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Monopoles, instantons and non-Abelian black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.
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There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,
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The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

and entropies related to the charges by the moduli-independent attractor formula

S = π|Zfixed(p, q)| ,
which leads to a microscopic interpretation.
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1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

and entropies related to the charges by the moduli-independent attractor formula

S = π|Zfixed(p, q)| ,
which leads to a microscopic interpretation.

There has been much less work on other kinds of supersymmetric solutions of these
theories, but their classification was completed in Meessen & O. hep-th/0603099,
Hübscher, Meessen & O., hep-th/0606281.
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Monopoles, instantons and non-Abelian black holes

1 – Introduction

There has been a lot of work on supersymmetric solutions of ungauged N = 2, d = 4
SUGRAs because there are extreme supersymmetric black-holes in them.

The extreme supersymmetric black-holes have Abelian electric qΛ and magnetic pΛ

charges and moduli related to their masses by a saturated Bogomol’nyi bound

M = |Z(p, q, Zi
∞)| ,

and entropies related to the charges by the moduli-independent attractor formula

S = π|Zfixed(p, q)| ,
which leads to a microscopic interpretation.

There has been much less work on other kinds of supersymmetric solutions of these
theories, but their classification was completed in Meessen & O. hep-th/0603099,
Hübscher, Meessen & O., hep-th/0606281.

Now it is natural to ask what happens in the gauged theories. There are several
possible gaugings in N = 2, d = 4 theories. Let’s review the theory.
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2 – N = 2, d = 4 SUGRA coupled to vector multiplets

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)
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(u = 1, · · · 4nH , α = 1, · · · 2nH)
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2 – N = 2, d = 4 SUGRA coupled to vector multiplets

The basic N = 2, d = 4 massless supermultiplets are

Bosons Fermions Spins

nV Vector supermultiplets Zi, Ai
µ λiI (0, 1, 1/2)

(i = 1, · · ·nV , I = 1, 2)

nH Hypermultiplets qu ζα (0, 1/2)
(u = 1, · · · 4nH , α = 1, · · · 2nH)

The supergravity multiplet A0
µ, e

a
µ ψIµ (1, 2, 3/2)

We are not going to consider hypermultiplets in this seminar.
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Monopoles, instantons and non-Abelian black holes

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ). They are combined

with the dual (magnetic) vector fields AΛµ into a symplectic vector

(AM) =

(

AΛ

AΛ

)

.
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µ = (A0

µ, A
i
µ). They are combined

with the dual (magnetic) vector fields AΛµ into a symplectic vector
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The complex scalars Zi are described by the constrained symplectic sections
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µ = (A0

µ, A
i
µ). They are combined

with the dual (magnetic) vector fields AΛµ into a symplectic vector

(AM) =

(
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AΛ

)

.

The complex scalars Zi are described by the constrained symplectic sections

(VM )(Z,Z∗) =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.

The symplectic group acts linearly on AM and VM . This is the reason for the
definition of VM .
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Monopoles, instantons and non-Abelian black holes

All vector fields are collectively denoted by AΛ
µ = (A0

µ, A
i
µ). They are combined

with the dual (magnetic) vector fields AΛµ into a symplectic vector

(AM) =

(

AΛ

AΛ

)

.

The complex scalars Zi are described by the constrained symplectic sections

(VM )(Z,Z∗) =

(

LΛ(Z,Z∗)
MΛ(Z,Z

∗)

)

.

The symplectic group acts linearly on AM and VM . This is the reason for the
definition of VM .

VM (Z,Z∗) defines completly this sector of the theory (it defines a Special Kähler
geometry). Alternatively, one can use a prepotential.
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Monopoles, instantons and non-Abelian black holes

The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2ℑmNΛΣF

ΛµνFΣ
µν

−2ℜeNΛΣF
Λµν ⋆ FΣ

µν

]

,

where
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The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2ℑmNΛΣF

ΛµνFΣ
µν

−2ℜeNΛΣF
Λµν ⋆ FΣ

µν

]

,

where

☞ Gij∗ is a Kähler metric

☞ NΛΣ(Z,Z
∗) is the period matrix.

☞ Gij∗ and NΛΣ are related to the symplectic section VM (or to the prepotential)
that defines the Special Kähler geometry.

These theories have supersymmetric, extreme, charged black holes which are very
well known by all of you. To study solutions with non-Abelian vector fields we must
gauge these theories. In absence of hypermultiplets there are just three possibilities:
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The action of the bosonic fields of the ungauged theory is

S =

∫

d4x
√

|g|
[

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2ℑmNΛΣF

ΛµνFΣ
µν

−2ℜeNΛΣF
Λµν ⋆ FΣ

µν

]

,

where

☞ Gij∗ is a Kähler metric

☞ NΛΣ(Z,Z
∗) is the period matrix.

☞ Gij∗ and NΛΣ are related to the symplectic section VM (or to the prepotential)
that defines the Special Kähler geometry.

These theories have supersymmetric, extreme, charged black holes which are very
well known by all of you. To study solutions with non-Abelian vector fields we must
gauge these theories. In absence of hypermultiplets there are just three possibilities:

1. We gauge an U(1) ⊂ SU(2)R ⊂ U(2)R using Fayet-Iliopoulos terms.

2. We gauge a subgroup G of the isometry group of Gij∗ in combination with
U(1)R ∈ U(2)R (Kähler trans.).

3. If G contains an SU(2) factor we can combine this gauging with that of SU(2)R
using SU(2) Fayet-Iliopoulos terms.
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The global symmetries to be gauged
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The global symmetries to be gauged

The ungauged theory always has these symmetries:

➳ global U(2)R = SU(2)R × U(1)R:

{

U(1)R −→ ψ′
Iµ = e

i

4
βψIµ ,

SU(2)R −→ ψ′
Iµ = ΛI

JψJµ .
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The global symmetries to be gauged

The ungauged theory always has these symmetries:

➳ global U(2)R = SU(2)R × U(1)R:

{

U(1)R −→ ψ′
Iµ = e

i

4
βψIµ ,

SU(2)R −→ ψ′
Iµ = ΛI

JψJµ .

➳ local [U(1)]nV +1

It is always possible to gauge a U(1) ⊂ SU(2)R using one vector (FI terms). In order
to gauge the full SU(2)R the vector multiplets should be SU(2)-invariant (see below)
transforming in the adjoint representation.
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It is always possible to gauge a U(1) ⊂ SU(2)R using one vector (FI terms). In order
to gauge the full SU(2)R the vector multiplets should be SU(2)-invariant (see below)
transforming in the adjoint representation.

It is not possible to gauge the U(1)R (different from the N = 1 case).
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The ungauged theory always has these symmetries:

➳ global U(2)R = SU(2)R × U(1)R:

{

U(1)R −→ ψ′
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βψIµ ,
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JψJµ .

➳ local [U(1)]nV +1

It is always possible to gauge a U(1) ⊂ SU(2)R using one vector (FI terms). In order
to gauge the full SU(2)R the vector multiplets should be SU(2)-invariant (see below)
transforming in the adjoint representation.

It is not possible to gauge the U(1)R (different from the N = 1 case).

Additionally, it may have the following invariances:

➠ global SO(nV + 1) rotations of the vectors (Sp[2(nV + 1),R] in the e.o.m.).
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It is not possible to gauge the U(1)R (different from the N = 1 case).

Additionally, it may have the following invariances:

➠ global SO(nV + 1) rotations of the vectors (Sp[2(nV + 1),R] in the e.o.m.).

➠ global isometries of the special Kähler metric Gij∗ .
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The global symmetries to be gauged

The ungauged theory always has these symmetries:

➳ global U(2)R = SU(2)R × U(1)R:

{

U(1)R −→ ψ′
Iµ = e

i

4
βψIµ ,

SU(2)R −→ ψ′
Iµ = ΛI

JψJµ .

➳ local [U(1)]nV +1

It is always possible to gauge a U(1) ⊂ SU(2)R using one vector (FI terms). In order
to gauge the full SU(2)R the vector multiplets should be SU(2)-invariant (see below)
transforming in the adjoint representation.

It is not possible to gauge the U(1)R (different from the N = 1 case).

Additionally, it may have the following invariances:

➠ global SO(nV + 1) rotations of the vectors (Sp[2(nV + 1),R] in the e.o.m.).

➠ global isometries of the special Kähler metric Gij∗ .

