True SYK or (con)sequences

D. V. Khveshchenko

UNC-Chapel Hill, Physics & Astronomy

IIP 07/31/19
True SYK or (con)sequences

'Truth...or consequences!'

D. V. Khveshchenko

UNC-Chapel Hill, Physics & Astronomy

IIP 07/31/19
Outline
Outline

1. Holographic conjecture and condensed matter physics
Outline

1. Holographic conjecture and condensed matter physics
2. 'Bona fide' vs 'analogue' holography (graphene, metamaterials, etc.)
Outline

1. Holographic conjecture and condensed matter physics
2. 'Bona fide' vs 'analogue' holography (graphene, metamaterials, etc.)
3. SYK model: saddle-point analysis
Outline

1. Holographic conjecture and condensed matter physics
2. 'Bona fide' vs 'analogue' holography (graphene, metamaterials, etc.)
3. SYK model: saddle-point analysis
4. Beyond saddle-point: Schwarzian/Liouville
Outline

1. Holographic conjecture and condensed matter physics
2. 'Bona fide' vs 'analogue' holography (graphene, metamaterials, etc.)
3. SYK model: saddle-point analysis
4. Beyond saddle-point: Schwarzian/Liouville
5. Further generalizations
Outline

1. Holographic conjecture and condensed matter physics
2. 'Bona fide' vs 'analogue' holography (graphene, metamaterials, etc.)
3. SYK model: saddle-point analysis
4. Beyond saddle-point: Schwarzian/Liouville
5. Further generalizations
6. Summary
Outline

1. Holographic conjecture and condensed matter physics
2. 'Bona fide' vs 'analogue' holography (graphene, metamaterials, etc.)
3. SYK model: saddle-point analysis
4. Beyond saddle-point: Schwartzian/Liouville
5. Further generalizations
6. Summary

Standard model of condensed matter
Standard model of condensed matter

\[H = T_e + T_i + U_{ee} + U_{ei} + U_{ii} \]

Long-ranged Coulomb
Standard model of condensed matter

\[H = T_e + T_i + U_{ee} + U_{ei} + U_{ii} \]

Long-ranged Coulomb

Interaction effects:
- uninteresting (Fermi liquid)
- interesting, yet already known 2-particle (e-e, e-h) instabilities
- interesting and unknown: 'non-Fermi liquids',..
Standard model of condensed matter

\[H = T_e + T_i + U_{ee} + U_{ei} + U_{ii} \]

Long-ranged Coulomb

Interaction effects:
- uninteresting (Fermi liquid)
- interesting, yet already known 2-particle (e-e, e-h) instabilities
- interesting and unknown: 'non-Fermi liquids',..

Purely electronic: \(T_i, U_{ei}, U_{ii} \rightarrow 0, \)

(Super)strongly interacting: \(T_e \rightarrow 0 \) ('Flat band')
Quest for elusive NFL
Quest for elusive NFL

\textbf{d=1}: no room for FL, Tomonaga-Luttinger liquid (and beyond)

- diagrammatic calculations ('parquet'), bosonization, exact solutions,...
Quest for elusive NFL

d=1: no room for FL, Tomonaga-Luttinger liquid (and beyond)
- diagrammatic calculations ('parquet'), bosonization, exact solutions, ...

d>1: FL is robust at weak/short-ranged couplings, exact criteria for NFL are unknown
- diagrammatic and (functional) RG approaches, higher-dimensional bosonization, DMFT, ...
Quest for elusive NFL

\(d=1\): no room for FL, Tomonaga-Luttinger liquid (and beyond)
- diagrammatic calculations ('parquet'), bosonization, exact solutions, ...

\(d>1\): FL is robust at weak/short-ranged couplings, exact criteria for NFL are unknown
- diagrammatic and (functional) RG approaches, higher-dimensional bosonization, DMFT, ...

- new (still untested) tool: holography ('AdS/CMT')
Holography primer

- **Boundary** (quantum) theory → **Bulk** (semi) classical gravity (+ other fields)

\[
S = \frac{1}{2 \kappa_5^2} \int d^4x \sqrt{-g} \left[R - 2\Lambda + \mathcal{L}_m + \mathcal{L}_{\text{cs}} \right],
\]

\[
\mathcal{L}_m = -\frac{Z_G}{4} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} D_\mu \Phi^e D^\mu \Phi^e - \frac{Z_A}{4} A_{\mu\nu} A^{\mu\nu} - \frac{Z_B}{4} B_{\mu\nu} B^{\mu\nu} - \frac{Z_{AB}}{2} A_{\mu\nu} B^{\mu\nu},
\]

\[
\mathcal{L}_{\text{cs}} = -\frac{d}{2} \alpha_1 \epsilon^{\mu_1 \mu_2 \mu_3} A_{\mu_1 \nu} A_{\mu_2 \nu} - \frac{d}{2} \alpha_2 \epsilon^{\mu_1 \mu_2 \mu_3} A_{\mu_1 \nu} B_{\mu_2 \nu}.
\]

Feynman diagrams

Classical Einstein-type eqs
Holography primer

- **Boundary** (quantum) theory → **Bulk** (semi) classical gravity (+ other fields)

\[
S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [R - 2\Lambda + \mathcal{L}_m + \mathcal{L}_\text{cos}],
\]

\[
\mathcal{L}_m = -\frac{Z_G}{4} C_{\mu\nu} C^{\mu\nu} - \frac{1}{2} D_\mu \Phi^a D^\mu \Phi^a - \frac{Z_A}{4} A_{\mu\nu} A^{\mu\nu} - \frac{Z_B}{4} B_{\mu\nu} B^{\mu\nu} - \frac{Z_{AB}}{2} A_{\mu\nu} B^{\mu\nu} - \frac{1}{2} \nabla_\mu \chi \nabla^\mu \chi - F(\phi)(\nabla_\mu \theta - q_A A_\mu - q_B B_\mu)^2 - \frac{1}{2} \nabla_\mu \alpha \nabla^\mu \alpha - V_\text{int},
\]

\[
\mathcal{L}_{\text{cos}} = -\vartheta_1(\alpha)e^{\alpha \lambda} A_{\mu\nu} A_{\lambda\sigma} - \vartheta_2(\alpha)e^{\alpha \lambda} A_{\mu\nu} B_{\lambda\sigma}.
\]

Feynman diagrams

Classical Einstein-type eqs

- d=4 Q=4 SU(N) SYM <-> type-IIB superstrings (d=5 supergravity) (t’Hooft, Suskind, Maldacena, Witten, Gubser, Klebanov, Polyakov, …)
 - SUSY,
 - multi-component (focusing on N>>1),
 - Lorentz and scale-invariant,
 - boundary theory: very strongly interacting
Holography primer

- **Boundary** (quantum) theory → **Bulk** (semi) classical gravity (+ other fields)

\[
S = \frac{1}{2k^2} \int d^4x \sqrt{-g} \left[R - 2\Lambda + \mathcal{L}_m + \mathcal{L}_{\text{cos}} \right],
\]

\[
\mathcal{L}_m = -\frac{Z_G}{4} C^\mu_\nu C^\mu_\nu - \frac{1}{2} R^{\mu_\nu} R^\mu_\nu - \frac{Z_A}{4} A_\mu A^\mu - \frac{Z_B}{4} B_\mu B^\mu - \frac{Z_{AB}}{2} A_\mu B^\mu,
\]

\[
\mathcal{L}_{\text{cos}} = -\phi_1(\alpha)e^{\phi_1(\alpha)} A_{\mu_1} A_{\mu_2} - \phi_2(\alpha)e^{\phi_2(\alpha)} A_{\mu_1} B_{\mu_2}.
\]

Feynman diagrams

- **Classical Einstein-type eqs**

- **d=4 Q=4 SU(N) SYM</- type-IIB superstrings (d=5 supergravity)**
 (t’Hooft, Suskind, Maldacena, Witten, Gubser, Klebanov, Polyakov, …)

- SUSY,
- multi-component (focusing on N>>1),
- Lorentz and scale-invariant,
- boundary theory: very strongly interacting

- How much of that can be relevant to condensed matter systems?
Holography primer

- Boundary (quantum) theory → Bulk (semi) classical gravity (+ other fields)

\[S = \frac{1}{2\kappa_5^2} \int d^4x \sqrt{-g} \left[R - 2\Lambda + \mathcal{L}_m + \mathcal{L}_\text{os} \right], \]

\[\mathcal{L}_m = \frac{Z_G}{4} C^\mu_\nu G^\mu_\nu - \frac{1}{2} D_\mu \Phi^a D^\mu \Phi^a - \frac{Z_A}{4} A_\mu A^\mu - \frac{Z_B}{4} B_\mu B^\mu - \frac{Z_{AB}}{2} A_\mu B^\mu, \]

\[\mathcal{L}_\text{os} = -\theta_1(\alpha)e^{\mu_A \alpha \nu} A_{\mu \nu} A_{\lambda \sigma} - \theta_2(\alpha)e^{\mu A \alpha \nu} A_{\mu \nu} B_{\alpha \beta}. \]

- Why it would not work:
 - non-SUSY,
 - only a few components \((N\sim 1)\),
 - Lorentz, scale, translationally, and/or rotationally non-invariant,
 - boundary theory: only moderately interacting \((T\sim U)\),...
Holography primer

- Boundary (quantum) theory → Bulk (semi) classical gravity (+ other fields)

\[S = \frac{1}{2k_\text{s}} \int d^4x \sqrt{-g} \left[R - 2\Lambda + \mathcal{L}_m + \mathcal{L}_{\text{cos}} \right], \]
\[\mathcal{L}_m = \frac{Z_G}{4} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{1}{2} D_{\mu} \Phi D^{\mu} \Phi - \frac{Z_A}{4} A_{\mu\nu} A^{\mu\nu} - \frac{Z_B}{4} B_{\mu\nu} B^{\mu\nu} - \frac{Z_{AB}}{2} A_{\mu\nu} B^{\mu\nu}, \]
\[\mathcal{L}_{\text{cos}} = -\theta_1(\alpha)e^{\alpha A_{\mu\nu}} A_{\mu\nu} - \theta_2(\alpha)e^{\alpha A_{\mu\nu} B_{\mu\nu}}. \]

- Why it would not work:
 - non-SUSY,
 - only a few components (N~1),
 - Lorentz, scale, translationally, and/or rotationally non-invariant,
 - boundary theory: only moderately interacting (T~U),...

- Why it might still work:
 - emergent effective (local) geometry,
 - perturbation theory/RG in d+1 dimensions --> classical EOMs in d+2,
 - tensor networks,...
Holographic correspondence: evidence (?)
Holographic correspondence: evidence (?)

- Data fitting:
 Optical conductivity in cuprates
 (non-SUSY, N~1, T~U)

\[\sigma(\omega) \sim \omega^{-2/3} \]

G, Horowitz and J. Santos, 1302.6586

\[2 < \omega \tau < 8 \]
Holographic correspondence: evidence (?)

- Data fitting:
 Optical conductivity in cuprates (non-SUSY, N~1, T~U)

- Experiment:
 \[\frac{\eta}{s} \] ratio (>1/4π)
 ARPES in cuprates

 G, Horowitz and J. Santos, 1302.6586
 \[\sigma(\omega) \sim \omega^{-2/3} \]
 \[2 < \omega T < 8 \]

 J. Rameau et al, 1409.5820
 Indirect (Im G)?
 Universal KSS bound?
Holographic correspondence: evidence (?)

- Data fitting:
 Optical conductivity in cuprates
 (non-SUSY, N~1, T~U)

- Experiment:
 $\frac{\eta}{s}$: ratio (>1/4π)
 ARPES in cuprates

- (Almost) exact methods (MC):
 2d Bose-Hubbard model

\[
\sigma(\omega) \sim \omega^{(-2/3)}
\]

\[2 < \omega T < 8\]

G, Horowitz and J. Santos, 1302.6586

J. Rameau et al, 1409.5820

Indirect (Im G) ?

Universal KSS bound?

E. Katz et al, 1409.3841

1/N ?
Holographic correspondence: evidence (?)

- Data fitting:
 Optical conductivity in cuprates
 (non-SUSY, N~1, T~U)

- Experiment:
 $\frac{\eta}{s}$ ratio (>1/4π)
 ARPES in cuprates

- (Almost) exact methods (MC):
 2d Bose-Hubbard model

- Not just qualitative:

 - G, Horowitz and J. Santos, 1302.6586
 $\sigma(\omega) \sim \omega^{(-2/3)}$
 $2 < \omega T < 8$

 - J. Rameau et al, 1409.5820
 Indirect (Im G)?
 Universal KSS bound?

 - E. Katz et al, 1409.3841
 $1/N$?

 - I. Kiritsis et al, 1510.00020
Holographic correspondence: evidence (?)

