integrals 



WKB approximation II 

 
 

  

 
 

Main contribution is from stationary points 

Generic case:  

In QM it corresponds to WKB approximation 

Does not work near caustics or cusps! 



Airy approximation I 

 
 

  Fold caustics: Airy approximation 

Expand to the higher (third) order: 



Airy approximation II 

 
 

  

is expressed via Airy function 



Airy approximation III 

 
 

  

The answer: 

Does not work near cusp! 



Pearcey approximation 

 
 

  Near cusp, third derivative disappears as well 

Pearcey function 



Pearcey approximation II 

 
 

  

Works only at small h but position of the main maximum is good 



Semiclassical approximation 

 
 

  

Exact 

Pearcey 
(in ellipse); 
Airy  
(between 
dashed  
lines); 
WKB 
(outside) 



Asymmetry in y direction 

 
 

  



The effects of trigonal warping 

 
 

  Reijnders & MIK, Phys. Rev. B 96, 045305 (2017)  
For Dirac fermions and U0 = 2E 

ideal focus 

It is unstable in view of 
catastrophe theory 

α is opposite for different valleys, θ depends on crystallographic 
orientation (θ = 0 corresponds to zigzag edges along x –direction) 



The effects of trigonal warping II 

 
 

  
Fate of the ideal focus 



The effects of trigonal warping III 

 
 

  Veselago lens with trigonal warping produces valley polarization*; 
in particular, the maxima of wave function are shifted 

Semiclassical analysis similar to Dirac case + numerical TB simulations 

*Garcia-Pomar, Cortijo, Nieto-Vesperinas, Phys Rev Lett 100, 236801 (2008) 



The effects of trigonal warping IV 

 
 

  

Semiclassical (Pearcey) approximation works very well;  
qualitatively, the splitting can be understood just from classical  

trajectories 



Two-dimensional case 

 
 

  

Only above-barrier case is considered; even this is quite  
demanding, tunneling problem is extremely difficult 

for all x 



Two-dimensional case II 

 
 

  Scattering problem 

Mirror symmetry: and the same for mass 

Consequences: 

If mass term is identically zero: 

and therefore 



Operators and symbols 

 
 

  is a classical observable dependent on coordinates and 
momenta 

  
It can be considered as a symbol of (pseudodifferential) 

operator 

Example: 

but 



Operators and symbols II 

 
 

  

Oppositely, from operator to symbol: 

Example: 



Operators and symbols III 

 
 

  Standard quantization: t = 0  

Weyl quantization: t = 1/2 

Symbols are extremely convenient for expansion in h 



Operators and symbols IV 

 
 

  

For Weyl symbols 

Poisson bracket 

Commutators and Poisson 
brackets 

Symbol of adjoint operator: 

Weyl symbol of self-adjoint operator is Hermitian matrix: 



Semiclassics for matrix Hamiltonians 

 
 

  

We try the solution 

Operator equation to solve 



Matrix Hamiltonians II 

 
 

  
In zeroth order in h 

First order in h 

2D Dirac Hamiltonian 



Semiclassical solution 

 
 

  

labels initial conditions 



Semiclassical solution II 

 
 

  

Further: Lagrange manifolds, canonical operator, 
eikonal coordinates etc. 

Reijnders, Minenkov, MIK, Dobrokhotov, Ann. Phys.(NY) 397, 65  (2018) 



Caustics and semiclassics 

 
 

  



Caustics and semiclassics II 

 
 

  
For m = 0: 



Semiclassical equations of motion 

 
 

  

is the Berry curvature (This derivation: Littlejohn & Flynn 1991) 

As used in the theory of topological matter  

Xiao, Chang & Niu, RMP 82, 1959 (2010) 



The role of semiclassical phase 

 
 

  

Can be rewritten as 

(a new “Hamiltonian”, new “energy” = 1) 

When we set 

and classically there is no effect on electron motion.  

Only semiclassical phase matters in this situation 



The role of semiclassical phase II 

 
 

  



The role of semiclassical phase III 

 
 

  



Conclusions 

 
 

  

Semiclassical approximation is not only a qualitative tool to 
understand numerical data (which is very important 

by itself) but also frequently gives you quite accurate 
quantitative results 

Still open questions: 
 
- Tunneling in more than one dimension; 
- Tunneling in bilayer graphene; 
- Further issues on zero-mass lines, spectral flow etc. 
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