These transformations are not independent due to NΛΣ. Furthermore, ordinary
isometries are not symmetries of the full theory:

The isometries must preserve the Kähler, Hodge and Special
Kähler structures.
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Monopoles, instantons and non-Abelian black holes

These conditions can be formally expressed as follows:

June 15th 2015 IIP, Natal, Brazil Page 6



Monopoles, instantons and non-Abelian black holes

These conditions can be formally expressed as follows:

➛ The global transformations to consider are

δαZ
i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..
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Monopoles, instantons and non-Abelian black holes

These conditions can be formally expressed as follows:

➛ The global transformations to consider are

δαZ
i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..

➛ The vector fields and period matrix must transform as

δαA
Λ
µ = αΣfΣΩ

ΛAΩ
µ , δαNΛΣ = −2αΩfΩ(Λ

ΓNΣ)Γ .

June 15th 2015 IIP, Natal, Brazil Page 6-b



Monopoles, instantons and non-Abelian black holes

These conditions can be formally expressed as follows:

➛ The global transformations to consider are

δαZ
i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..

➛ The vector fields and period matrix must transform as

δαA
Λ
µ = αΣfΣΩ

ΛAΩ
µ , δαNΛΣ = −2αΩfΩ(Λ

ΓNΣ)Γ .

➛ The preservation of the metric implies that the KΛ are Killing vectors of Gij∗ .

June 15th 2015 IIP, Natal, Brazil Page 6-c



Monopoles, instantons and non-Abelian black holes

These conditions can be formally expressed as follows:

➛ The global transformations to consider are

δαZ
i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..

➛ The vector fields and period matrix must transform as

δαA
Λ
µ = αΣfΣΩ

ΛAΩ
µ , δαNΛΣ = −2αΩfΩ(Λ

ΓNΣ)Γ .

➛ The preservation of the metric implies that the KΛ are Killing vectors of Gij∗ .

➛ The preservation of the Hermitean structure implies the holomorphicity of the
kΛ

i components of the Killing vectors: kΛ
i = kΛ

i(Z).

June 15th 2015 IIP, Natal, Brazil Page 6-d



Monopoles, instantons and non-Abelian black holes

These conditions can be formally expressed as follows:

➛ The global transformations to consider are

δαZ
i = αΛkΛ

i(Z) , [KΛ, KΣ] = −fΛΣ
ΩKΩ ,

where KΛ = kΛ
i∂i + c.c..

➛ The vector fields and period matrix must transform as

δαA
Λ
µ = αΣfΣΩ

ΛAΩ
µ , δαNΛΣ = −2αΩfΩ(Λ

ΓNΣ)Γ .

➛ The preservation of the metric implies that the KΛ are Killing vectors of Gij∗ .

➛ The preservation of the Hermitean structure implies the holomorphicity of the
kΛ

i components of the Killing vectors: kΛ
i = kΛ

i(Z).

➛ The Kähler structure will be preserved if
1. The Kähler potential is preserved (up to Kähler transformations)

£ΛK ≡ kΛ
i∂iK + k∗Λ

i∗∂i∗K = λΛ(Z) + λ∗Λ(Z
∗) .

2. The Kähler 2-form J = iGij∗dZ
i ∧ dZ∗j∗ is also preserved:

£ΛJ = 0 .
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Monopoles, instantons and non-Abelian black holes

Then,

dJ = 0 ⇒ £ΛJ = d(ikΛ
J ) ,

£ΛJ = 0 ,







⇒ d(ikΛ
J ) = 0 , ⇒ ikΛ

J = dPΛ ,⇔ kΛ i∗ = i∂i∗PΛ .

for some real 0-forms PΛ: the momentum maps or Killing prepotentials.

June 15th 2015 IIP, Natal, Brazil Page 7



Monopoles, instantons and non-Abelian black holes

Then,

dJ = 0 ⇒ £ΛJ = d(ikΛ
J ) ,

£ΛJ = 0 ,







⇒ d(ikΛ
J ) = 0 , ⇒ ikΛ

J = dPΛ ,⇔ kΛ i∗ = i∂i∗PΛ .
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They are defined up to an additive real constant. In N = 1 theories (but not in
N = 2, as we will see) it is possible to have constant momentum maps for vanishing
Killing vectors, giving rise to FI terms that gauge the U(1)R
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Killing vectors, giving rise to FI terms that gauge the U(1)R

➛ The preservation of the Hodge structure requires that we accompany the
transformations δα with U(1)R transformations. In particular, the spinors must
transform as

δαψIµ = − 1
4α

Λ(λΛ − λ∗Λ)ψIµ ,
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➛ The preservation of the Hodge structure requires that we accompany the
transformations δα with U(1)R transformations. In particular, the spinors must
transform as

δαψIµ = − 1
4α

Λ(λΛ − λ∗Λ)ψIµ ,

➛ The preservation of the Special Kähler structure requires that the symplectic
section transforms as

δαLΛ = αΛ£ΛLΛ = − 1
2α

Σ(λΣ − λ∗Σ)LΛ + αΣfΣΩ
ΛLΩ ,

δαMΛ = αΛ£ΛMΛ = − 1
2α

Σ(λΣ − λ∗Σ)MΛ − αΣfΣΛ
ΩMΩ ,
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➛ This last requirement leads to this expression of the Killing vectors:

kΛ i∗ = ifΛΣ
Γ
(

Di∗L∗ΣMΓ + LΣDi∗M∗
Γ

)

,

with no arbitrary constants. They vanish identically for Abelian symmetries.
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with no arbitrary constants. They vanish identically for Abelian symmetries.

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.
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Γ
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Di∗L∗ΣMΓ + LΣDi∗M∗
Γ

)

,

with no arbitrary constants. They vanish identically for Abelian symmetries.

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) ⊂ SU(2)R via FI terms. The timelike supersymmetric solutions
of these theories have been classified in Caldarelli & Klemm, hep-th/0307022,
Cacciatori, Caldarelli, Klemm & Mansi, hep-th/0406238, Cacciatori, Caldarelli,
Klemm, Mansi & Roest, arXiv:0704.0247 and Cacciatori, Klemm, Mansi & Zorzan,
arXiv:0804.0009. There are very few regular black holes among them (Toldo &
Vandoren arXiv:1207.3014).

June 15th 2015 IIP, Natal, Brazil Page 8-c



Monopoles, instantons and non-Abelian black holes

➛ This last requirement leads to this expression of the Killing vectors:

kΛ i∗ = ifΛΣ
Γ
(

Di∗L∗ΣMΓ + LΣDi∗M∗
Γ

)

,

with no arbitrary constants. They vanish identically for Abelian symmetries.

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) ⊂ SU(2)R via FI terms. The timelike supersymmetric solutions
of these theories have been classified in Caldarelli & Klemm, hep-th/0307022,
Cacciatori, Caldarelli, Klemm & Mansi, hep-th/0406238, Cacciatori, Caldarelli,
Klemm, Mansi & Roest, arXiv:0704.0247 and Cacciatori, Klemm, Mansi & Zorzan,
arXiv:0804.0009. There are very few regular black holes among them (Toldo &
Vandoren arXiv:1207.3014).

2. (If the above conditions are met) A non-Abelian subgroup G of the isometry
group of Gij∗ .
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(a) The group G acts on the spinors as a local U(1)R.
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THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE.
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THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE.
We call this theory N = 2, d = 4 Super-Einstein-Yang-Mills (SEYM).
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➛ This last requirement leads to this expression of the Killing vectors:

kΛ i∗ = ifΛΣ
Γ
(

Di∗L∗ΣMΓ + LΣDi∗M∗
Γ

)

,

with no arbitrary constants. They vanish identically for Abelian symmetries.

➛ If all these conditions are met, this is a global symmetry of the theory that we
can gauge.

Summarizing, we can gauge

1. (Always) A U(1) ⊂ SU(2)R via FI terms. The timelike supersymmetric solutions
of these theories have been classified in Caldarelli & Klemm, hep-th/0307022,
Cacciatori, Caldarelli, Klemm & Mansi, hep-th/0406238, Cacciatori, Caldarelli,
Klemm, Mansi & Roest, arXiv:0704.0247 and Cacciatori, Klemm, Mansi & Zorzan,
arXiv:0804.0009. There are very few regular black holes among them (Toldo &
Vandoren arXiv:1207.3014).

2. (If the above conditions are met) A non-Abelian subgroup G of the isometry
group of Gij∗ .