- Data fitting:
 Optical conductivity in cuprates (non-SUSY, N~1, T~U)

- Experiment:
 \(\frac{\eta}{s} \) ratio (>1/4\(\pi\))
 ARPES in cuprates

- (Almost) exact methods (MC):
 2d Bose-Hubbard model

- Not just qualitative:
 but quantitative (sic!) agreement:

\[\rho_s(T = 0) = C\sigma_{DC}(T_c)T_c. \]
Status of AdS/CMT (a.k.a. non-AdS/non-CFT)
Status of AdS/CMT (a.k.a. non-AdS/non-CFT)

- Textbooks:
Status of AdS/CMT (a.k.a. non-AdS/non-CFT)

- Textbooks: ...

- **Calculations**: classical, no 1/N corrections, no back-reaction (99%)
Status of AdS/CMT (a.k.a. non-AdS/non-CFT)

- Textbooks: ...

- Calculations: classical, no 1/N corrections, no back-reaction (99%)

- Some isolated critique: ..., DVK 1404.7000, 1502.03375, 1603.09741
- **Textbooks:**

- **Calculations:** classical, no 1/N corrections, no back-reaction (99%)

- **Some isolated critique:** …, DVK 1404.7000, 1502.03375, 1603.09741

- **Preprints:** ~ 20-30/week (2007-2018), < 1/week (currently)
Status of AdS/CMT (a.k.a. non-AdS/non-CFT)

- Textbooks: ...

- Calculations: classical, no 1/N corrections, no back-reaction (99%)

- Some isolated critique: ..., DVK 1404.7000, 1502.03375, 1603.09741

- Preprints: ~ 20-30/week (2007-2018), < 1/week (currently)

- Farewell holography?
Status of AdS/CMT (a.k.a. non-AdS/non-CFT)

- Textbooks: ..., DVK 1404.7000, 1502.03375, 1603.09741

- Calculations: classical, no 1/N corrections, no back-reaction (99%)

- Some isolated critique: ..., DVK 1404.7000, 1502.03375, 1603.09741

- Preprints: ~ 20-30/week (2007-2018), < 1/week (currently)

- Farewell holography?

- New directions:
 ● strong coupling hydrodynamics,
 ● quantum chaos and information scrambling,
 ● SYK and beyond,...
Holography: physical origin?
Holography: physical origin?

- Emergent extra dimension:
- Dynamical renormalization (energy/length/information) scale, \(\text{RG}=\text{GR} \)
Holography: physical origin?

- Emergent extra dimension:
- Dynamical renormalization (energy/length/information) scale, ‘RG=GR’

- **Emergent geometry:**
 - Thermodynamics of phase transitions (Fisher/Ruppeiner),
 - Quantum information theory, tensor networks (Bures),
 - Bloch bands, dynamical time evolution (Berry),
 - Quantum Hall and other topological states (Fubini/Study),...
Holography: physical origin?

- Emergent extra dimension:
- Dynamical renormalization (energy/length/information) scale, \(\text{RG=GR} \)

- Emergent geometry:
- Thermodynamics of phase transitions (Fisher/Ruppeiner),
- Quantum information theory, tensor networks (Bures),
- Bloch bands, dynamical time evolution (Berry),
- Quantum Hall and other topological states (Fubini/Study), ...

- **Geometric nature** of certain physical observables:
- Hall conductance = 1st Chern class (Niu-Thouless,...),
- Entanglement entropy = Area of extremal surface (Ryu-Takayanagi),
- What else?
Holography light
Holography light

- **Fixed** classical metric,
- Non-SUSY and **N-irrelevant** (equiv. to 0\(^{th}\) order in 1/N),
- The bulk 'dual' is **not dynamical** ('boundary problem')

Can still explain certain **apparent holography-like** features without invoking new principles of nature
Holography light

- Fixed classical metric,
- Non-SUSY and N-irrelevant (equiv. to 0th order in 1/N),
- The bulk 'dual' is not dynamical ('boundary problem')

Can still explain certain apparent holography-like features without invoking new principles of nature

Desktop realizations:

• Strained graphene and other 2d Dirac (semi)metals
Holography light

- Fixed classical metric,
- Non-SUSY and N-irrelevant (equiv. to 0th order in 1/N),
- The bulk 'dual' is not dynamical ('boundary problem')

Can still explain certain apparent holography-like features without invoking new principles of nature

Desktop realizations:

- Strained graphene and other 2d Dirac (semi)metals
- \textbf{3d Topological insulators}/gapped Dirac materials (?)

Potentially problematic:
- Curved 3d space
- Fermi liquid on a 2d boundary is more robust than in 1d
Holography light

- Fixed classical metric,
- Non-SUSY and N-irrelevant (equiv. to 0th order in 1/N),
- The bulk 'dual' is not dynamical ('boundary problem')

Can still explain certain apparent holography-like features without invoking new principles of nature

Desktop realizations:

- Strained graphene and other 2d Dirac (semi)metals
- 3d Topological insulators/gapped Dirac materials (?)

Potentially problematic:
- Curved 3d space
- Fermi liquid on a 2d boundary is more robust than in 1d

- **Hyperbolic metamaterials** (optical/IR)
Graphene: scotch tape-induced relativity
Graphene: scotch tape-induced relativity

- Linear dispersion: \(E = v_F \mathbf{p} \quad v_F = 10^6 \text{m/s} (= c/300) \)
- Spinor wavefunction (pseudospin \(\frac{1}{2} \)) \(\rightarrow \) Dirac equation
- ‘Fine structure’ constant: \(\frac{e^2}{hc} \sim 1 \)
Graphene: scotch tape-induced relativity

- Linear dispersion: \(E = \mathbf{p} \cdot v_F \) \(v_F = 10^6 \text{m/s} (= c/300) \)
 Spinor wavefunction (pseudospin \(\frac{1}{2} \)) \(\rightarrow \) Dirac equation
 ‘Fine structure’ constant: \(e^2/hc \sim 1 \)

- **Desktop realizations** of fundamental phenomena:
 - Klein tunneling,
 - ‘zitterbewegung’,
 - Veselago lense,
 - atomic collapse,
 - chiral symmetry breaking (excitonic insulator),
 magnetic catalysis (Quantum Hall ferromagnetism),…
Graphene: scotch tape-induced relativity

- Linear dispersion: \(E = v_F p \) \(v_F = 10^6 \text{m/s} (= c/300) \)
- Spinor wavefunction (pseudospin ½) \(\rightarrow\) Dirac equation
- ‘Fine structure’ constant: \(e^2/hc \sim 1 \)

- Desktop realizations of fundamental phenomena:
 - Klein tunneling,
 - ‘zitterbewegung’,
 - Veselago lense,
 - atomic collapse,
 - chiral symmetry breaking (excitonic insulator), magnetic catalysis (Quantum Hall ferromagnetism),…

 - (non-) abelian gauge fields and solitons,
 - Mimicking gravity and cosmology,
 - Analogue holographic correspondence
Elastic strain in graphene

- **Hopping** Hamiltonian
 \[H = - \sum_{i,n} t(r_i, r_{i+n}) a_{r_i}^\dagger b_{r_{i+n}} + \text{H. c.} \]

- **Strain** tensor
 \[\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \left(\frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right) \]

- **Elastic energy**
 \[\mathcal{H}_{\text{elastic}} = \frac{\kappa}{2} \int d^2\vec{r} \left[\nabla^2 h(\vec{r}) \right]^2 + \int d^2\vec{r} \left\{ \frac{\lambda}{2} \left[\sum_i u_{ii}(\vec{r}) \right]^2 + \mu \sum_{ij} [u_{ij}(\vec{r})]^2 \right\} \]

- **Stress** engineering

- **Induced fermion mass**
 via hybridization with substrate

F. Guinea et al, ‘11

S. Tang et al, ‘13
N. Levy et al, ’10
Emergent pseudo-(gravi)magnetic field

- **Vector potential**
 \[
 A_x(R) - i A_y(R) = \frac{1}{q v_F} \sum_n \delta t(r, r + n) e^{iK \cdot n} \approx \frac{\hbar \beta}{2qa} (\epsilon_{xx} - \epsilon_{yy} + 2i \epsilon_{xy})
 \]

- **Higher order terms**
 \[
 A_x^{(c)} = -\frac{3a^2 V_{pp}^0}{8q v_F} \left[(\frac{\partial^2 h}{\partial y^2})^2 - (\frac{\partial^2 h}{\partial x^2})^2 \right],
 \]
 \[
 A_y^{(c)} = -\frac{3a^2 V_{pp}^0}{4q v_F} \left[\frac{\partial^2 h}{\partial x \partial y} \left(\frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial x^2} \right) \right]
 \]

 \[\beta = -\frac{\partial \log t(r)}{\partial \log r} \bigg|_{r=a}\]

 - M.A.H. Vozmediano et al, ‘10;
 - A.L. Kitt et al, ‘12;
 - F. de Juan et al, ‘12

Position-dependent Fermi velocity (?)

- **Emergent gravity**: Weitzenbock geometry
 \[
 H_- = -\sigma^3 f_k^a \sigma^a [\partial_k + i A_k], \quad a = 1, 2; k = 1, 2
 \]
 \[
 H_+ = -\sigma^2 \left(\sigma^3 f_k^a \sigma^a [\partial_k - i A_k] \right) \sigma^2.
 \]

 \[\mathcal{H} = i \sigma^3 H_- = -ie f_k^a \sigma^a \circ [\partial_k + i A_k]\]

 \[^{g_{\mu \nu}} = e^\mu_a e^n_b \eta^{ab}\]

 \[^{g_{\mu \nu}^{\text{graphene}}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & g_{ij} \end{pmatrix}\]

 - G. Volovik and M. Zubkov, ‘13
 - A. Iorio and P. Pais, ‘15
Holographic boundary propagator

- Fermion action:

\[S = \int drdt d^d x \sqrt{|\det g|} \bar{\psi} \gamma^a \alpha^d (i \partial_{\mu} + \frac{i}{8} \omega^{bc}_{\mu} \left[\gamma_b, \gamma_c \right] + A_{\mu} - m) \psi \]

- Background metric:

\[ds^2 = -f(z) dt^2 + g(z) dz^2 + h(z) d\bar{x}^2 \]

- Radial Schroedinger's eq.:

\[\frac{\partial^2 \psi}{\partial r^2} = V(r) \psi \]

\[\psi_\pm (r, \omega, k) \sim \frac{1}{V^{1/4} (r)} e^{\pm \int_0^r \sqrt{V}(r') \, dr'} \]

- WKB solutions:

\[G(\tau, x) \sim \exp (-S_0(\tau, x)) \]

- Asymptotic behavior:

\[S(\tau, x) = L \omega \int du \sqrt{g_{uu} + g_{\tau\tau} \left(\frac{d\tau}{du} \right)^2 + g_{xx} \left(\frac{dx}{du} \right)^2} \]

\[S(\tau, x) = L \omega^2 \int_{u_0}^{u_t} du \sqrt{\frac{g_{uu}}{r(u)}} \quad mR \gg 1 \]

\[r(u) = \omega^2 - k_x^2 / g_{xx}(u) - k_\tau^2 / g_{\tau\tau}(u) \]

\[\tau = L k_\tau \int_{u_0}^{u_t} du \frac{g_{uu}}{g_{\tau\tau} r(u)} \quad x = L k_x \int_{u_0}^{u_t} du \frac{g_{uu}}{g_{xx} r(u)} \]

\[u_t = \left(\omega / \sqrt{k_\tau^2 + k_x^2} \right)^{1/\alpha} \]
Bulk-edge correspondence

- Flat metric
 \[dl_{flat}^2 = dr^2 + r^2 d\phi^2 \quad ds^2 = d\tau^2 + dl^2 \]
 \[S_{flat}(\tau, x) = m\sqrt{\tau^2 + 4R^2 \sin^2(x/2R)} \quad G(\tau, x) \sim \exp(-S_0(\tau, x)) \]

- Surface of rotation
 \[dl_{sor}^2 = dr^2[1 + (\frac{\partial h(r)}{\partial r})^2] + r^2 d\phi^2 \]
 \[S_{sor}(\tau, x) = m\sqrt{\tau^2 + (Rx\eta)^2/(\eta+1)} \]

- Boundary propagator: 1d bosonization
 \[G_{bos}^{\pm}(\tau, x) \sim \exp[-\int \frac{dk}{2\pi} \frac{2 + U_k}{\epsilon_k} (1 - e^{\pm ikx - \epsilon_k t})] \]
 \[\epsilon_k = k\sqrt{1 + U_k} \quad U(x) \sim 1/x^\sigma \]

- Matching x-asymptotics:
 \[\eta = (1 - \sigma)/(1 + \sigma) \]
 (time-of-flight, tunneling, noise power spectrum, etc).
Bulk-edge correspondence: more examples

- Generalized Beltrami trumpet:

$$dl_{\log}^2 = dr^2 + R^2 \exp(-2(r/R)^\lambda) d\phi^2$$

$$dl^2 = d\rho^2/\rho^2 + \rho^2 d\phi^2$$

$$S_{\log}(\tau, x) = m \sqrt{\tau^2 + R^2 (\ln x/a)^2/\lambda}$$

Cf., semi-local regime:

$$S_{s-1}(\tau, x) = \sqrt{(1 - \nu_0)^2 (\ln \tau/a)^2 + m^2 x^2}, \quad \text{AdS}_2 \times \mathbb{R}^d.$$

- $\lambda = 1$
 Luttinger:
 $$G(0, x) \sim 1/x^{m_R}$$

- $\lambda = 2/3$
 Coulomb interaction in 1d:
 $$G(0, x) \sim \exp(-\text{const} \ln^{3/2} x)$$

Underlying physics: another manifestation of the equivalence principle?