(a) The group G acts on the spinors as a local U(1)R.
THIS IS THE CASE THAT WE ARE GOING TO CONSIDER HERE.
We call this theory N = 2, d = 4 Super-Einstein-Yang-Mills (SEYM).

(b) The group G includes an SU(2) factor and acts on the spinors as a local
SU(2)R × U(1)R via SU(2) FI terms. The are no known solutions of these
theories.
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Monopoles, instantons and non-Abelian black holes

3 – N = 2, d = 4 SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives

∂µZ
i −→ DµZ

i ≡ ∂µZ
i + gAΛ

µkΛ
i ,

DµψIν −→ DµψIν ≡ {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ψIν ,

DµǫI = {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ǫI .
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3 – N = 2, d = 4 SEYM

To gauge the theory we replace the standard by gauge-covariant derivatives

∂µZ
i −→ DµZ

i ≡ ∂µZ
i + gAΛ

µkΛ
i ,

DµψIν −→ DµψIν ≡ {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ψIν ,

DµǫI = {∇µ + i
2 (Qµ + gAΛ

µPΛ)}ǫI .

The supersymmetry transformations of the bosons stay unchanged, but those of the
fermions get shifted by terms proportional to g which will enter quadratically in the
scalar potential:

δǫψI µ = DµǫI + εIJT
+
µνγ

νǫJ ,

δǫλ
Ii = i 6DZiǫI + εIJ( 6Gi+ + 1

2gL∗ΛkΛi)ǫJ ,
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Monopoles, instantons and non-Abelian black holes

The action of the bosonic fields takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
i
D

µZ∗ j∗ + 2ℑmNΛΣF
ΛµνFΣ

µν

−2ℜeNΛΣF
Λµν⋆FΣ

µν − V (Z,Z∗)
]

,
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The action of the bosonic fields takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
i
D

µZ∗ j∗ + 2ℑmNΛΣF
ΛµνFΣ

µν

−2ℜeNΛΣF
Λµν⋆FΣ

µν − V (Z,Z∗)
]

,

where the potential is given by

V (Z,Z∗) = − 1
4g

2ℑmN−1|ΛΣPΛPΣ ≥ 0 .

(just as in N = 1 without superpotential!)
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The action of the bosonic fields takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
i
D

µZ∗ j∗ + 2ℑmNΛΣF
ΛµνFΣ

µν

−2ℜeNΛΣF
Λµν⋆FΣ

µν − V (Z,Z∗)
]

,

where the potential is given by

V (Z,Z∗) = − 1
4g

2ℑmN−1|ΛΣPΛPΣ ≥ 0 .

(just as in N = 1 without superpotential!)

This theory can have asymptotically-flat or asymptotically-de Sitter solutions. We
are interested in the former. Gaugings via FI terms usually lead to
asymptotically-Anti-de Sitter solutions, which usually have naked singularities (in
the BPS limit).
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The action of the bosonic fields takes the form

S =

∫

d4x
√

|g|
[

R+ 2Gij∗DµZ
i
D

µZ∗ j∗ + 2ℑmNΛΣF
ΛµνFΣ

µν

−2ℜeNΛΣF
Λµν⋆FΣ

µν − V (Z,Z∗)
]

,

where the potential is given by

V (Z,Z∗) = − 1
4g

2ℑmN−1|ΛΣPΛPΣ ≥ 0 .

(just as in N = 1 without superpotential!)

This theory can have asymptotically-flat or asymptotically-de Sitter solutions. We
are interested in the former. Gaugings via FI terms usually lead to
asymptotically-Anti-de Sitter solutions, which usually have naked singularities (in
the BPS limit).

We will be interested in asymptotically-flat solutions.
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Monopoles, instantons and non-Abelian black holes

4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric (or BPS) solutions of all these theories have been classified in
Hübscher, Meessen, O., Vaulà arXiv:0806.1477 using the method pioneered by Gauntlett
and collaborators ( Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114])
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The supersymmetric (or BPS) solutions of all these theories have been classified in
Hübscher, Meessen, O., Vaulà arXiv:0806.1477 using the method pioneered by Gauntlett
and collaborators ( Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114])

The supersymmetric solutions fall into two classes, according to the causal nature of
the Killing vector that can be constructed as a bilinear or their Killing spinor:
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the Killing vector that can be constructed as a bilinear or their Killing spinor:

➳ Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.
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➳ The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).
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4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric (or BPS) solutions of all these theories have been classified in
Hübscher, Meessen, O., Vaulà arXiv:0806.1477 using the method pioneered by Gauntlett
and collaborators ( Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114])

The supersymmetric solutions fall into two classes, according to the causal nature of
the Killing vector that can be constructed as a bilinear or their Killing spinor:

➳ Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

➳ The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).

In N = 2, d = 4 SEYM theories, the null class only seems to contain superpositions
of pp-waves and strings, as in the ungauged case.
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4 – The supersymmetric solutions of N = 2, d = 4 SEYM theories

The supersymmetric (or BPS) solutions of all these theories have been classified in
Hübscher, Meessen, O., Vaulà arXiv:0806.1477 using the method pioneered by Gauntlett
and collaborators ( Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114])

The supersymmetric solutions fall into two classes, according to the causal nature of
the Killing vector that can be constructed as a bilinear or their Killing spinor:

➳ Configurations that may describe massive point-like objects (black holes,
monopoles) are in the timelike class.

➳ The null class contains massless pointlike objects and some massive extended
objects (strings and domain walls in d = 4).

In N = 2, d = 4 SEYM theories, the null class only seems to contain superpositions
of pp-waves and strings, as in the ungauged case.

The timelike class contains very interesting non-Abelian generalizations of the
Abelian black-hole solutions.

We are going to focus on this case.
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Monopoles, instantons and non-Abelian black holes

Our results for the timelike case can be

summarized in the following
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Monopoles, instantons and non-Abelian black holes

RECIPE:

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R

3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

which is the Bogomol’nyi equation satisfied by known magnetic monopole
solutions (more on this, later).
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RECIPE:

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R

3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

which is the Bogomol’nyi equation satisfied by known magnetic monopole
solutions (more on this, later).

☞ Use the above solution to solve the equation

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,
for the IΛs.
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RECIPE:

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R

3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

which is the Bogomol’nyi equation satisfied by known magnetic monopole
solutions (more on this, later).

☞ Use the above solution to solve the equation

D̃mD̃mIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ ,
for the IΛs. For compact gauge groups

IΛ ∝ IΛ ,

always provides a solution.
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Monopoles, instantons and non-Abelian black holes

The real symplectic vector (IM ) =
(

IΛ

IΛ

)

determines completely the solution.

The physical fields gµν , A
Λ
µ, Z

i are derived from them as follows:
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Monopoles, instantons and non-Abelian black holes

The real symplectic vector (IM ) =
(

IΛ

IΛ

)

determines completely the solution.

The physical fields gµν , A
Λ
µ, Z

i are derived from them as follows:

☞ First we must solve the stabilization (or Freudenthal duality) equations to find
RM (I) identifying

IM ≡ ℑm(VM/X) , RM ≡ ℜe(VM/X) ,

These equations are strongly model-dependent and sometimes very difficult to
solve.
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Monopoles, instantons and non-Abelian black holes

The real symplectic vector (IM ) =
(

IΛ

IΛ

)

determines completely the solution.

The physical fields gµν , A
Λ
µ, Z

i are derived from them as follows:

☞ First we must solve the stabilization (or Freudenthal duality) equations to find
RM (I) identifying

IM ≡ ℑm(VM/X) , RM ≡ ℜe(VM/X) ,

These equations are strongly model-dependent and sometimes very difficult to
solve.

☞ The scalars are, then, given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where

• The 1-form ω = ωmdx
m on R3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

(if IΛ ∝ IΛ then ω = 0).
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where

• The 1-form ω = ωmdx
m on R3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

(if IΛ ∝ IΛ then ω = 0).

• The metric function e2U is given by

e2U ≡ 2|X|2 = RMIM = RΛIΛ −RΛIΛ .
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where

• The 1-form ω = ωmdx
m on R3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

(if IΛ ∝ IΛ then ω = 0).

• The metric function e2U is given by

e2U ≡ 2|X|2 = RMIM = RΛIΛ −RΛIΛ .