"Curvature in the bulk = Phantom force at the boundary"
String holoography meets its optical namesake
String holography meets its optical namesake

- **Artificial metric** in electrically and/or magnetically active media

\[
\gamma_{ij} = g_{ij} / |g_{\tau\tau}| = \epsilon_{ij} / \det \hat{\epsilon} = \mu_{ij} / \det \hat{\mu}
\]

\[
\epsilon_{ij} = \mu_{ij} = \sqrt{-\hat{g}} g_{ij} / |g_{\tau\tau}|
\]

\[
\frac{\omega^2}{c^2} \vec{D}_\omega = \vec{\nabla} \times \vec{\nabla} \times \vec{E}_\omega \quad \text{and} \quad \vec{D}_\omega = \hat{\epsilon}_\omega \vec{E}_\omega
\]

\[
\frac{\omega^2}{c^2} = \frac{k_z^2}{\varepsilon_1} + \frac{k_x^2 + k_y^2}{\varepsilon_2}
\]

W. Lu et al.,'10, T. Mackay and A. Lakhtakia, '10
String holography meets its optical namesake

• Artificial metric in electrically and/or magnetically active media

\[
\gamma_{ij} = \frac{g_{ij}}{|g_{TT}|} = \frac{\epsilon_{ij}}{\det \epsilon} = \frac{\mu_{ij}}{\det \mu}
\]

\[
\epsilon_{ij} = \mu_{ij} = \sqrt{-\hat{g}g_{ij}}/|g_{TT}|
\]

\[
\frac{\omega^2}{c^2} \tilde{D}_\omega = \nabla \times \nabla \times \tilde{E}_\omega \quad \text{and} \quad \tilde{D}_\omega = \hat{\epsilon}_\omega \tilde{E}_\omega
\]

• Hyperbolic metamaterials

- Rindler and event horizons, black/white/worm-holes,
- inflation, Big Bang, Rip, and Crunch,
- metric signature transitions, end-of-time, multiverse,…

I.Smolyaninov et al, 1201.5348, 1510.07137

W.Lu et al, ’10,
T.Mackay and A.Lakhtakia, ’10
String holography meets its optical namesake

- Artificial metric in electrically and/or magnetically active media
 \[\gamma_{ij} = \frac{g_{ij}}{|g_{\tau\tau}|} = \frac{\epsilon_{ij}}{\text{det} \epsilon} = \frac{\mu_{ij}}{\text{det} \mu} \]
 \[\epsilon_{ij} = \mu_{ij} = \sqrt{-\hat{g}} g_{ij} / |g_{\tau\tau}| \]
 \[\frac{\omega^2}{c^2} \vec{D}_\omega = \nabla \times \nabla \times \vec{E}_\omega \quad \text{and} \quad \vec{D}_\omega = \vec{\epsilon}_\omega \vec{E}_\omega \]
 W.Lu et al.,'10, T.Mackay and A.Lakhtakia,'10

- Hyperbolic metamaterials
 - Rindler and event horizons, black/white/worm-holes,
 - inflation, Big Bang, Rip, and Crunch,
 - metric signature transitions, end-of-time, multiverse,…

- Analogue holography
 I.Smolyaninov et al, 1201.5348, 1510.07137

 DVK 1411.1693
Attainable geometries

- **Dispersion** of extraordinary waves

\[
\frac{\omega^2}{c^2} \hat{D}_\omega = \vec{\nabla} \times \vec{\nabla} \times \vec{E}_\omega \quad \text{and} \quad \hat{D}_\omega = \vec{\varepsilon}_\omega \vec{E}_\omega
\]

\[
\omega^2 = k_z^2/\varepsilon_{xy} + k_{xy}^2/\varepsilon_{zz}
\]

\[
ds^2 = -\varepsilon_{xy} dz^2 - \varepsilon_{zz} (dx^2 + dy^2)
\]

- **Attainable 2+1 geometries**

\[
ds^2 = \frac{d\tau^2}{u^{2\alpha}} + R^2\frac{du^2}{u^{2\beta}} + \frac{dx^2}{u^{2\gamma}}
\]

\[
ds^2 = u^{2\theta/d}\left(\frac{d\tau^2}{u^{2\zeta}} + \frac{L^2du^2 + dx^2}{u^2}\right)
\]

\[
\zeta = \frac{1 - \beta + \alpha}{1 - \beta + \gamma}, \quad \theta = \frac{1 - \beta}{1 - \beta + \gamma}
\]

Hyperscaling-violation metrics

I.Smolyaninov, E.Narimanov,'09...
Prospective boundary dual

• Fluctuating elastic membrane: (coupled in- and out-of-plane modes)

\[F = \int d^d x \left[\frac{\kappa}{2} (\nabla^2 h)^2 + \mu v_{\alpha\beta}^2 + \frac{\lambda}{2} v_{\alpha\alpha}^2 \right] \]

\[v_{\alpha\beta} = \partial_\alpha \xi_\beta + \partial_\beta \xi_\alpha + \partial_\alpha h \partial_\beta h \]

\[\Delta F \sim \int d^d k k^{4-\eta} |h_k|^2 \]

• Effective out-of-plane action:

\[S_{boundary} = \frac{1}{2\nu} \int d^2 k k^{2+\theta/\zeta} |\phi_k|^2 \]

\[\psi(x) \sim \exp[i\phi(x)] \]

\[G_\omega(x) \sim \exp[-\sqrt{cL\omega} |x/cL|^{\theta/\zeta}] \]

• Optical field correlations: (speckle interferometry)

\[<E_\omega(x)E_{-\omega}^*(0)> \propto \exp(-\omega |x|) \]

• Noise power spectrum and other moments of the boundary field distribution function can be related to the bulk ‘metric’

• Practical realizations: Co nanoparticles in kerosene, PMMA on gold, InGaAs (m)/GaAs(d) ,…
The rise of SYK model
The rise of SYK model

- spin glasses (Georges/Parcollet/Sachdev ´89; Sachdev/Ye ´92),
- randomized Majoranas (Kitaev ´15),
- toy holography (Sachdev ´15, Maldacena, Stanford, Shenker, Gross, Polchinski, Rosenhaus ´16...)
The rise of SYK model

- spin glasses \((\text{Georges/Parcollet/Sachdev } \,\text{}`89; \text{Sachdev/Ye } \,\text{}`92)\),
- randomized Majoranas (Kitaev `15),
- toy holography (Sachdev `15, Maldacena, Stanford, Shenker, Gross, Polchinski, Rosenhaus `16...)

Original, Dirac:

\[
H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^\dagger c_j^\dagger c_k c_\ell
\]

S. Sachdev,
1506.05111
The rise of SYK model

- spin glasses (Georges/Parcollet/Sachdev ’89; Sachdev/Ye ’92),
- randomized Majoranas (Kitaev ’15),
- toy holography (Sachdev ’15, Maldacena, Stanford, Shenker, Gross, Polchinski, Rosenhaus ’16...)

Original, Dirac:

$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_\ell$$

q-Generalized, Majorana:

$$H = i^{q/2} \sum_{\alpha_1...\alpha_q}^{N} J^{\alpha_1...\alpha_q} \chi^{\alpha_1} ... \chi^{\alpha_q}$$

$$S = \sum_{i}^{L} \sum_{\alpha}^{N} \chi_i^{\alpha} \partial_\tau \chi_i^{\alpha} - i^{q/2} \sum_{i_a,\alpha_a}^{i_1...i_q} J^{\alpha_1...\alpha_q} \chi_i^{\alpha_1} ... \chi_i^{\alpha_q}$$

S. Sachdev, 1506.05111
The rise of SYK model

- spin glasses (Georges/Parcollet/Sachdev ’89; Sachdev/Ye ’92),
- randomized Majoranas (Kitaev ’15),
- toy holography (Sachdev ’15, Maldacena, Stanford, Shenker, Gross, Polchinski, Rosenhaus ’16...)

Original, Dirac:

\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;k\ell} c_i^\dagger c_j^\dagger c_k c_\ell \]

q-Generalized, Majorana:

\[H = i q/2 \sum_{\alpha_1...\alpha_q} J_{\alpha_1...\alpha_q} \chi_{i_1}^{\alpha_1} \ldots \chi_{i_q}^{\alpha_q} \]

\[S = \sum_{i} \sum_{\alpha} X_i^\alpha \partial_\tau X_i^\alpha - i q/2 \sum_{i_a,\alpha_a} J_{i_1...i_q}^{\alpha_1...\alpha_q} \chi_{i_1}^{\alpha_1} \ldots \chi_{i_q}^{\alpha_q} \]

Disorder averaging:

\[\langle J_{\alpha_1...\alpha_q} J_{\beta_1...\beta_q} \rangle = \frac{J^2(q-1)!}{N^{q-1}} \prod_{\alpha} \delta_{\alpha_i\beta_i} \]
Spreading SYK-ness: non-random models
Spreading SYK-ness: non-random models

- QM of tensors with \((D+1)n^D\) components, vector rep. of \(O(n)^D\):

\[
S = \int \mathcal{D} \left[\sum_{c} \left(\sum_{a} \psi_{ac}^{\dagger} \frac{d}{dt} \psi_{ac} \right)^{D+1/2} \sum_{a_1, \ldots, a_D} \psi_{a_0}^{a_1} \cdots \psi_{a_D}^{a_2} \prod_{c_1 < c_2} \delta_{c_1 c_2} \right].
\]

Witten '16, Gurau '16...

- Tetrahedron model (\(D=3\)):

\[
H_1^t = \frac{g}{(N_a N_b N_c)^{1/2}} c_{a_1 b_1 c_1}^{\dagger} c_{a_2 b_2 c_1}^{\dagger} c_{a_1 b_2 c_2} c_{a_2 b_1 c_2}.
\]

\(a = 1, \ldots, N_a; b = 1, \ldots, N_b; c = 1, \ldots, N_c\), symmetry \(U(N_a) U(N_b) O(N_c)\)
Spreading SYK-ness: non-random models

- QM of tensors with \((D+1)n^D\) components, vector rep. of \(O(n)^D\) :

\[S = \int dt \left[\frac{1}{2} \sum_c \left(\sum_{a^c} \frac{d}{dt} \psi_{a^c} \right)^2 - q^{(D+1)/2} \frac{J}{n^{D(D-1)/4}} \sum_{a^0, a^D} \psi_{a^0} \ldots \psi_{a^D} \prod_{c_1 < c_2} \delta_{a^{c_1} a^{c_2}} \right]. \]

Witten '16, Gurau '16...

- Tetrahedron model (\(D=3\)):

\[H_1^t = \frac{g}{(N_a N_b N_c)^{1/2}} c_{a_1 b_1 c_1}^\dagger c_{a_2 b_2 c_2}^\dagger c_{a_1 b_2 c_2} c_{a_2 b_1 c_2}. \]

\(a = 1, \ldots N_a; \; b = 1, \ldots N_b; \; c = 1, \ldots N_c\), symmetry \(U(N_a) \; U(N_b) \; O(N_c)\)

- \(N_a = N = 3, \; N_b = 2 = M = 2, \; N_c = L \gg 1\) designer unit cell

\[H = \sum_j H_j, \quad H_j = U \hat{n}_j^2 + \sum_{\tilde{\epsilon} = \tilde{x}, \tilde{y}} J \left(\vec{S}_j \cdot \vec{S}_{j+\tilde{\epsilon}} - \frac{1}{4} \hat{n}_j \hat{n}_{j+\tilde{\epsilon}} \right) - K \left(\epsilon_{a\beta\epsilon\gamma\sigma} c_{j,x,y}^\dagger c_{j,x,y}^\dagger + \gamma c_{j,x,y} c_{j,x,y} + H.c. \right) \]

Wu et al, 1802.04293
SYK model: key properties
SYK model: key properties

- $N \gg 1$: simple diagrammatics (´melonic´ graphs)

\[G = G_b + \ldots \]

- Replica-symmetric (not a spin-glass) mean-field states

- Reparametrization invariance $t \rightarrow f(t)$, Liouville quantum mechanics and Schwarzian action for fluctuations about mean-field

- Maximally chaotic behavior and fast scrambling (akin to black holes)
SYK model: key properties

- $N>>>1$: simple diagrammatics ('melonic' graphs)

\[G = G_b + \ldots \]

- Replica-symmetric (not a spin-glass) mean-field states

- Reparametrization invariance $t \rightarrow f(t)$, Liouville quantum mechanics and Schwarzian action for fluctuations about mean-field

- Maximally chaotic behavior and fast scrambling (akin to black holes)

Prospective holographic dual:
- Pure AdS\(_2\) (naïve)

- Dilaton (Jackiw-Teitelboim) gravity in AdS\(_2\) (+ infinite number of massive scalars)?

- AdS\(_3\)? (Jevicki et al)
Saddle-point analysis of (generalized) SYK model
Saddle-point analysis of (generalized) SYK model

- G-Σ functional:

\[
Z = \int DG\mathcal{D}\Sigma (\text{Det}[F[\partial_\tau] + \Sigma])^N \\
\exp(N \int_{\tau_1,\tau_2} G\Sigma - A[G]))
\]

\[
A = N \sum_{k} \int_{\tau_1,\ldots,\tau_k} J_k^2(\tau_1,\ldots,\tau_k) G^q(\tau_1,\tau_2) \ldots G^q(\tau_{k-1},\tau_k)
\]
Saddle-point analysis of (generalized) SYK model

- G-Σ functional:

\[
Z = \int DGD\Sigma (\text{Det}[F[\partial_{\tau}] + \Sigma])^N \exp(N \int_{\tau_1, \tau_2} G\Sigma - A[G])
\]

\[
A = N \sum_k \int_{\tau_1, \ldots, \tau_k} J_k^2(\tau_1, \ldots, \tau_k) G^q(\tau_1, \tau_2) \ldots G^q(\tau_{k-1}, \tau_k)
\]

- Equations of motion:

\[
\int_{\tau} (F(\partial_{\tau})\delta(\tau_1, \tau) + \Sigma(\tau_1, \tau)) G(\tau, \tau_2) = \delta(\tau_1 - \tau_2)
\]

\[
\Sigma(\tau_1, \tau_2) = \frac{1}{N} \frac{\delta A}{\delta G(\tau_1, \tau_2)}
\]
Saddle-point analysis of (generalized) SYK model

- G-Σ functional:

\[Z = \int DGD\Sigma (\text{Det}[F[\partial_{\tau}] + \Sigma])^N \times \exp(N \int_{\tau_1, \tau_2} G\Sigma - A[G])) \]

\[A = N \sum_{k}^{\infty} \int_{\tau_1, \ldots \tau_k} J_k^2(\tau_1, \ldots \tau_k) G^q(\tau_1, \tau_2) \ldots G^q(\tau_{k-1}, \tau_k) \]

- Equations of motion:

\[\int_\tau (F(\partial_{\tau})\delta(\tau_1, \tau) + \Sigma(\tau_1, \tau))G(\tau, \tau_2) = \delta(\tau_1 - \tau_2) \]

\[\Sigma(\tau_1, \tau_2) = \frac{1}{N} \frac{\delta A}{\delta G(\tau_1, \tau_2)} \]

- IR asymptotic (T << J):

\[\int_\tau G(\tau_1, \tau) \frac{\delta A}{\delta G(\tau, \tau_2)} = \delta(\tau_1 - \tau_2) \]
Saddle-point analysis of (generalized) SYK model

- **G-Σ functional:**

\[
Z = \int DGD\Sigma (\text{Det}[F[\partial_\tau] + \Sigma])^N \exp(N \int_{\tau_1, \tau_2} G\Sigma - A[G])
\]

\[
A = N \sum_{k} \int_{\tau_1, \ldots, \tau_k} J^2_k(\tau_1, \ldots, \tau_k) G^q(\tau_1, \tau_2) \ldots G^q(\tau_{k-1}, \tau_k)
\]

- **Equations of motion:**

\[
\int_\tau (F(\partial_\tau)\delta(\tau_1, \tau) + \Sigma(\tau_1, \tau))G(\tau, \tau_2) = \delta(\tau_1 - \tau_2)
\]

\[
\Sigma(\tau_1, \tau_2) = \frac{1}{N} \frac{\delta A}{\delta G(\tau_1, \tau_2)}
\]

\[
\int_\tau G(\tau_1, \tau) \frac{\delta A}{\delta G(\tau, \tau_2)} = \delta(\tau_1 - \tau_2)
\]

- **IR asymptotic (∏ << J):**

\[
G(\tau_1, \tau_2) \rightarrow G_f = [f'(\tau_1)f'(\tau_2)]^\Delta G(f(\tau_1), f(\tau_2))
\]

\[
\Sigma(\tau_1, \tau_2) \rightarrow \Sigma_f = [f'(\tau_1)f'(\tau_2)]^{1-\Delta} \Sigma(f(\tau_1), f(\tau_2))
\]

- **Reparametrization symmetry:**
Saddle-point analysis of (generalized) SYK model

- G-Σ functional:

\[Z = \int DGDΣ(Det[F[∂τ] + Σ])^N \exp(N\int_{τ_1, τ_2} GΣ - A[G])) \]

\[A = N \sum_k \int_{τ_1, ..., τ_k} J_k^2(τ_1, ..., τ_k)G^q(τ_1, τ_2) ... G^q(τ_{k-1}, τ_k) \]

- Equations of motion:

\[\int_τ (F(τ)δ(τ_1, τ) + Σ(τ_1, τ))G(τ, τ_2) = δ(τ_1 - τ_2) \]

\[Σ(τ_1, τ_2) = \frac{1}{N} \frac{δA}{δG(τ_1, τ_2)} \]

\[\int_τ G(τ_1, τ)\frac{δA}{δG(τ_1, τ_2)} = δ(τ_1 - τ_2) \]

\[G(τ_1, τ_2) \rightarrow G_f = [f'(τ_1)f'(τ_2)]^ΔG(f(τ_1), f(τ_2)) \]

\[Σ(τ_1, τ_2) \rightarrow Σ_f = [f'(τ_1)f'(τ_2)]^{1-Δ}Σ(f(τ_1), f(τ_2)) \]

- IR asymptotic (T << J):

- Reparametrization symmetry:

- Mean-field solution:
 (finite T)
Saddle-point analysis of (generalized) SYK model

- G-Σ functional:

\[
Z = \int DGDΣ(Det[F[∂τ] + Σ])^N \exp(N \int_{τ_1, τ_2} GΣ - A[G])
\]

\[
A = N \sum_{k} \int_{τ_1, ..., τ_k} J_k^2(τ_1, ..., τ_k)G^q(τ_1, τ_2) ... G^q(τ_{k-1}, τ_k)
\]

- Equations of motion:

\[
\int_τ (F(∂τ)δ(τ_1, τ) + Σ(τ_1, τ))G(τ, τ_2) = δ(τ_1 - τ_2)
\]

\[
Σ(τ_1, τ_2) = \frac{1}{N} \frac{δA}{δG(τ, τ_2)}
\]

\[
\int_τ G(τ_1, τ) \frac{δA}{δG(τ, τ_2)} = δ(τ_1 - τ_2)
\]

- IR asymptotic (T << J):

- Reparametrization symmetry:

- Mean-field solution: (finite T)

\[
G_0(τ_1, τ_2) = \left(\frac{\pi}{β \sin(\pi δτ_{12}/β)}\right)^{2Δ} \quad δτ_{12} = τ_1 - τ_2
\]

\[
G_{β=∞}(τ_1, τ_2) = -β^{Δ} |J(τ_1 - τ_2)|^{-2Δ} \text{sgn}(τ_1 - τ_2), \quad Δ = \frac{1}{q}
\]
Saddle-point analysis of (generalized) SYK model

- G-Σ functional:

\[Z = \int DGD\Sigma(Det[F[\partial_\tau] + \Sigma])^N \exp(N \int_{\tau_1, \tau_2} G\Sigma - A[G]) \]

\[A = N \sum_{k} \int_{\tau_1, \ldots, \tau_k} J_k^2(\tau_1, \ldots, \tau_k) G(\tau_1, \tau_2) \ldots G(\tau_{k-1}, \tau_k) \]

- Equations of motion:

\[\int_{\tau} (F(\partial_\tau)\delta(\tau_1, \tau) + \Sigma(\tau_1, \tau))G(\tau, \tau_2) = \delta(\tau_1 - \tau_2) \]

\[\Sigma(\tau_1, \tau_2) = \frac{1}{N} \frac{\delta A}{\delta G(\tau_1, \tau_2)} \]

\[\int_{\tau} G(\tau_1, \tau) \frac{\delta A}{\delta G(\tau, \tau_2)} = \delta(\tau_1 - \tau_2) \]

- IR asymptotic (T << J):

\[G(\tau_1, \tau_2) \to G_f = [f'(\tau_1)f'(\tau_2)]^\Delta G(f(\tau_1), f(\tau_2)) \]

\[\Sigma(\tau_1, \tau_2) \to \Sigma_f = [f'(\tau_1)f'(\tau_2)]^{1-\Delta}\Sigma(f(\tau_1), f(\tau_2)) \]

- Reparametrization symmetry:

\[G_0(\tau_1, \tau_2) = \left(\frac{\pi}{\beta \sin(\pi \delta\tau_{12}/\beta)} \right)^{2\Delta} \delta\tau_{12} = \tau_1 - \tau_2 \]

\[G_{\beta=\infty}(\tau_1, \tau_2) = -b^\Delta |J(\tau_1 - \tau_2)|^{-2\Delta} \text{sgn}(\tau_1 - \tau_2), \quad \Delta = \frac{1}{q} \]

- Mean-field solution: (finite T)

- Residual invariance: (SL(2,R) for T=0)

\[\tan \left(\frac{\pi f(\tau)}{\beta} \right) \to \frac{a \tan \left(\frac{\pi f(\tau)}{\beta} \right) + b}{c \tan \left(\frac{\pi f(\tau)}{\beta} \right) + d} \quad \text{ad}-bc=1 \]
Holographic matching
Holographic matching

- Equivalent geometry
 (charged BH in $AdS_2 \times R^d$):

$$ds^2 = \frac{R_2^2}{\zeta^2} \left[- (1 - \zeta^2 / \zeta_0^2) dt^2 + \frac{d\zeta^2}{(1 - \zeta^2 / \zeta_0^2)} \right]$$

$$T = \frac{1}{2\pi \zeta_0}$$

$$A = \mathcal{E} \left(\frac{1}{\zeta} - \frac{1}{\zeta_0} \right) dt$$
Holographic matching

- Equivalent geometry (charged BH in $AdS_2 \times R^d$):
 \[ds^2 = \frac{R_2^2}{\zeta^2} \left[-\left(1 - \frac{\zeta^2}{\zeta_0^2}\right) dt^2 + \frac{d\zeta^2}{\left(1 - \frac{\zeta^2}{\zeta_0^2}\right)} \right] \]

 \[T = \frac{1}{2\pi \zeta_0} \quad A = \mathcal{E} \left(\frac{1}{\zeta} - \frac{1}{\zeta_0}\right) dt \]

- Probe fermion bulk action:
 \[S = i \int d^2x \sqrt{-g} \left(\bar{\psi} \Gamma^\alpha D_\alpha \psi - m \bar{\psi} \psi \right) \]

- Fermion dimension:
 \[\Delta = \frac{1}{2} - \sqrt{m^2 R_2^2 - q^2 \mathcal{E}^2} \]

- Bulk fermion propagator:
 \[G_{IR}(\omega, q) = \frac{\psi_-(z, \omega, q)}{\psi_+(z, \omega, q)} \bigg|_{z \to z_0} \sim e^{-S(\omega, q)} \]

 \[S(\omega, q) = \frac{1}{2} \int_{z_0}^{z_0} dz \sqrt{g(z)} V(z) \]
 \[V(z) = m^2 + \frac{q^2}{h(z)} + \frac{\omega^2}{f(z)} \]
Holographic matching

- Equivalent geometry
 (charged BH in $AdS_2 \times R^d$):

$$ds^2 = \frac{R_2^2}{\zeta^2} \left[- (1 - \zeta^2/\zeta_0^2) \, dt^2 + \frac{d\zeta^2}{(1 - \zeta^2/\zeta_0^2)} \right]$$

$$T = \frac{1}{2\pi \zeta_0} \hspace{2cm} A = \mathcal{E} \left(\frac{1}{\zeta} - \frac{1}{\zeta_0} \right) \, dt$$

- Probe fermion bulk action:

$$S = i \int d^2x \sqrt{-g} \left(\bar{\psi} \Gamma^\alpha D_\alpha \psi - m \bar{\psi} \psi \right)$$

- Fermion dimension:

$$\Delta = \frac{1}{2} - \sqrt{m^2 R_2^2 - q^2 \mathcal{E}^2}$$

- Bulk fermion propagator:

$$G_{IR}(\omega, q) = \frac{\bar{\psi}_-(z, \omega, q)}{\psi_+(z, \omega, q)} \bigg|_{z \to z_0} \sim e^{-S(\omega, q)}$$

$$S(\omega, q) = 2 \int_{z_0}^{z_t} dz \sqrt{g(z)} V(z) \hspace{2cm} V(z) = m^2 + \frac{q^2}{h(z)} + \frac{\omega^2}{j(z)}$$