☞ The physical gauge field is given by

AΛ
µdx

µ = − 1√
2
e2URΛ(dt+ ω) + ÃΛ

mdx
m ,
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5 – A simple example with gauge group SU(2)

This is the simplest case.

Acoording to the general discussion we must consider a model of N = 2, d = 4
supergavity must have at least 3 vector multiplets transforming in the adjoint of
SU(2) (in practice, SO(3)).
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5 – A simple example with gauge group SU(2)

This is the simplest case.

Acoording to the general discussion we must consider a model of N = 2, d = 4
supergavity must have at least 3 vector multiplets transforming in the adjoint of
SU(2) (in practice, SO(3)).

For simplicity let us consider the CP
3
model defined by the canonical symplectic

section

V = eK/2

(

ZΛ

− i
2ηΛΣZ

Σ

)

, e−K = ηΛΣZ
ΛZΣ = 1 − ZiZi , i = 1, 2, 3 ,

invariant under SO(3) rotations of the 3 vector multiplets labeled by i = 1, 2, 3.
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5 – A simple example with gauge group SU(2)

This is the simplest case.

Acoording to the general discussion we must consider a model of N = 2, d = 4
supergavity must have at least 3 vector multiplets transforming in the adjoint of
SU(2) (in practice, SO(3)).

For simplicity let us consider the CP
3
model defined by the canonical symplectic

section

V = eK/2

(

ZΛ

− i
2ηΛΣZ

Σ

)

, e−K = ηΛΣZ
ΛZΣ = 1 − ZiZi , i = 1, 2, 3 ,

invariant under SO(3) rotations of the 3 vector multiplets labeled by i = 1, 2, 3.

We assume this group has been gauged according to te general procedure.
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5 – A simple example with gauge group SU(2)

This is the simplest case.

Acoording to the general discussion we must consider a model of N = 2, d = 4
supergavity must have at least 3 vector multiplets transforming in the adjoint of
SU(2) (in practice, SO(3)).

For simplicity let us consider the CP
3
model defined by the canonical symplectic

section

V = eK/2

(

ZΛ

− i
2ηΛΣZ

Σ

)

, e−K = ηΛΣZ
ΛZΣ = 1 − ZiZi , i = 1, 2, 3 ,

invariant under SO(3) rotations of the 3 vector multiplets labeled by i = 1, 2, 3.

We assume this group has been gauged according to te general procedure.

We do not need to find the Killing vectors, momentum maps and construct the
potential explicitly to find supersymmetric solutions.
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5 – A simple example with gauge group SU(2)

This is the simplest case.

Acoording to the general discussion we must consider a model of N = 2, d = 4
supergavity must have at least 3 vector multiplets transforming in the adjoint of
SU(2) (in practice, SO(3)).

For simplicity let us consider the CP
3
model defined by the canonical symplectic

section

V = eK/2

(

ZΛ

− i
2ηΛΣZ

Σ

)

, e−K = ηΛΣZ
ΛZΣ = 1 − ZiZi , i = 1, 2, 3 ,

invariant under SO(3) rotations of the 3 vector multiplets labeled by i = 1, 2, 3.

We assume this group has been gauged according to te general procedure.

We do not need to find the Killing vectors, momentum maps and construct the
potential explicitly to find supersymmetric solutions.

Just follow the RECIPE!
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Monopoles, instantons and non-Abelian black holes

☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,
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☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

We are going to set ω = 0 (static solutions) so ÃΛ
m → AΛ

m
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☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

We are going to set ω = 0 (static solutions) so ÃΛ
m → AΛ

m

In this model these equations split into an Abelian and a non-Abelian equation.

F 0
mn = − 1√

2
ǫmnp∂pI0,

F i
mn = − 1√

2
ǫmnpDpIi .
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☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

We are going to set ω = 0 (static solutions) so ÃΛ
m → AΛ

m

In this model these equations split into an Abelian and a non-Abelian equation.

F 0
mn = − 1√

2
ǫmnp∂pI0,

F i
mn = − 1√

2
ǫmnpDpIi .

The Abelian equation is solved by choosing a harmonic function

H0 = A0 + 1√
2

p0

r
= I0 .

A0
m is the potential of the Dirac monopole.
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☞ Find a set of Yang-Mills fields ÃΛ
m and functions IΛ in R3 satisfying

F̃Λ
mn = − 1√

2
ǫmnpD̃pIΛ ,

We are going to set ω = 0 (static solutions) so ÃΛ
m → AΛ

m

In this model these equations split into an Abelian and a non-Abelian equation.

F 0
mn = − 1√

2
ǫmnp∂pI0,

F i
mn = − 1√

2
ǫmnpDpIi .

The Abelian equation is solved by choosing a harmonic function

H0 = A0 + 1√
2

p0

r
= I0 .

A0
m is the potential of the Dirac monopole.

If we identify the Higgs field Φi

Φi ≡ − 1√
2
Ii,

then the non-Abelian equation is the Bogomol’nyi equation.
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6 – The SU(2) Bogomol’nyi equation

Let us consider the Georgi–Glashow model: an SU(2) gauge field Ai coupled to a
Higgs fields Φi with a potential V (Φ) = 1

2λ[Tr(Φ
2)− 1]2

S =

∫

d4x
{

− 1
4TrF

2 + 1
2Tr(DΦ)2 − V (Φ)

}

.
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6 – The SU(2) Bogomol’nyi equation

Let us consider the Georgi–Glashow model: an SU(2) gauge field Ai coupled to a
Higgs fields Φi with a potential V (Φ) = 1

2λ[Tr(Φ
2)− 1]2

S =

∫

d4x
{

− 1
4TrF

2 + 1
2Tr(DΦ)2 − V (Φ)

}

.

In the Bogomol’nyi–Prasad–Sommerfield (BPS) λ = 0 and for time-independent,
magnetic (Ai

t = 0) configurations, the above action can be rewritten, up to a total
derivative, in the form

S = − 1
2

∫

d4xTr(Fmn ± ǫmnpDpΦ)
2
,

which is extremized when the Bogomol’nyi equation

F i
mn = ∓ǫmnpDpΦ

i .

is satisfied.
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6 – The SU(2) Bogomol’nyi equation

Let us consider the Georgi–Glashow model: an SU(2) gauge field Ai coupled to a
Higgs fields Φi with a potential V (Φ) = 1

2λ[Tr(Φ
2)− 1]2

S =

∫

d4x
{

− 1
4TrF

2 + 1
2Tr(DΦ)2 − V (Φ)

}

.

In the Bogomol’nyi–Prasad–Sommerfield (BPS) λ = 0 and for time-independent,
magnetic (Ai

t = 0) configurations, the above action can be rewritten, up to a total
derivative, in the form

S = − 1
2

∫

d4xTr(Fmn ± ǫmnpDpΦ)
2
,

which is extremized when the Bogomol’nyi equation

F i
mn = ∓ǫmnpDpΦ

i .

is satisfied.

Configurations that satisfy this first-order equation satisfy the second-order
Yang–Mills–Higgs equations automatically.
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A well-known Ansatz to solve the Bogomol’nyi equations in the SU(2) case is the
“hedgehog” Ansatz, which mixes space and Lie-algebra indices:

Φi = δimf(r)x
m, Ai

m = −ǫimnx
nh(r),
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A well-known Ansatz to solve the Bogomol’nyi equations in the SU(2) case is the
“hedgehog” Ansatz, which mixes space and Lie-algebra indices:

Φi = δimf(r)x
m, Ai

m = −ǫimnx
nh(r),

The Bogomol’nyi equations become an system of ODFs for f(r) and h(r)






r∂rh+ 2h− f(1 + gr2h) = 0,

r∂r(h+ f)− gr2h(h+ f) = 0.
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A well-known Ansatz to solve the Bogomol’nyi equations in the SU(2) case is the
“hedgehog” Ansatz, which mixes space and Lie-algebra indices:

Φi = δimf(r)x
m, Ai

m = −ǫimnx
nh(r),

The Bogomol’nyi equations become an system of ODFs for f(r) and h(r)






r∂rh+ 2h− f(1 + gr2h) = 0,

r∂r(h+ f)− gr2h(h+ f) = 0.