- Thermodynamics:

$$F(T), \quad S(N \to \infty, \ T \to 0) > 0$$

- Four-point functions (OTOC):

$$\langle [O(t, x), O(o, o)]^2 \rangle, \quad \text{etc.}$$
Beyond mean-field: Schwarzian dynamics
Beyond mean-field: Schwarzian dynamics

- Correction to mean-field propagator:
 \[\delta G = G_f(\tau_1, \tau_2) - G_0(\tau_1, \tau_2) \approx \]
 \[\approx \frac{\Delta}{6} (\delta \tau_{12})^2 \text{Sch}\{f, \tau\} G_0(\tau_1, \tau_2) + \ldots \]

- Schwarzian derivative:
 \[\text{Sch}\{F, \tau\} = \frac{F'''}{F'} - \frac{3}{2} \left(\frac{F''}{F'} \right)^2 \]
Beyond mean-field: Schwarzian dynamics

- Correction to mean-field propagator:
 \[\delta G = G_f(\tau_1, \tau_2) - G_0(\tau_1, \tau_2) \approx \]
 \[\approx \frac{\Delta}{6} (\delta \tau_1 \delta \tau_2)^2 \text{Sch}\{f, \tau\} G_0(\tau_1, \tau_2) + \ldots \]

- Schwarzian derivative:
 \[\text{Sch}\{F, \tau\} = \frac{F'''}{F'} - \frac{3}{2} \left(\frac{F''}{F'}\right)^2 \]

- Non-reparametrization invariant action for soft mode:
 \[A_0 = Tr \ln(1 - \partial_{\tau} G_f) = -M \int_{\tau} \text{Sch}\{\tan\frac{\pi f}{\beta}, \tau\} \]
 \[\tau = (\tau_1 + \tau_2)/2 \]
Beyond mean-field: Schwarzian dynamics

- Correction to mean-field propagator:
 \[\delta G = G_f(\tau_1, \tau_2) - G_0(\tau_1, \tau_2) \approx \]
 \[\approx \frac{\Delta}{6} (\delta \tau_{12})^2 Sch\{f, \tau\} G_0(\tau_1, \tau_2) + \ldots \]

- Schwarzian derivative:
 \[Sch\{F, \tau\} = \frac{F'''}{F'} - \frac{3}{2} \left(\frac{F''}{F'} \right)^2 \]

- Non-reparametrization invariant action for soft mode:
 \[A_0 = Tr \ln(1 - \partial_\tau G_f) = -M \int_\tau Sch\{ \tan \frac{\pi f}{\beta}, \tau \} \]
 \[\tau = (\tau_1 + \tau_2)/2 \]

- Convenient change of variables:
 \[f' = e^\phi \quad A_0 = \frac{M}{2} \int d\tau [\phi'(\tau)]^2. \]
Beyond mean-field: Schwarzian dynamics

- Correction to mean-field propagator:
 \[\delta G = G_f(\tau_1, \tau_2) - G_0(\tau_1, \tau_2) \approx \frac{\Delta}{6} (\delta \tau_{12})^2 \text{Sch}\{f, \tau\} G_0(\tau_1, \tau_2) + \ldots \]

- Schwarzian derivative:
 \[\text{Sch}\{F, \tau\} = \frac{F'''}{F'} - \frac{3}{2} (\frac{F''}{F'})^2 \]

- Non-reparametrization invariant action for soft mode:
 \[A_0 = \text{Tr} \ln(1 - \partial_\tau G_f) = -M \int_\tau \text{Sch}\{\tan \frac{\pi f}{\beta}, \tau\} \]
 \[\tau = (\tau_1 + \tau_2)/2 \]

- Convenient change of variables:
 \[f' = e^\phi \quad A_0 = \frac{M}{2} \int d\tau [\phi'(\tau)]^2. \]

- Regime of strong fluctuations:
 \[T < 1/M = O(J/N) \ (<< J) \]
Beyond mean-field: Schwarzian dynamics

- Correction to mean-field propagator:
 \[\delta G = G_f(\tau_1, \tau_2) - G_0(\tau_1, \tau_2) \approx \frac{\Delta}{6} (\delta \tau_{12})^2 \text{Sch}\{f, \tau\} G_0(\tau_1, \tau_2) + \ldots \]

- Schwarzian derivative:
 \[\text{Sch}\{F, \tau\} = \frac{F'''}{F'} - \frac{3}{2} \left(\frac{F''}{F'} \right)^2 \]

- Non-reparametrization invariant action for soft mode:
 \[A_0 = \text{Tr} \ln(1 - \partial_\tau G_f) = -M \int_\tau \text{Sch}\{\tan \frac{\pi f}{\beta}, \tau\} \]
 \[\tau = (\tau_1 + \tau_2)/2 \]

- Convenient change of variables:
 \[f' = e^\phi \quad A_0 = \frac{M}{2} \int d\tau [\phi'(\tau)]^2. \]

- Regime of strong fluctuations:
 \[T < 1/M = O(J/N) \quad (<< J) \]

- Next order \(O(T/J)\) correction:
 \(\delta A \sim \frac{N}{J^2} \int_{\tau_1 \tau_2} \frac{(f'_1 f'_2)^2}{(\delta \tau_{12})^4} \ln \left(\frac{J^2 (\delta \tau_{12})^2}{f'_1 f'_2} \right)\) (non-local)
Generalized SYK models
Generalized SYK models

- **Generalized SYK**: other symmetry breaking terms are possible:

- **Time-dependent** SYK coupling J_2:

$$J_k^2(\delta\tau) = \delta_{k,2} \frac{J^{2-2\gamma}}{c^{2\gamma}}$$

- **Scale-invariant** IR solution with dimension:

$$\Delta = \frac{1-\gamma}{2q}$$
Generalized SYK models

- Generalized SYK: other symmetry breaking terms are possible:

- Time-dependent SYK coupling J_2:
 \[J^2_k(\delta \tau) = \delta_{k,2} \frac{J^{2-2\gamma}}{(\delta \tau)^{2\gamma}} \]

- Scale-invariant IR solution with dimension:
 \[\Delta = \frac{1-\gamma}{2q} \]

- Reparametrization symmetry is broken \textit{spontaneously} AND \textit{explicitly}:
 \[\delta A = \frac{\Gamma}{J} \int_{\tau_1 \tau_2} (\delta \tau_{12})^2 \ln(J \delta \tau_{12}) G^{2q}_{f}(\tau_1, \tau_2) \text{Sch}\{ \tan \frac{\pi f}{\beta}, \tau \} \approx \frac{\Gamma}{J} \int_{\tau_1 \tau_2} \frac{(f'_1 - 1)(f'_2 - 1)}{(\delta \tau_{12})^2} \]

- Cf. Caldeira-Leggett with Ohmic dissipation
SL(2,R)-symmetric Hamiltonians
SL(2,R)-symmetric Hamiltonians

- **Algebra** generators:

\[
\{L_0, L_{\pm 1}\} = \pm L_{\pm 1}, \quad \{L_{-1}, L_1\} = 2L_0
\]

- **Hamitonian** as Casimir:

\[
H = \frac{1}{2}L_0^2 - \frac{1}{4}(L_1L_{-1} + L_{-1}L_1)
\]
SL(2,R)-symmetric Hamiltonians

- Algebra generators:
 \[\{L_0, L_{\pm 1}\} = \pm L_{\pm 1}, \quad \{L_{-1}, L_1\} = 2L_0 \]

- Hamiltonian as Casimir:
 \[
 H = \frac{1}{2}L_0^2 - \frac{1}{4}(L_1 L_{-1} + L_{-1} L_1)
 \]

- Particular realization
 (one out of many):
 \[
 L_{-1} = \pi_f, \quad L_0 = f \pi_f + \pi_\phi, \\
 L_1 = f^2 \pi_f + 2f \pi_\phi + A(\phi) - B(\phi) \pi_f - \frac{C(\phi)}{\pi_f}
 \]
SL(2,R)-symmetric Hamiltonians

- Algebra generators:

\[\{L_0, L_{\pm 1}\} = \pm L_{\pm 1}, \quad \{L_{-1}, L_1\} = 2L_0 \]

\[H = \frac{1}{2} L_0^2 - \frac{1}{4} (L_1 L_{-1} + L_{-1} L_1) \]

\[L_{-1} = \pi_f, \quad L_0 = f \pi_f + \pi_\phi, \]

\[L_1 = f^2 \pi_f + 2f \pi_\phi + A(\phi) - B(\phi) \pi_f - \frac{C(\phi)}{\pi_f} \]

- Hamitonian as Casimir:

- Particular realization (one out of many):

- Particle in \textbf{curved} geometry which is subjected to \textbf{magnetic} and \textbf{electric} fields (nominally 2D but \textbf{effectively} 1D):

\[H = \frac{1}{2} g^{\phi \phi} \pi_\phi^2 + \frac{1}{2} g^{ff} (\pi_f - A_f)^2 + \Phi \]

\[g^{ij} = \text{diag}[1, B(\phi)], \quad A_i = (0, \frac{A(\phi)}{B(\phi)}), \quad \Phi = C(\phi) - \frac{A(\phi)^2}{4B(\phi)} \]
SL(2,R)-symmetric Hamiltonians

- Algebra generators:
 \[\{L_0, L_{\pm 1}\} = \pm L_{\pm 1}, \quad \{L_{-1}, L_1\} = 2L_0 \]

- Hamiltonian as Casimir:
 \[H = \frac{1}{2} L_0^2 - \frac{1}{4}(L_1 L_{-1} + L_{-1} L_1) \]

- Particular realization (one out of many):
 \[L_{-1} = \pi_f, \quad L_0 = f\pi_f + \pi_\phi, \]
 \[L_1 = f^2 \pi_f + 2f \pi_\phi + A(\phi) - B(\phi) \pi_f - \frac{C(\phi)}{\pi_f} \]

- Particle in \textbf{curved} geometry which is subjected to \textbf{magnetic} and \textbf{electric} fields (nominally 2D but \textbf{effectively} 1D):
 \[H = \frac{1}{2} g^{ij} \pi_i \pi_j + \frac{1}{2} g^{ff}(\pi_f - A_f)^2 + \Phi \]
 \[g^{ij} = \text{diag}[1, B(\phi)], \quad A_i = (0, \frac{A(\phi)}{B(\phi)}), \quad \Phi = C(\phi) - \frac{A(\phi)^2}{4B(\phi)} \]

- Further reduction (Liouville-like):
 \[A(\phi) = 2ae^\phi, \quad B(\phi) = be^{2\phi}, \quad \text{and} \quad C(\phi) = C \]
 \[H = \frac{1}{2} \pi_\phi^2 + \frac{b}{2} \pi_f^2 e^{2\phi} - ae^\phi \pi_f + \frac{1}{2} c \]
 \[ds^2 = \hat{d}\phi^2 + e^{-2\phi} df^2 \quad H^2 \]
Liouvillian quantum mechanics
Liouvillian quantum mechanics

- **Standard** Liouville theory:
 \(a = \pi_f = \mu \sim J \), \(b=c=0 \)

 \[
 H = \frac{1}{2} \pi_\phi^2 + \mu e^\phi
 \]

 D.Bagrets, A.Altland, A.Kamenev,
 1607.00694, 1702.08902
Liouvillian quantum mechanics

- Standard Liouville theory:
 \[H = \frac{1}{2} \pi_{\phi}^2 + \mu e^\phi \]
 \(a = \pi_f = \mu \sim J, \ b = c = 0 \)

- Eigenstates (scattering only):
 \[\psi_k \sim K_{2ik}(\sqrt{z}) \]
 \[z = 2\lambda e^\phi \]
 \[\varepsilon_k = (k^2 + 1/4 + \lambda^2) \]

D. Bagrets, A. Altland, A. Kamenev, 1607.00694, 1702.08902
Liouvillian quantum mechanics

- Standard Liouville theory:
 \(a = \pi_f = \mu \sim J, \ b = c = 0 \)

\[
H = \frac{1}{2} \pi_\phi^2 + \mu e^\phi
\]

D. Bagrets, A. Altland, A. Kamenev, 1607.00694, 1702.08902

- Eigenstates (scattering only):

\[
\psi_k \sim K_{2ik}(\sqrt{z}) \quad z = 2\lambda e^\phi \quad \epsilon_k = (k^2 + 1/4 + \lambda^2)
\]

- SYK partition function:

\[
Z(\beta) = \int_{\phi(-\beta/2) = \phi_0}^{\phi(\beta/2) = \phi_0} d\phi e^{-\int_\tau L(\phi) =}
\]

\[
L = \pi_\phi \phi' - \frac{1}{2M} \pi_\phi^2 + \pi_f (f' - e^\phi)
\]

\[
= \int_0^\infty dk |\psi_k(\phi_0)|^2 e^{-E_k \beta}
\]
Liouvillian quantum mechanics