Protogenov (1997) found all the solutions with finite energy: a 1-parameter
parameter (s, a.k.a. Protogenov “hair”) family and an isolated solution (∗):
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A well-known Ansatz to solve the Bogomol’nyi equations in the SU(2) case is the
“hedgehog” Ansatz, which mixes space and Lie-algebra indices:

Φi = δimf(r)x
m, Ai

m = −ǫimnx
nh(r),

The Bogomol’nyi equations become an system of ODFs for f(r) and h(r)






r∂rh+ 2h− f(1 + gr2h) = 0,

r∂r(h+ f)− gr2h(h+ f) = 0.

Protogenov (1997) found all the solutions with finite energy: a 1-parameter
parameter (s, a.k.a. Protogenov “hair”) family and an isolated solution (∗):

fs =
1

gr2
[1− µr coth (µr + s)], hs = − 1

gr2

[

1− µr

sinh (µr + s)

]

,

f∗ =
1

gr2

[

1

1 + λ2r

]

, h∗ = −f∗.
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Let us study a bit these solutions, which are going to use as seeds of N = 2, d = 4
SEYM solutions.
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Let us study a bit these solutions, which are going to use as seeds of N = 2, d = 4
SEYM solutions.

☞ The solutions are potentially singular at r = 0 only. The only globally regular
solution is the one corresponding to the value s = 0:

Ai
m =

µ

g
δipǫpmn

xn

r
G0(µr) , G0(r) =

1

r
− 1

sinh r
,

Ii =

√
2µ

g
δim

xm

r
H0(µr) , H0(r) = coth r − 1

r
.
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Let us study a bit these solutions, which are going to use as seeds of N = 2, d = 4
SEYM solutions.

☞ The solutions are potentially singular at r = 0 only. The only globally regular
solution is the one corresponding to the value s = 0:

Ai
m =

µ

g
δipǫpmn

xn

r
G0(µr) , G0(r) =

1

r
− 1

sinh r
,

Ii =

√
2µ

g
δim

xm

r
H0(µr) , H0(r) = coth r − 1

r
.

The profiles of the functions G0 and H0 are

300 20 4010

1

50

0.4

0.2

r

0

0.8

0.6

Ii is regular at r = 0 for s = 0, and describes the ’t Hooft-Polyakov monopole in
the BPS limit.
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☞ In the s→ ∞ limit the general solution takes the form

Ai
m = δipǫpmn

xn

r

[

µ

g
− 1

gr

]

,

Ii =
√
2 δim

xm

r

1

gr
,

which, (only for µ = 0), corresponds to the Wu–Yang SU(2) monopole.
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☞ In the s→ ∞ limit the general solution takes the form

Ai
m = δipǫpmn

xn

r

[

µ

g
− 1

gr

]

,

Ii =
√
2 δim

xm

r

1

gr
,

which, (only for µ = 0), corresponds to the Wu–Yang SU(2) monopole.

The WY SU(2) monopole is also a solution of the pure (Higgs-less) YM theory.
(The Higgs current vanishes).
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☞ In the s→ ∞ limit the general solution takes the form

Ai
m = δipǫpmn

xn

r

[

µ

g
− 1

gr

]

,

Ii =
√
2 δim

xm

r

1

gr
,

which, (only for µ = 0), corresponds to the Wu–Yang SU(2) monopole.

The WY SU(2) monopole is also a solution of the pure (Higgs-less) YM theory.
(The Higgs current vanishes). In the pure YM theory the WY SU(2) monopole has
zero magnetic charge

pi =
1

4π

∫

S2
∞

F i = 0 .
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☞ In the s→ ∞ limit the general solution takes the form

Ai
m = δipǫpmn

xn

r

[

µ

g
− 1

gr

]

,

Ii =
√
2 δim

xm

r

1

gr
,

which, (only for µ = 0), corresponds to the Wu–Yang SU(2) monopole.

The WY SU(2) monopole is also a solution of the pure (Higgs-less) YM theory.
(The Higgs current vanishes). In the pure YM theory the WY SU(2) monopole has
zero magnetic charge

pi =
1

4π

∫

S2
∞

F i = 0 .

As a solution of the YM–Higgs theory its magnetic charge no longer vanishes and is
equal to that of the BPS ’t Hooft-Polyakov monopole:

p ≡ 1

4π

∫

S2
∞

ΦiF i

ΦjΦj
=

1

g
.
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☞ In the s→ ∞ limit the general solution takes the form

Ai
m = δipǫpmn

xn

r

[

µ

g
− 1

gr

]

,

Ii =
√
2 δim

xm

r

1

gr
,

which, (only for µ = 0), corresponds to the Wu–Yang SU(2) monopole.

The WY SU(2) monopole is also a solution of the pure (Higgs-less) YM theory.
(The Higgs current vanishes). In the pure YM theory the WY SU(2) monopole has
zero magnetic charge

pi =
1

4π

∫

S2
∞

F i = 0 .

As a solution of the YM–Higgs theory its magnetic charge no longer vanishes and is
equal to that of the BPS ’t Hooft-Polyakov monopole:

p ≡ 1

4π

∫

S2
∞

ΦiF i

ΦjΦj
=

1

g
.

All the solutions of the 1-parameter family have magnetic charge 1/g.
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☞ The isolated solution (∗) takes the form

Ai
m = δipǫpmn

xn

r

1

gr(1 + λ2r)
,

Ii = −
√
2 δim

xm

r

1

gr(1 + λ2r)
,
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☞ The isolated solution (∗) takes the form

Ai
m = δipǫpmn

xn

r

1

gr(1 + λ2r)
,

Ii = −
√
2 δim

xm

r

1

gr(1 + λ2r)
,

This solution has vanishing magnetic charge: “coloured monopole” .
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☞ The isolated solution (∗) takes the form

Ai
m = δipǫpmn

xn

r

1

gr(1 + λ2r)
,

Ii = −
√
2 δim

xm

r

1

gr(1 + λ2r)
,

This solution has vanishing magnetic charge: “coloured monopole” .

With the only exception of the BPS ’t Hooft-Polyakov monopole, the YM field is
singular at r = 0. However, in the N = 2, d = 4 SEYM theory the coupling to
gravity may cover it by an event horizon.
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☞ The isolated solution (∗) takes the form

Ai
m = δipǫpmn

xn

r

1

gr(1 + λ2r)
,

Ii = −
√
2 δim

xm

r

1

gr(1 + λ2r)
,

This solution has vanishing magnetic charge: “coloured monopole” .

With the only exception of the BPS ’t Hooft-Polyakov monopole, the YM field is
singular at r = 0. However, in the N = 2, d = 4 SEYM theory the coupling to
gravity may cover it by an event horizon.

The possible existence of an event horizon covering the singularity at r = 0 has to be
studied in specific models.
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☞ The isolated solution (∗) takes the form

Ai
m = δipǫpmn

xn

r

1

gr(1 + λ2r)
,

Ii = −
√
2 δim

xm

r

1

gr(1 + λ2r)
,

This solution has vanishing magnetic charge: “coloured monopole” .

With the only exception of the BPS ’t Hooft-Polyakov monopole, the YM field is
singular at r = 0. However, in the N = 2, d = 4 SEYM theory the coupling to
gravity may cover it by an event horizon.

The possible existence of an event horizon covering the singularity at r = 0 has to be
studied in specific models.

Go to the next item in the RECIPE...
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☞ Find solutions IΛ for the equation

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ .
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☞ Find solutions IΛ for the equation

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ .

We take, for simplicity

Ii = 0 , i = 1, 2, 3 ,

and and independent harmonic function for Λ = 0

I0 = H0 = A0 +
1√
2

q0
r
.
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☞ Find solutions IΛ for the equation

DmDmIΛ = 1
2g

2
[

fΛ(Σ
Γf∆)Γ

Ω IΣI∆
]

IΩ .

We take, for simplicity

Ii = 0 , i = 1, 2, 3 ,

and and independent harmonic function for Λ = 0

I0 = H0 = A0 +
1√
2

q0
r
.

And go to the next item in the RECIPE...
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☞ Solve the stabilization (or Freudenthal duality) equations of the model to find
RM (I) identifying

IM ≡ ℑm(VM/X) , RM ≡ ℜe(VM/X) ,
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☞ Solve the stabilization (or Freudenthal duality) equations of the model to find
RM (I) identifying
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☞ Solve the stabilization (or Freudenthal duality) equations of the model to find
RM (I) identifying

IM ≡ ℑm(VM/X) , RM ≡ ℜe(VM/X) ,

In the CP
3
model the solution is very simple:

RΛ = − 1
2ηΛΣ IΣ , RΛ = 2ηΛΣ IΣ .