- Standard Liouville theory:
 \(a = \pi_f = \mu \sim J \), \(b = c = 0 \)

\[H = \frac{1}{2} \pi^2 + \mu e^\phi \]

D. Bagrets, A. Altland, A. Kamenev, 1607.00694, 1702.08902

- Eigenstates (scattering only):

\[\psi_k \sim K_{2ik}(\sqrt{z}) \]

\[z = 2\lambda e^\phi \]

\[\epsilon_k = (k^2 + 1/4 + \lambda^2) \]

- SYK partition function:

\[Z(\beta) = \int_{\phi(-\beta/2) = \phi_0}^{\phi(\beta/2) = \phi_0} D\phi e^{-\int L(\phi)} = \]

\[L = \pi_\phi \phi' - \frac{1}{2M} \pi_\phi^2 + \pi_f (f' - e^\phi) \]

\[= \int_0^\infty dk |\psi_k(\phi_0)|^2 e^{-E_k \beta} \]

- SYK density of states (many-body)

\[\rho(\epsilon) = \frac{1}{2\pi i} \int_{\beta} e^{\beta E} Z(\beta) \sim e^{S_0} \sinh(2\pi \sqrt{\epsilon}) \]
Liouvillian quantum mechanics

- Standard Liouville theory:
 \(a = \pi_f = \mu \sim J \), \(b = c = 0 \)

\[H = \frac{1}{2} \pi_\phi^2 + e^\phi \]

D. Bagrets, A. Altland, A. Kamenev, 1607.00694, 1702.08902

- Eigenstates (scattering only):
 \(\psi_k \sim K_{2ik}(\sqrt{z}) \hspace{1cm} z = 2\lambda e^\phi \hspace{1cm} \epsilon_k = (k^2 + 1/4 + \lambda^2) \)

- SYK partition function:
 \[Z(\beta) = \int_{\phi(-\beta/2)=\phi_0}^{\phi(\beta/2)=\phi_0} D\phi e^{-\int_\beta L(\phi)} = \int_0^\infty dk |\psi_k(\phi_0)|^2 e^{-E_k \beta} \]

- SYK density of states:
 (many-body)

- SYK free energy:
 (next O(T/J) order)
Liouvillian quantum mechanics

- Standard Liouville theory:
 \(a = \pi_f = \mu \sim J, \; b = c = 0 \)

- Eigenstates (scattering only):
 \(\psi_k \sim K_{2ik}(\sqrt{z}) \quad z = 2\lambda e^\phi \quad \epsilon_k = (k^2 + 1/4 + \lambda^2) \)

- SYK partition function:
 \[
 Z(\beta) = \int_{\phi(-\beta/2) = \phi_0}^{\phi(\beta/2) = \phi_0} D\phi e^{-\int L(\phi)} = \int_0^\infty dk |\psi_k(\phi_0)|^2 e^{-E_k \beta}
 \]

- SYK density of states: (many-body)
 \[
 \rho(\epsilon) = \frac{1}{2\pi i} \int e^{\beta E} Z(\beta) \sim e^{S_0} \sinh(2\pi \sqrt{\epsilon})
 \]

- SYK free energy: (next \(O(T/J) \) order)
 \[
 F = -\frac{1}{\beta} \ln Z(\beta) = E_0 - \frac{S_0}{\beta} - \frac{2\pi^2 M}{\beta^2} + \frac{\pi^2 \mu N}{6\beta^3 J^2} + \frac{3}{2\beta} \ln \beta J
 \]

- Higher order functions (e.g., OTOC)
Sick SYK cousin: Morse potential
Sick SYK cousin: Morse potential

- Hamiltonian:

\[H = \frac{1}{2} \pi_\phi^2 + \frac{b}{2} \pi_f^2 e^{2\phi} - a e^{\phi} \pi_f + \frac{1}{2} c \]
Sick SYK cousin: Morse potential

- Hamiltonian:
\[H = \frac{1}{2} \pi_\phi^2 + \frac{b}{2} \pi_f e^{2\phi} - a e^\phi \pi_f + \frac{1}{2} c \]

- Quantization:
\[\left(-\frac{\partial^2}{\partial \phi^2} + \lambda^2(e^{2\phi} - 2e^\phi \text{sgn}\mu) \right)\psi = (\epsilon - \lambda^2)\psi \]
Sick SYK cousin: Morse potential

- Hamiltonian:
\[H = \frac{1}{2} \pi_\phi^2 + \frac{b}{2} \pi_f^2 e^{2\phi} - a e^{\phi} \pi_f + \frac{1}{2} c \]

- Quantization:
\[(-\frac{\partial^2}{\partial \phi^2} + \lambda^2 (e^{2\phi} - 2e^{\phi} \text{sgn} \mu)) \psi = (\epsilon - \lambda^2) \psi \]

- Eigenstates:
 (incl. bound)

 \[\psi_k \sim e^{-\phi/2} W_{\lambda,ik}(z) \quad z = 2\lambda e^\phi \]

 \[\psi_n(z) \sim z^{\lambda-n-1/2 - z/2} L_n^{2\lambda-2n-1}(z) \]

\[\epsilon_n = -(n - \lambda + 1/2)^2 \]

\[\lambda = \mu \beta = O(\beta J) \gg 1 \]

\[\Omega \sim \mu \beta / M \]
Sick SYK cousin: Morse potential

- Hamiltonian:
\[
H = \frac{1}{2} \pi_\phi^2 + \frac{b}{2} \pi_f^2 e^{2\phi} - ae^\phi \pi_f + \frac{1}{2} c
\]

- Quantization:
\[
(-\frac{\partial^2}{\partial \phi^2} + \lambda^2 (e^{2\phi} - 2e^\phi \text{sgn}\mu))\psi = (\epsilon - \lambda^2)\psi
\]

- Eigenstates:
\[
\psi_k \sim e^{-\phi/2} W_{\lambda,ik}(z) \quad z = 2\lambda e^\phi \quad \epsilon_n = -(n - \lambda + 1/2)^2
\]
\[
\psi_n(z) \sim z^{\lambda - n - 1/2 - z/2} L_{n}^{2\lambda - 2n - 1}(z) \quad \lambda = \mu \beta = O(\beta J) \gg 1
\]
\[
\Omega \sim \mu \beta / M
\]

- Gaussian approximation:
(including 'dissipative' term)
\[
\delta S = \frac{M}{2} \sum_n (\omega_n^2 + \Omega^2 + \Gamma|\omega_n||\phi_n|^2)
\]
Sick SYK cousin: Morse potential

- Hamiltonian:

\[H = \frac{1}{2} \pi_\phi^2 + \frac{1}{2} \pi_f^2 e^{2\phi} - ae^{2\phi} \pi_f + \frac{1}{2} c \]

- Quantization:

\[(-\frac{\partial^2}{\partial \phi^2} + \lambda^2(e^{2\phi} - 2e^{2\phi} \text{sgn} \mu))\psi = (\epsilon - \lambda^2)\psi \]

\[\psi_k \sim e^{-\phi/2} W_{\lambda,ik}(z) \quad z = 2\lambda e^{\phi} \quad \epsilon_n = -(n - \lambda + 1/2)^2 \]

\[\psi_n(z) \sim z^{\lambda-n-1/2-z/2} L_n^{2\lambda-2n-1}(z) \quad \lambda = \mu \beta = O(\beta J) \gg 1 \]

\[\Omega \sim \mu \beta / M \]

- Gaussian approximation: (including 'dissipative' term)

\[\delta S = \frac{M}{2} \sum_n (\omega_n^2 + \Omega^2 + \Gamma|\omega_n|)|\phi_n|^2 \]

- Partition function:

\[\frac{F}{N} = \frac{1}{\beta} \ln(\beta \Omega) + \frac{1}{\beta} \sum_{n=1}^{\omega_{\text{max}}} \ln(1 + \frac{\Gamma|\omega|}{\omega_n^2 + \Omega^2}) \approx \]

\[\approx \frac{\Omega}{2} + \frac{1}{\beta} \ln(1 - e^{-\beta \Omega}) + \frac{\Gamma}{2\pi} \ln\left(\frac{J}{\Omega}\right) \]
Sick SYK cousin: Morse potential

- Hamiltonian:
 \[H = \frac{1}{2} \pi_\phi^2 + \frac{b}{2} e^{2\phi} \pi_f^2 - a e^\phi \pi_f + \frac{1}{2} c \]

- Quantization:
 \[(-\frac{\partial^2}{\partial \phi^2} + \lambda^2 (e^{2\phi} - 2e^{\phi} \text{sgn}(\mu)))\psi = (\epsilon - \lambda^2)\psi \]

- Eigenstates:
 \[\psi_k \sim e^{-\phi/2} W_{\lambda,i,k}(z) \]
 \[z = 2\lambda e^\phi \]
 \[\epsilon_n = -(n - \lambda + 1/2)^2 \]
 \[\psi_n(z) \sim z^{\lambda-n-1/2} e^{-z/2} L_n^{2\lambda-2n-1}(z) \]

- Gaussian approximation:
 (including 'dissipative' term)
 \[\delta S = \frac{M}{2} \sum_n (\omega_n^2 + \Omega^2 + \Gamma|\omega_n|)|\phi_n|^2 \]

- Partition function:
 \[\frac{F}{N} = \frac{1}{\beta} \ln(\beta \Omega) + \frac{1}{\beta} \sum_{n=1}^{\omega_{\text{max}}} \ln(1 + \frac{\Gamma|\omega|}{\omega_n^2 + \Omega^2}) \approx \]
 \[\approx \frac{\Omega}{2} + \frac{1}{\beta} \ln(1 - e^{-\beta \Omega}) + \frac{\Gamma}{2\pi} \ln(\frac{J}{\Omega}) \]

- Density of states:
 \[\rho(\epsilon) \approx \frac{\lambda - \frac{1}{2}}{2\pi} \sum_n \delta(E_n - \Omega(n + \frac{1}{2})) \sim M \]

DVK 1905.04381
Schwarzian correlations: Liouville vs Morse
Schwarzian correlations: Liouville vs Morse

- Energy-stress:
 \[T(\tau) = M(f'''' - (2\pi/\beta)^2 f') \]

- Correlation:
 \[<T(\tau)T(0)> = M \sum_n \frac{e^{2\pi\tau/\beta}(\omega_n^2 - (2\pi/\beta)^2)\omega_n^2}{\omega_n^2 + \Omega^2 + \Gamma|\omega_n|} \]
 \[\sim Mmax[1/\beta^3, \Omega^3] \sin \Omega \tau e^{-\Gamma \tau/2} \]

- Energy fluctuations:
 \[<(\delta E)^2> = \frac{\partial^2}{\partial \beta^2} \ln Z(\beta) \sim Mmax[1/\beta^3, \Omega^3] \]
 \[\Omega \sim \mu \beta/M \]
Schwarzian correlations: Liouville vs Morse

- Energy-stress:

\[T(\tau) = M(f''' - (2\pi/\beta)^2 f') \]

\[< T(\tau)T(0) >= M \sum_n \frac{e^{2\pi/\beta} (\omega_n^2 - (2\pi/\beta)^2 \omega_n^2)}{\omega_n^2 + \Omega^2 + \Gamma |\omega_n|} \]

\[\sim M \max[1/\beta^3, \Omega^3] \sin \Omega \tau e^{-\Gamma \tau/2} \]

- Correlation:

\[< (\delta E)^2 >= \frac{\partial^2}{\partial \beta^2} \ln Z(\beta) \sim M \max[1/\beta^3, \Omega^3] \]

\[\Omega \sim \mu \beta / M \]

- Energy fluctuations:

\[< G_f(\tau_1, \tau_2) > \approx \sum_n e^{-E_n \tau} N_1(E_n) \sim 1/\tau, \quad M < \tau < \frac{1}{\Omega} \]

\[< G_f(\tau_1, \tau_2)G_f(\tau_3, \tau_4) > \sim 1/t^4 \quad \text{cf.} \quad 1/t^{3/2} \text{ and } 1/t^6 \]

- Long-time universal:

behavior (q = 2)
Schwarzian correlations: Liouville vs Morse

- Energy-stress: \[T(\tau) = M(f''' - (2\pi/\beta)^2 f') \]

\[< T(\tau)T(0) >= M \sum_n \frac{e^{2\pi\tau/\beta} (\omega_n^2 - (2\pi/\beta)^2 \omega_n^2)}{\omega_n^2 + \Omega^2 + \Gamma|\omega_n|} \]

\[\sim M \max [1/\beta^3, \Omega^3] \sin \Omega \tau e^{-\Gamma \tau/2} \]

\[\Omega \sim \mu \beta / M \]

- Correlation:

\[< (\delta E)^2 > = \frac{\partial^2}{\partial \beta^2} \ln Z(\beta) \sim M \max [1/\beta^3, \Omega^3] \]