And go to the next item in the RECIPE...

...which is the construction of the

physical fields out of RΛ, IΛ,RΛ, IΛ
This construction will impose constraints on the integration constants
µ, s, A0, A0, p

0, q0, λ.
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where
• The 1-form ω = ωmdx

m on R
3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

June 15th 2015 IIP, Natal, Brazil Page 25-a



Monopoles, instantons and non-Abelian black holes

☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,
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• The 1-form ω = ωmdx

m on R
3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

We want static solutions with ω = 0. The above equation implies

q0A
0 − p0A0 = 0 .
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ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where
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3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

We want static solutions with ω = 0. The above equation implies

q0A
0 − p0A0 = 0 .

• The metric function e2U is given by

e2U ≡ 2|X|2 = RMIM = RΛIΛ −RΛIΛ .
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where
• The 1-form ω = ωmdx

m on R
3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

We want static solutions with ω = 0. The above equation implies

q0A
0 − p0A0 = 0 .

• The metric function e2U is given by

e2U ≡ 2|X|2 = RMIM = RΛIΛ −RΛIΛ .
In our case

e−2U = 1
2 (H

0)2 + 2(H0)
2 − (rf)2 .
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☞ The spacetime metric is

ds2 = e2U (dt+ ω)2 − e−2Udxmdxm ,

where
• The 1-form ω = ωmdx

m on R
3 is found by solving the equation

(dω)mn = 2ǫmnpIM D̃pIM = 2ǫmnp

[

IΛD̃pIΛ − IΛ
D̃pIΛ

]

,

We want static solutions with ω = 0. The above equation implies

q0A
0 − p0A0 = 0 .

• The metric function e2U is given by

e2U ≡ 2|X|2 = RMIM = RΛIΛ −RΛIΛ .
In our case

e−2U = 1
2 (H

0)2 + 2(H0)
2 − (rf)2 .

Regularity requires either H0 6= 0 or H0 6= 0 (some times p0 6= 0 or q0 6= 0).
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Finally...

☞ The scalars are given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.
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Finally...

☞ The scalars are given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.

In our case,

Zi =
−
√
2rf

H0 + 2iH0
δim

xm

r
.
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Finally...

☞ The scalars are given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.

In our case,

Zi =
−
√
2rf

H0 + 2iH0
δim

xm

r
.

Asymptotically (r → ∞)

Zi −→















√
2µ/g

A0 + 2iA0
δim

xm

r
, for fs

0 for f∗
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Finally...

☞ The scalars are given by

Zi =
Li

L0
=

Li/X

L0/X
=

Ri + iIi

R0 + iI0
.

In our case,

Zi =
−
√
2rf

H0 + 2iH0
δim

xm

r
.

Asymptotically (r → ∞)

Zi −→















√
2µ/g

A0 + 2iA0
δim

xm

r
, for fs

0 for f∗

Now, study the solutions case by case
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7 – Global ’t Hooft-Polyakov Monopoles

Let us consider first the p0 = q0 = 0 case (H0 = A0, H0 = A0).
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7 – Global ’t Hooft-Polyakov Monopoles

Let us consider first the p0 = q0 = 0 case (H0 = A0, H0 = A0).

In the r → 0 limit

rfs 6=0 ∼ 1

gr
, rfs=0 ∼ 0 , rf∗ ∼ 1

gr
.
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7 – Global ’t Hooft-Polyakov Monopoles

Let us consider first the p0 = q0 = 0 case (H0 = A0, H0 = A0).

In the r → 0 limit

rfs 6=0 ∼ 1

gr
, rfs=0 ∼ 0 , rf∗ ∼ 1

gr
.

The non-Abelian contribution grows without bound and e−2U becomes negative
except for the ’t Hooft-Polyakov monopole s = 0, in which we find a completely
regular asymptotically flat region with no horizons (global monopoles,Harvey & Liu
1991, Chamseddine & Volkov 1997)
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7 – Global ’t Hooft-Polyakov Monopoles

Let us consider first the p0 = q0 = 0 case (H0 = A0, H0 = A0).

In the r → 0 limit

rfs 6=0 ∼ 1

gr
, rfs=0 ∼ 0 , rf∗ ∼ 1

gr
.

The non-Abelian contribution grows without bound and e−2U becomes negative
except for the ’t Hooft-Polyakov monopole s = 0, in which we find a completely
regular asymptotically flat region with no horizons (global monopoles,Harvey & Liu
1991, Chamseddine & Volkov 1997)

The other solutions must contain a naked singularity at some finite value of r and
only switching on the charges p0 and q0 can the metric remain positive (later).
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7 – Global ’t Hooft-Polyakov Monopoles

Let us consider first the p0 = q0 = 0 case (H0 = A0, H0 = A0).

In the r → 0 limit

rfs 6=0 ∼ 1

gr
, rfs=0 ∼ 0 , rf∗ ∼ 1

gr
.

The non-Abelian contribution grows without bound and e−2U becomes negative
except for the ’t Hooft-Polyakov monopole s = 0, in which we find a completely
regular asymptotically flat region with no horizons (global monopoles,Harvey & Liu
1991, Chamseddine & Volkov 1997)

The other solutions must contain a naked singularity at some finite value of r and
only switching on the charges p0 and q0 can the metric remain positive (later).

Asymptotic flatness of the global monopole requires

1
2 (A

0)2 + 2(A0)
2 = 1 + (µ/g)2 .
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7 – Global ’t Hooft-Polyakov Monopoles

Let us consider first the p0 = q0 = 0 case (H0 = A0, H0 = A0).

In the r → 0 limit

rfs 6=0 ∼ 1

gr
, rfs=0 ∼ 0 , rf∗ ∼ 1

gr
.

The non-Abelian contribution grows without bound and e−2U becomes negative
except for the ’t Hooft-Polyakov monopole s = 0, in which we find a completely
regular asymptotically flat region with no horizons (global monopoles,Harvey & Liu
1991, Chamseddine & Volkov 1997)

The other solutions must contain a naked singularity at some finite value of r and
only switching on the charges p0 and q0 can the metric remain positive (later).

Asymptotic flatness of the global monopole requires

1
2 (A

0)2 + 2(A0)
2 = 1 + (µ/g)2 .

Asymptotically, the scalars are covariantly constant:

Zi ∼ Z∞δ
i
m
xm

r
, Z∞ ≡ −µ/g

1 + (µ/g)2

(

1√
2
A0 −

√
2iA0

)

.
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|Z∞|2 is gauge-invariant and we get an expression for µ in terms of g and moduli:

µ2 =
|Z∞|2

1− |Z∞|2 g
2 ,

which can be used in the expression of Z∞ to find A0 and A0 as functions of the real
and imaginary parts of Z∞ and g.
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|Z∞|2 is gauge-invariant and we get an expression for µ in terms of g and moduli:

µ2 =
|Z∞|2

1− |Z∞|2 g
2 ,

which can be used in the expression of Z∞ to find A0 and A0 as functions of the real
and imaginary parts of Z∞ and g.

Using all this, we get for the mass of the global monopole solution

Mmonopole =

√

|Z∞|2
1− |Z∞|2

1

g
> 0 .

It saturates a moduli-dependent BPS bound.
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8 – Coloured supersymmetric black holes

Let us now consider the generic case with non-vanishing p0, q0.
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8 – Coloured supersymmetric black holes

Let us now consider the generic case with non-vanishing p0, q0.

We solve the constraint q0A
0 − p0A0 = 0 by introducing a non-vanishing constant β

A0

p0/
√
2
=

A0

q0/
√
2
≡ 1/β, ⇒

{

H0 = Hp0/(
√
2β),

H0 = Hq0/(
√
2β),

where H ≡ 1 +
β

r
.
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8 – Coloured supersymmetric black holes

Let us now consider the generic case with non-vanishing p0, q0.

We solve the constraint q0A
0 − p0A0 = 0 by introducing a non-vanishing constant β

A0

p0/
√
2
=

A0

q0/
√
2
≡ 1/β, ⇒

{

H0 = Hp0/(
√
2β),

H0 = Hq0/(
√
2β),

where H ≡ 1 +
β

r
.

The normalization of e−2U = 1 at infinity implies that

β2 =
WRN(Q)/2

1 + (µ/g)2
, WRN(Q)/2 ≡ 1

2 (p
0)2 + 2(q0)

2 .

(For the isolated solution f∗ we have µ = 0.)
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8 – Coloured supersymmetric black holes

Let us now consider the generic case with non-vanishing p0, q0.

We solve the constraint q0A
0 − p0A0 = 0 by introducing a non-vanishing constant β

A0

p0/
√
2
=

A0

q0/
√
2
≡ 1/β, ⇒

{

H0 = Hp0/(
√
2β),

H0 = Hq0/(
√
2β),

where H ≡ 1 +
β

r
.

The normalization of e−2U = 1 at infinity implies that

β2 =
WRN(Q)/2

1 + (µ/g)2
, WRN(Q)/2 ≡ 1

2 (p
0)2 + 2(q0)

2 .

(For the isolated solution f∗ we have µ = 0.)

The asymptotic behavior of the scalars is the same as in the previous case with Z∞
given by

Z∞ ≡ βµ/g

WRN(Q)/
√
2

(

1√
2
p0 −

√
2iq0

)

, |Z∞|2 ≡ β2(µ/g)2

WRN(Q)/2
,
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Then we can identify

µ2 =
|Z∞|2

1− |Z∞|2 g
2 , β2 = (1− |Z∞|2)WRN(Q)/2 .
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Then we can identify

µ2 =
|Z∞|2

1− |Z∞|2 g
2 , β2 = (1− |Z∞|2)WRN(Q)/2 .

Now we can write the full solution in terms of physical parameters (plus s, the
Protogenov hair and λ, which is another kind of non-Abelian hair.
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Then we can identify

µ2 =
|Z∞|2

1− |Z∞|2 g
2 , β2 = (1− |Z∞|2)WRN(Q)/2 .

Now we can write the full solution in terms of physical parameters (plus s, the
Protogenov hair and λ, which is another kind of non-Abelian hair.

In particular, the mass and entropy are given by

M =

√

WRN(Q)/2

1− |Z∞|2 +Mmonopole, Mmonopole =

√

|Z∞|2
1− |Z∞|2

1

g
,

S/π = 1
2

[

WRN(Q)− 1

g2

]

, for s 6= 0 and |Z∞| = 0 ,

S/π = 1
2WRN(Q), for s = 0 .
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Comments:
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Comments:

➳ The contributions of the non-Abelian field to the mass vanishes in the isolated
(|Z∞| = 0) case (the coloured, with zero charge).

But there is a non-vanishing contribution to the entropy!

(P. Meessen arXiv:0803.0684)
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Comments:

➳ The contributions of the non-Abelian field to the mass vanishes in the isolated
(|Z∞| = 0) case (the coloured, with zero charge).

But there is a non-vanishing contribution to the entropy!

(P. Meessen arXiv:0803.0684)

➳ The ’t Hooft-Polyakov monopole (s = 0) does not contribute to the entropy
which suggests that it must be associated to a pure state in the quantum theory.
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Comments:

➳ The contributions of the non-Abelian field to the mass vanishes in the isolated
(|Z∞| = 0) case (the coloured, with zero charge).

But there is a non-vanishing contribution to the entropy!

(P. Meessen arXiv:0803.0684)

➳ The ’t Hooft-Polyakov monopole (s = 0) does not contribute to the entropy
which suggests that it must be associated to a pure state in the quantum theory.

➳ in the family s 6= 0, the charges p0, q0 must be such that

WRN(Q) ≥ 1

g2
.

When the equality is possible (only for certain values of g because p0 and q0
must be quantized), the solutions are global monopoles.
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Comments:

➳ The contributions of the non-Abelian field to the mass vanishes in the isolated
(|Z∞| = 0) case (the coloured, with zero charge).

But there is a non-vanishing contribution to the entropy!

(P. Meessen arXiv:0803.0684)

➳ The ’t Hooft-Polyakov monopole (s = 0) does not contribute to the entropy
which suggests that it must be associated to a pure state in the quantum theory.

➳ in the family s 6= 0, the charges p0, q0 must be such that

WRN(Q) ≥ 1

g2
.

When the equality is possible (only for certain values of g because p0 and q0
must be quantized), the solutions are global monopoles.

➳ The near-horizon limit of the scalars is in all cases (except s = 0 in which
Zi
h = 0)

Zi
h =

−1/g

( 12p
0 + iq0)

δim
xm

r
.

Since the magnetic charge is 1/g in all cases except in the isolated one, we can
say that the attractor mechanism also works here (in a covariant way) except in
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the isolated case in which 1/g is not a charge.
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the isolated case in which 1/g is not a charge.
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the isolated case in which 1/g is not a charge.
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the isolated case in which 1/g is not a charge.
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9 – Black Hedgehogs

In the s→ ∞ limit (Wu–Yang SU(2) monopole, rf∞ harmonic) the scalars are
covariantly constant everywhere

Zi = Zδim
xm

r
, Z =

−
√
2/g

p0/
√
2 + i

√
2q0

= Z∞.

and their energy-momentum tensor vanishes. The solutions are also solutions of the
pure Einstein–Yang–Mills theory.
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9 – Black Hedgehogs

In the s→ ∞ limit (Wu–Yang SU(2) monopole, rf∞ harmonic) the scalars are
covariantly constant everywhere

Zi = Zδim
xm

r
, Z =

−
√
2/g

p0/
√
2 + i

√
2q0

= Z∞.

and their energy-momentum tensor vanishes. The solutions are also solutions of the
pure Einstein–Yang–Mills theory.

The metric of these solutions is that of the extremal-Reissner–Nordström black hole.
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9 – Black Hedgehogs

In the s→ ∞ limit (Wu–Yang SU(2) monopole, rf∞ harmonic) the scalars are
covariantly constant everywhere

Zi = Zδim
xm

r
, Z =

−
√
2/g

p0/
√
2 + i

√
2q0

= Z∞.

and their energy-momentum tensor vanishes. The solutions are also solutions of the
pure Einstein–Yang–Mills theory.

The metric of these solutions is that of the extremal-Reissner–Nordström black hole.

These solutions have been called black merons (Canfora & Giacomini, 2012) and black
hedgehogs (Hübscher, Meessen, O., Vaula 2007) but were also previously obtained by
Perry (1977), Wang (1975), Bais & Russell (1975), Cho & Freund (1975), Yasskin (1975).
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10 – Two-center non-Abelian solutions

Using two-center solutions of the Bogomol’nyi equations one can construct
two-center N = 2, d = 4 supergavity solutions (arXiv:1412.5547).
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10 – Two-center non-Abelian solutions

Using two-center solutions of the Bogomol’nyi equations one can construct
two-center N = 2, d = 4 supergavity solutions (arXiv:1412.5547).

The Cherkis-Durcan, 2007 solution, for instance, d escribes a BPS ’t Hooft-Polyakov
monopole located at xn = xn0 and a Dirac monopole embedded in SU(2) at xm = xm1
in static equilibrium:
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10 – Two-center non-Abelian solutions

Using two-center solutions of the Bogomol’nyi equations one can construct
two-center N = 2, d = 4 supergavity solutions (arXiv:1412.5547).

The Cherkis-Durcan, 2007 solution, for instance, d escribes a BPS ’t Hooft-Polyakov
monopole located at xn = xn0 and a Dirac monopole embedded in SU(2) at xm = xm1
in static equilibrium:

Define the coordinates relative to each of those centers and the relative position by

rm ≡ xm − xm0 , um ≡ xm − xm1 , dm ≡ um − rm = xm0 − xm1 ,

andd their norms by respectively, r, u and d.

June 15th 2015 IIP, Natal, Brazil Page 34-b

http://arXiv.org/pdf/1412.5547.pdf


Monopoles, instantons and non-Abelian black holes

10 – Two-center non-Abelian solutions

Using two-center solutions of the Bogomol’nyi equations one can construct
two-center N = 2, d = 4 supergavity solutions (arXiv:1412.5547).

The Cherkis-Durcan, 2007 solution, for instance, d escribes a BPS ’t Hooft-Polyakov
monopole located at xn = xn0 and a Dirac monopole embedded in SU(2) at xm = xm1
in static equilibrium:

Define the coordinates relative to each of those centers and the relative position by

rm ≡ xm − xm0 , um ≡ xm − xm1 , dm ≡ um − rm = xm0 − xm1 ,

andd their norms by respectively, r, u and d.