- Energy fluctuations:

\[< G(\tau_1, \tau_2) > \approx \sum_n e^{-E_n \tau} n_1(E_n) \sim 1/\tau, \quad M < \tau < \frac{1}{\Omega} \]

\[< G(\tau_1, \tau_2)G(\tau_3, \tau_4) > \sim 1/t^4 \quad \text{cf. } 1/t^{3/2} \text{ and } 1/t^6 \]

- Long-time universal behavior (q = 2)

- Lyapunov exponents:

\[\frac{< G(\tau_1, \tau_3) G(\tau_2, \tau_4) >}{< G(\beta/2, 0) >^2} = 1 - O(\beta/M)e^{\lambda_{L} t} \]

Liouville

\[\lambda_L = \frac{2\pi}{\beta} (1 - O(1/\beta J)) \]

Morse

\[\lambda_L = \frac{2\pi}{\beta} (1 - O(\alpha)) \]
Bulk theory: JT gravity and beyond
Bulk theory: JT gravity and beyond

- JT gravity:

\[I_{JT}[g, \Phi] = -\frac{1}{4\pi} \int_D \Phi (R + 2) \sqrt{g} \, d^2x - \frac{1}{2\pi} \int_{\partial D} \Phi K \, d\ell \]

R = -2
Bulk theory: JT gravity and beyond

- JT gravity:

\[I_{JT}[g, \Phi] = -\frac{1}{4\pi} \int_D \Phi(R + 2) \sqrt{g} \, d^2 x - \frac{1}{2\pi} \int_{\partial D} \Phi K \, d\ell \]

- Boundary dynamics only:

\[f' = e^\Phi \]
Bulk theory: JT gravity and beyond

- JT gravity:
 \[I_{JT}[g, \Phi] = -\frac{1}{4\pi} \int_D \Phi (R + 2) \sqrt{g} \, d^2 x - \frac{1}{2\pi} \int_{\partial D} \Phi K \, d\ell \]
 \[R = -2 \]

- Boundary dynamics only:

- 'Particle in magnetic field' problem (effectively 1D, too):

\[
I[X] = \int_0^\beta d\tau \left(\frac{1}{2} g_{\alpha\beta} \dot{X}^\alpha \dot{X}^\beta - \gamma \omega_\alpha X^\alpha \right)
\]

\[
G(x_1, x_0; \beta) = \int_{X(0) = x_0}^{X(\beta) = x_1} DX \, e^{-I[X]}
\]

A. Kitaev and J. Suh,
1711.08467, 1808.07032
Bulk theory: JT gravity and beyond

- JT gravity:
\[I_{JT}[g, \Phi] = -\frac{1}{4\pi} \int_D d^2x \sqrt{g} \Phi(R + 2) - \frac{1}{2\pi} \int_{\partial D} K d\ell \]
\[R = -2 \]

- Boundary dynamics only:
\[f' = e^{\Phi} \]

- 'Particle in magnetic field' problem (effectively 1D, too):
\[I[X] = \int_0^\beta d\tau \left(\frac{1}{2} g_{\alpha\beta} \dot{X}^\alpha \dot{X}^\beta - \gamma \omega_\alpha X^\alpha \right) \]
\[G(x_1, x_0; \beta) = \int_{X(0) = x_0}^{X(\beta) = x_1} DX e^{-I[X]} \]

- New reparametrization non-invariant terms: (conjecture)
\[S = \int_{\tau, r} (R\Phi + U(\Phi))\sqrt{g} + \int_\tau K\Phi \]

A.Kitaev and J.Suh, 1711.08467, 1808.07032
Bulk theory: JT gravity and beyond

- JT gravity:
 \[I_{JT}[g, \Phi] = -\frac{1}{4\pi} \int_D \Phi(R + 2) \sqrt{g} \, d^2x - \frac{1}{2\pi} \int_{\partial D} \Phi K \, d\ell \]

- Boundary dynamics only:

- 'Particle in magnetic field' problem (effectively 1D, too):

\[I[X] = \int_0^\beta d\tau \left(\frac{1}{2} g_{\alpha\beta} \dot{X}^\alpha \dot{X}^\beta - \gamma \omega_{\alpha} \dot{X}^\alpha \right) \]

\[G(x_1, x_0; \beta) = \int_{X(0)=x_0}^{X(\beta)=x_1} DX e^{-I[X]} \]

- New reparametrization non-invariant terms: (conjecture)

\[S = \int_{\tau, r} (R\Phi + U(\Phi)) \sqrt{g} + \int_{\tau} K \Phi \]

- Other equivalent AdS_3 sections?

A.Kitaev and J.Suh, 1711.08467, 1808.07032
Seeking to develop global SYK-ness
Seeking to develop global SYK-ness

- SYK: **Ultra-local** physics, $z = \infty$ Kondo systems? Cuprates??

Generically: $z < \infty$
Seeking to develop global SYK-ness

- SYK: Ultra-local physics, $z = \infty$ Kondo systems? Cuprates??

 Generically: $z < \infty$

- doped (no particle-hole symmetry): charge fluctuations
- supersymmetric
- coupled
Seeking to develop global SYK-ness

- SYK: Ultra-local physics, $z = \infty$ Kondo systems? Cuprates??

 Generically: $z < \infty$

- doped (no particle-hole symmetry): charge fluctuations
- supersymmetric
- coupled

Y.Gu, X.-L.Qi, and D.Stanford, 1609.07832

S.-K.Jian and H.Yao, 1703.02051

S.Banerjee and E.Altman, 1610.04619

X.Chen et al, 1705.03406
Seeking to develop global SYK-ness

- SYK: Ultra-local physics, $z = \infty$
 Kondo systems? Cuprates??

 Generically: $z < \infty$

- doped (no particle-hole symmetry): charge fluctuations
- supersymmetric
- coupled

$$D \sim v^2_b t_L$$ (Sachdev, Hartnoll, Lucas,...)

- Diffusive energy transport, hydrodynamic universal bound

- Despite (postulated) single-particle ultra-locality:

$$G_{ij}(\tau) \sim \frac{sgn \tau}{|\tau|^{2/q}} \delta_{ij}$$
Thickening and sickening the SYK model
Thickening and sickening the SYK model

\[S = \sum_{i} \sum_{\alpha} \chi_i^\alpha \partial_\tau \chi_i^\alpha - i^{q/2} \sum_{i_{\alpha}, i_{\beta}} J_{i_{\alpha} \ldots i_{\beta}} \chi_{i_1}^{\alpha_1} \ldots \chi_{i_q}^{\alpha_q} \]

Time-dependent and/or non-local disorder correlations:

- standard SYK on NL sites:

\[F_{i_1 \ldots i_q, j_1 \ldots j_q}(\tau_{12}) = J^2 \prod_{\alpha} \delta_{i_\alpha, j_\alpha} \]

- L copies of N-site SYK:

\[F_{i_1 \ldots i_n, i_1 \ldots i_n}(\tau_{12}) = J^2 \prod_{\alpha} \delta_{i_\alpha, i_\alpha} \prod_{n}^{q-1} \delta_{i_n, i_n} \]
Thickening and sickening the SYK model

\[S = \sum_i \sum_{\alpha} \chi_i^\alpha \partial_{\tau} \chi_i^\alpha - i^{q/2} \sum_{i_\alpha, \alpha} J_{i_1 \ldots i_q}^{\alpha_1 \ldots \alpha_q} \chi_{i_1}^{\alpha_1} \ldots \chi_{i_q}^{\alpha_q} \]

Time-dependent and/or non-local disorder correlations:

- standard SYK on NL sites:
 \[F_{i_1 \ldots i_q j_1 \ldots j_q}(\tau)_{12} = J^2 \prod_{\alpha} \delta_{i_\alpha j_\alpha} \]

- L copies of N-site SYK:
 \[F_{i_1 \ldots i_n i_1 \ldots i_n}(\tau)_{12} = J^2 \prod_{\alpha} \delta_{i_\alpha i_\alpha} \prod_{\alpha} \delta_{i_\alpha j_\alpha} \]

- **Algebraic** space and/or time correlations:
 \[J_{ij}^2(\tau) \sim \tau^{-2\alpha} \]
 \[J_{ij}^2(\tau) \sim |i - j|^{-2\beta} \]
 \[J_{ii}^2(\tau) \sim (\tau^2 + a^2|i - j|^2)^{-\gamma} \]
Mean-field analysis
Mean-field analysis

- Partition function:

\[Z = \int DG_{ij}(\tau) D\Sigma_{ij}(\tau) Pf(\partial_\tau - \Sigma) \]

\[\exp(N \sum_{i,j} \int_{\tau_1, \tau_2} (G_{ij}(\tau_{12})\Sigma_{ij}(\tau_{12}) - \frac{1}{q} J_{ij}^2(\tau_{12})G_{ij}^{q}(\tau_{12}))) \]

- Saddle-point equation:

\[\sum_j \int_{\tau_3} (\delta_{ij} \partial_\tau \delta(\tau_{13}) - \Sigma_{ij}(\tau_{13}))G_{jk}(\tau_{32}) = \delta_{ik}\delta(\tau_{12}) \]

\[\Sigma_{ij}(\tau_{12}) = J_{ij}^2(\tau_{12})G_{ij}^{q-1}(\tau_{12}) \]

- Asymptotic IR regime:

\[\int_{\tau_3, x_3} G_{x_{13}}(\tau_{13})J^2_{x_{32}}(\tau_{32})G_{x_{32}}^{q-1}(\tau_{32}) = \delta(\tau_{12})\delta(x_{12}) \]
Mean-field analysis

- **Partition function:**

\[
Z = \int D G_{i j}(\tau) D \Sigma_{i j}(\tau) Pf (\partial_{\tau} - \Sigma) \\
\exp(N \sum_{i,j} \int_{\tau_1,\tau_2} (G_{i j}(\tau_{12})\Sigma_{i j}(\tau_{12}) - \frac{1}{q} J^2_{i j}(\tau_{12}) G^q_{i j}(\tau_{12})))
\]

- **Saddle-point equation:**

\[
\sum_{i,j} \int_{\tau_3} (\delta_{i j} \partial_{\tau_1} \delta(\tau_{13}) - \Sigma_{i j}(\tau_{13})) G_{j k}(\tau_{32}) = \delta_{i k} \delta(\tau_{12})
\]

\[
\Sigma_{i j}(\tau_{12}) = J^2_{i j}(\tau_{12}) G^q_{i j} - 1(\tau_{12})
\]

- **Asymptotic IR regime:**

\[
\int_{\tau_3, x_3} G_{x_{13}}(\tau_{13}) J^2_{x_{32}}(\tau_{32}) G^q_{x_{32}} - 1(\tau_{32}) = \delta(\tau_{12}) \delta(x_{12})
\]

- **Scaling-invariant** IR behavior for:

\[
\frac{d}{Z}(q - 2) + 2[J] - 2 < 0
\]

- **z** = \(\infty\) or **q**=2: holds for any **[J]<1**
- **z**=1 and **q**>2: **only** for **d**=1 and **[J]=0**
- **Generic** **z>1, q>2, d>0**: **[J]<0 (non-unitary?)**
Mean-field solutions
Mean-field solutions

- Ultra-local (original SYK): \[G_{ij}(\tau) \sim \frac{\text{sgn} \tau}{|\tau|^{2/q}} \delta_{ij} \] (Hartree-type contractions)
Mean-field solutions

- Ultra-local (original SYK):

\[G_{ij}(\tau) \sim \frac{\text{sgn} \tau}{|\tau|^{2/q}} \delta_{ij} \]

(Hartree-type contractions)

- Factorizable:

\[J_{ij}^2(\tau) \sim \tau^{-2\alpha} |i-j|^{-2\beta} \]

\[G(\tau, x) \sim \frac{\text{sgn} \tau}{\tau^{2\Delta}} \frac{1}{|x|^{2\Delta_x}} \Delta_{\tau} = (1 - \alpha)/q \quad \Delta_{x} = (d - \beta)/q \]

\[G(\omega, k) \sim |\omega|^{2\Delta_{\tau} - 1} k^{2\Delta_x - d} \]
Mean-field solutions

- Ultra-local (original SYK):
 \[G_{ij}(\tau) \sim \frac{\text{sgn} \tau}{|\tau|^{2/q}} \delta_{ij} \]
 (Hartree-type contractions)

- Factorizable:
 \[J_{ij}^2(\tau) \sim \tau^{-2\alpha} |i-j|^{-2\beta} \]
 \[G(\tau, x) \sim \frac{\text{sgn} \tau}{\tau^{2\Delta_{\tau}}} \frac{1}{|x|^{2\Delta_x}} \]
 \[\Delta_{\tau} = (1 - \alpha)/q \]
 \[\Delta_x = (d - \beta)/q \]
 \[G(\omega, k) \sim |\omega|^{2\Delta_{\tau} - 1} k^{2\Delta_x - d} \]

- Lorentz-invariant:
 \[J_{ij}^2(\tau) \sim (\tau^2 + a^2 |i-j|^2)^{-\gamma} \]
 \[G(\tau, x) \sim \frac{\text{sgn} \tau}{(\tau^2 + x^2)^{\Delta}} \]
 \[\Delta = (D - \gamma)/q \]
 \[D = d + 1 \]
 \[G(\omega, k) \sim (\omega^2 + k^2)^{\Delta - D/2} \]

- Other?

(bosonic case: Patashinsky, Pokrovsky ˚64)
Fluctuations about mean-field
Fluctuations about mean-field

- Reparametrization invariance (for $\alpha=\beta=\gamma=0$ only):

$$G(x_1, x_2) \rightarrow |g(x_1)g(x_2)|^{D/2q} G(f(x_1), f(x_2))$$

$$g = |\det \frac{\partial f^\mu}{\partial x^\nu}|^2$$

$\mu, \nu = 1, \ldots, D=d+1$
Fluctuations about mean-field

- Reparametrization invariance (for $\alpha=\beta=\gamma=0$ only):

\[G(x_1, x_2) \rightarrow |g(x_1)g(x_2)|^{D/2q} G(f(x_1), f(x_2)) \]

\[g = |\text{det} \partial f^\mu/\partial x^\nu|^2 \]

\[\mu, \nu = 1, \ldots, D=d+1 \]

- Original SYK ($d=0$): Schwarzian

\[S(f) = \frac{N}{J} \int \{ f, x \} = \frac{N}{J} \int (\frac{f'''}{f'} - \frac{3}{2}(\frac{f''}{f'})^2) \]

- Generalized SYK ($d>0$): non-local action

\[\delta S(f) = \frac{N}{2} \int_k (k_\mu f^\mu)^2 (C\omega + \omega^2 / J)|k|^d \]

\[C = 0(\alpha) + 0(\beta) \]

- Stress-energy correlations: no diffusive pole

\[\langle T_{\mu\nu}(\omega, k)T_{\mu\nu}(-\omega, -k) \rangle = \frac{i\omega |k|^d (C + i\omega / J)^2}{C + (i\omega + D\omega^2 / J) / J} \]
2-body problem

- Fluctuations:
 \[G = G_0 + g |G_0|^{(2-q)/2} \]
 \[\Sigma = \Sigma_0 + \sigma |G_0|^{(q-2)/2} \]

 \[\delta S(g, \sigma) = N \int (g_{12} \sigma_{12} - \frac{q-1}{2} F_{12} g_{12}^2 - \frac{\sigma_{12} \hat{K}_{12,34} \sigma_{34}}{2(q-1)}) \]

 \[\delta S(g) = \frac{N(q-1)}{2} \int [\hat{K}^{-1}_{12,34} \hat{1}_{13} \hat{1}_{24} F_{12}) g_{34} \]

- Quadratic kernel:
 \[\hat{K}_{12,34} = (q-1) G_{13} G_{24} |G_{34}|^{q-2} \]

- Diagonalization:
 \[\int_{x_3, x_4} \hat{K}_{12,34} F_{34} \Psi_{34}(h|\omega, k) = \lambda_h(\omega, k) \Psi_{12}(h|\omega, k) \]

- Eigenstates (spin-zero):
 \[\Psi_{12}(h|\omega, k) \sim |x_{12}|^{h-2\Delta} e^{i k \mu (x_1^\mu + x_2^\mu)/2} \]

- Eigenvalue equation:
 \[\frac{\lambda_h}{x_{12}^{2\Delta-h}} = \int_{x_3, x_4} \frac{1}{x_{13}^{2\Delta} x_{24}^{2\Delta} x_{34}^{2D-2\Delta-h}} \lambda_h = \lambda_h(0,0) \]

 \[(1-q) \frac{\Gamma(D-\Delta) \Gamma(-D/2+\Delta-h/2) \Gamma(-D/2+\Delta+\frac{h}{2}) \Gamma(D-\Delta-h/2)}{\Gamma(-D/2+\Delta) \Gamma(D-\Delta-h/2) \Gamma(D-\Delta-h/2)} = 1 \]

 Bosonic SYK:
 \[(1-q) \frac{\Gamma(D-\Delta) \Gamma(-D/2+\Delta-h/2) \Gamma(-D/2+\Delta+\frac{h}{2}) \Gamma(D-\Delta-h/2) \Gamma(D-\Delta-h/2)}{\Gamma(-D/2+\Delta) \Gamma(D-\Delta-h/2) \Gamma(D-\Delta-h/2)} = 1 \]

No solutions for \(h=2, D \) or \(D+1 \) (stress-energy operator)

Prospective dual is not dominated by gravity?
OTOC functions and chaos

- Generic 2-body amplitude:
 \[F_{12,34} = \langle \chi_\alpha^\alpha(\tau_1)\chi_\beta^\beta(\tau_2)\chi_\gamma^\gamma(\tau_3)\chi_\delta^\delta(\tau_4) \rangle \]

- Expansion over eigenstates:
 \[F_{12,34} = \frac{1}{1 - K} F_{12,34}^0 = \sum \Psi_{12} \frac{1}{1 - \lambda} \langle \Psi_{34} | F^{(0)} \rangle \]
 \[F_{12,34}^{(0)} = G_{13}G_{24} - G_{14}G_{23} \]

- Finite temperature basis:
 \[\Psi_{12}(h|k) \sim \frac{e^{ik(x_1+x_2)/2 - \pi Th(\tau_1+\tau_2)}}{\cosh(\pi T\tau_{12})^{2\Delta_r-h}|x_1-x_2|^{2\Delta_r-h}} \]

- OTOC functions:
 \[F(\tau, x) = \langle u\chi_x^\alpha(\tau)u\chi_0^\beta(0)u\chi_x^\alpha(\tau)u\chi_0^\beta(0) \rangle \]
 \[u = e^{-H/4T} \]
 \[\text{(Larkin and Ovchinnikov '69),} \]

- Chaos spreading:
 \[F(\tau, x) \sim 1 - \frac{1}{N} e^{\lambda_L(\tau - |x|/v_B)} \]

- Lyapunov index:
 \[\lambda_L = -2\pi Th \]
 \[\text{where } h \text{ solves } \frac{\Gamma(3 - 2\Delta_r)\Gamma(2\Delta_r - h)}{\Gamma(1 + 2\Delta_r)\Gamma(2 - 2\Delta_r - h)} = 1 \]

- Original SYK (d=0): \(h = -1 \) (maximal chaos)
- For \(d > 0 \) and/or \(\alpha, \beta, \gamma \neq 0 \): \(h > -1 \) (no chaotic bound saturation)
New horizons
New horizons

- **Resonant** SYK model in momentum space

\[
H_k = \int_k \sum_{\alpha} \epsilon_k c_{k\alpha}^\dagger c_{k\alpha},
\]
\[
H_U = \frac{1}{(2N)^{3/2}} \sum_{\alpha_a} \int_{k_a} U_{\alpha_a} (k_a) c_{k_1\alpha_1}^\dagger c_{k_2\alpha_2} c_{k_3\alpha_3} c_{k_4\alpha_4}
\]
\[
\mathcal{C}(k_{\alpha}, k'_{\alpha'}) = \mathcal{C}_0 (k_{\alpha}, k'_{\alpha'}) \frac{1}{2} \left[\mathcal{K}_1(k_{\alpha}) \delta (\epsilon_k + \epsilon_2 - \epsilon_3 - \epsilon_4) \right]
\]

A. Patel and S. Sachdev, 1906.03265
New horizons

- Resonant SYK model in momentum space

\[H_k = \int k \sum_{\alpha} \epsilon_k c_{k\alpha}^\dagger c_{k\alpha}, \]
\[H_U = \frac{1}{(2N)^{3/2}} \sum_{\alpha_1} \int_{k} U_{\alpha_1}(k) c_{k_1\alpha_1}^\dagger c_{k_2\alpha_2} c_{k_3\alpha_3} c_{k_4\alpha_4} \]
\[\mathcal{K}(k_\alpha, k'_\alpha) = \mathcal{K}_0(k_\alpha, k'_\alpha) \frac{1}{2} \mathcal{K}_1(k_\alpha) \delta(\epsilon_{k_1} + \epsilon_{k_2} - \epsilon_{k_3} - \epsilon_{k_4}) \]

A. Patel and S. Sachdev, 1906.03265

- Universal linear resistivity:

\[\rho = \frac{m^*}{n e^2} \frac{1}{\tau} \]
\[\frac{1}{\tau} = \alpha \frac{k_B T}{\hbar} \]

SYK = 1
New horizons

- Resonant SYK model in momentum space

\[H_k = \sum_{\alpha} \epsilon_k c_{k\alpha}^\dagger c_{k\alpha}, \]
\[H_U = \frac{1}{(2N)^{3/2}} \sum_{\alpha} \int_{k.a} U_{\alpha a}(k_a) c_{k_1\alpha_1}^\dagger c_{k_2\alpha_2}^\dagger c_{k_3\alpha_3} c_{k_4\alpha_4} \]

\[\mathcal{K}(k_\alpha, k'_{\alpha'}) = \mathcal{K}_0(k_\alpha, k'_{\alpha'}) \left\{ \frac{1}{2} \mathcal{K}_1(k_\alpha) \delta(\epsilon_{k_1} + \epsilon_{k_2} - \epsilon_{k_3} - \epsilon_{k_4}) \right\} \]

A. Patel and S. Sachdev, 1906.03265

- Universal linear resistivity:

\[\rho = \frac{m^*}{n e^2} \frac{1}{\tau} \quad \frac{1}{\tau} = \alpha \frac{k_B T}{\hbar} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(n) (10^{27} \text{m}^{-3})</th>
<th>(m^*) (m_0)</th>
<th>(A_1 / d) (\Omega / K)</th>
<th>(h / (2e^2 T_F)) (\Omega / K)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi2212</td>
<td>0.23</td>
<td>6.8</td>
<td>8.4 ± 1.6</td>
<td>8.0 ± 0.9</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td>Bi2201</td>
<td>0.4</td>
<td>3.5</td>
<td>7 ± 1.5</td>
<td>8 ± 2</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>LSCO</td>
<td>0.26</td>
<td>7.8</td>
<td>9.8 ± 1.7</td>
<td>8.2 ± 1.0</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>Nd-LSCO</td>
<td>0.24</td>
<td>7.9</td>
<td>12 ± 4</td>
<td>7.4 ± 0.8</td>
<td>0.7 ± 0.4</td>
</tr>
<tr>
<td>PCCO</td>
<td>x = 0.17</td>
<td>8.8</td>
<td>2.4 ± 0.1</td>
<td>1.7 ± 0.3</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>LCCO</td>
<td>x = 0.15</td>
<td>9.0</td>
<td>3.0 ± 0.3</td>
<td>3.0 ± 0.45</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>TMTSF</td>
<td>P = 11 kbar</td>
<td>1.4</td>
<td>1.15 ± 0.2</td>
<td>2.8 ± 0.3</td>
<td>1.0 ± 0.3</td>
</tr>
</tbody>
</table>

SYK = 1

S. Sachdev, Montreal, July '19
Summary
Summary

- The status of the **holographic conjecture** (especially in its broad, 'non-AdS/non-CFT', form) still remains largely undetermined.
Summary

- The status of the holographic conjecture (especially in its broad, 'non-AdS/non-CFT', form) still remains largely undetermined.

- The popular 'bottom-up' approach is prone to substituting some forms of 'analogue holography' for the ‘bona fide’ one. Apparent examples of the former could indeed be observed in various tangible systems (flexible graphene, optical metamaterials, etc.) but regardless of the validity of the holographic conjecture itself.
Summary

- The status of the holographic conjecture (especially in its broad, 'non-AdS/non-CFT', form) still remains largely undetermined.

- The popular 'bottom-up' approach is prone to substituting some forms of 'analogue holography' for the 'bona fide' one. Apparent examples of the former could indeed be observed in various tangible systems (flexible graphene, optical metamaterials, etc.) but regardless of the validity of the holographic conjecture itself.

- While not providing water-proof examples of genuine holographic correspondence, the d=0 SYK-like models offer an important insight into the properties of a whole sequence of the SL(2,R)-symmetric QM systems and their JT-like (effectively 1D) 'bulk' duals.
Summary

- The status of the holographic conjecture (especially in its broad, 'non-AdS/non-CFT', form) still remains largely undetermined.

- The popular 'bottom-up' approach is prone to substituting some forms of 'analogue holography' for the ‘bona fide’ one. Apparent examples of the former could indeed be observed in various tangible systems (flexible graphene, optical metamaterials, etc.) but regardless of the validity of the holographic conjecture itself.

- While not providing water-proof examples of genuine holographic correspondence, the d=0 SYK-like models offer an important insight into the properties of a whole sequence of the SL(2,R)-symmetric QM systems and their JT-like (effectively 1D) 'bulk' duals.

- Higher-dimensional ‘thickening’ tends to ‘sicken’ the salient SYK behavior. Still, the d>0 - dimensional SYK-like models can be viewed as interesting examples of soluble (super)strongly-interacting many-body systems with markedly NFL properties.