The, the Higgs and gauge fields are given by...
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±Φi =
1

g
δim

{[

1

r
−
(

µ+
1

u

)

K

L

]

rm

r
+

2r

uL

(

δmn − rmrn

r2

)

dn
}

,

Ai = −1

g

[

1

r
− µD+ 2d+ 2u

L

]

εimnr
mdxn

r
+ 2

K

L

εnpqd
nupdxq

uD
δim

rm

r

− 2r

uL
δim

(

δmn − rmrn

r2

)

εnpqu
pdxq ,

where the functions K,L,D of u and r are defined by

K ≡
[

(u+ d)2 + r2
]

cosh µr + 2r(u+ d) sinh µr ,

L ≡
[

(u+ d)2 + r2
]

sinh µr + 2r(u+ d) cosh µr ,

D = 2 (ud+ umdm) = (d+ u)2 − r2 .
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±Φi =
1

g
δim

{[

1

r
−
(

µ+
1

u

)

K

L

]

rm

r
+

2r

uL

(

δmn − rmrn

r2

)

dn
}

,

Ai = −1

g

[

1

r
− µD+ 2d+ 2u

L

]

εimnr
mdxn

r
+ 2

K

L

εnpqd
nupdxq

uD
δim

rm

r

− 2r

uL
δim

(

δmn − rmrn

r2

)

εnpqu
pdxq ,

where the functions K,L,D of u and r are defined by

K ≡
[

(u+ d)2 + r2
]

cosh µr + 2r(u+ d) sinh µr ,

L ≡
[

(u+ d)2 + r2
]

sinh µr + 2r(u+ d) cosh µr ,

D = 2 (ud+ umdm) = (d+ u)2 − r2 .

This solution is completely regular (Blair & Cherkis, 2010) and we can just use it as

the main ingredient in our recipe for the CP
3
model.
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The two-center solution of N = 2, d = 4 supergavity is completely defined by

I0 = A0 +
p0r/

√
2

r
+
p0u/

√
2

u
,

I0 = A0 +
qr,0/

√
2

r
+
qu,0/

√
2

u
,

Ii = ∓
√
2Φi(r, u) ,

Ii = 0 .
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The two-center solution of N = 2, d = 4 supergavity is completely defined by

I0 = A0 +
p0r/

√
2

r
+
p0u/

√
2

u
,

I0 = A0 +
qr,0/

√
2

r
+
qu,0/

√
2

u
,

Ii = ∓
√
2Φi(r, u) ,

Ii = 0 .

The metric and scalar fields are given by

e−2U = 1
2 (I0)2 + 2(I0)2 − ΦiΦi , Zi =

∓
√
2Φi

I0 + 2iI0
.

and we just have to tune the integration constants for these fields to be regular and
the metric static and normalized at infinity.
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In the general case, with all the charges p0r, p
0
u, qr 0, qu 0 switched on the system

describes two black holes in equilibrium with entropies

Su/π = 1
2WRN(Qu)/2−

1

g2
, Sr/π = 1

2WRN(Qr)/2 ,

and masses

M = Mr +Mu ,

Mr = −Mmonopole ,

Mu =

√

1
2

WRN (Qu)

1− |Z∞|2 +Mmonopole ,

Mmonopole =

√

|Z∞|2
1− |Z∞|2

1

g
.
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11 – 5-dimensional non-Abelian black holes?

We would like to find non-Abelian black holes in higher dimensions. The simplest
class of theories to be considered are N = 2, d = 5 non-Abelian gauged
supergravities.

Observe:
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11 – 5-dimensional non-Abelian black holes?

We would like to find non-Abelian black holes in higher dimensions. The simplest
class of theories to be considered are N = 2, d = 5 non-Abelian gauged
supergravities.

Observe:

☞ The supersymmetric solutions of non-Abelian gauged N = 2, d = 5 non-Abelian
gauged supergravities where classified in Belloŕın & Ort́ın arXiv:0705.2567. A
piece of the vector field strengths is self-dual in the 4d Euclidean hyperKähler
“base space”.
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11 – 5-dimensional non-Abelian black holes?

We would like to find non-Abelian black holes in higher dimensions. The simplest
class of theories to be considered are N = 2, d = 5 non-Abelian gauged
supergravities.

Observe:

☞ The supersymmetric solutions of non-Abelian gauged N = 2, d = 5 non-Abelian
gauged supergravities where classified in Belloŕın & Ort́ın arXiv:0705.2567. A
piece of the vector field strengths is self-dual in the 4d Euclidean hyperKähler
“base space”.

☞ Self-dual Yang-Mills configurations (instantons) on hyperKähler spaces are in
1-to-1 correspondence with magnetic monopoles satisfying the Bogomol’nyi
equation in R

3 (Kronheimer, 1985).
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11 – 5-dimensional non-Abelian black holes?

We would like to find non-Abelian black holes in higher dimensions. The simplest
class of theories to be considered are N = 2, d = 5 non-Abelian gauged
supergravities.

Observe:

☞ The supersymmetric solutions of non-Abelian gauged N = 2, d = 5 non-Abelian
gauged supergravities where classified in Belloŕın & Ort́ın arXiv:0705.2567. A
piece of the vector field strengths is self-dual in the 4d Euclidean hyperKähler
“base space”.

☞ Self-dual Yang-Mills configurations (instantons) on hyperKähler spaces are in
1-to-1 correspondence with magnetic monopoles satisfying the Bogomol’nyi
equation in R

3 (Kronheimer, 1985).

☞ The construction of the non-Abelian solutions directly in d = 5 is difficult. One
can try to uplift the 4-dimensional black-hole solutions using Kronheimer’s
inverse mechanism.
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11 – 5-dimensional non-Abelian black holes?

We would like to find non-Abelian black holes in higher dimensions. The simplest
class of theories to be considered are N = 2, d = 5 non-Abelian gauged
supergravities.

Observe:

☞ The supersymmetric solutions of non-Abelian gauged N = 2, d = 5 non-Abelian
gauged supergravities where classified in Belloŕın & Ort́ın arXiv:0705.2567. A
piece of the vector field strengths is self-dual in the 4d Euclidean hyperKähler
“base space”.

☞ Self-dual Yang-Mills configurations (instantons) on hyperKähler spaces are in
1-to-1 correspondence with magnetic monopoles satisfying the Bogomol’nyi
equation in R

3 (Kronheimer, 1985).

☞ The construction of the non-Abelian solutions directly in d = 5 is difficult. One
can try to uplift the 4-dimensional black-hole solutions using Kronheimer’s
inverse mechanism.

☞ First we want to know how the monopoles become instantons by that
mechanism.
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12 – Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:
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12 – Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:

The metric of a 4-d HK space admitting a free U(1) action shifting z ∼ z + 4π by an
arbitrary constant is of the form (Gibbons, Hawking, 1979)

dŝ 2 = H−1(dz + ω)2 +Hdxmdxm (m = 1, 2, 3) ,

where (unhatted ⇒ E3)

dH = ⋆dω , ⇒ d ⋆ dH = 0 , in R
3 .
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12 – Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:

The metric of a 4-d HK space admitting a free U(1) action shifting z ∼ z + 4π by an
arbitrary constant is of the form (Gibbons, Hawking, 1979)

dŝ 2 = H−1(dz + ω)2 +Hdxmdxm (m = 1, 2, 3) ,

where (unhatted ⇒ E3)

dH = ⋆dω , ⇒ d ⋆ dH = 0 , in R
3 .

For any gauge group G, let Â be a gauge field whose field strength F̂ is selfdual
⋆̂F̂ = +F̂ in the above HK metric (orientation!).
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12 – Instantons Vs. Monopoles

Kronheimer, MSc Thesis, 1985:

The metric of a 4-d HK space admitting a free U(1) action shifting z ∼ z + 4π by an
arbitrary constant is of the form (Gibbons, Hawking, 1979)

dŝ 2 = H−1(dz + ω)2 +Hdxmdxm (m = 1, 2, 3) ,

where (unhatted ⇒ E3)

dH = ⋆dω , ⇒ d ⋆ dH = 0 , in R
3 .

For any gauge group G, let Â be a gauge field whose field strength F̂ is selfdual
⋆̂F̂ = +F̂ in the above HK metric (orientation!).

Then, the 3-dimensional gauge and Higgs fields A and Φ defined by

Φ ≡ −HÂz ,

Am ≡ Âm − ωmÂz ,

satisfy the Bogomol’nyi equation in E3 DmΦ = 1
2 ǫmnpFnp.
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,
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Monopoles, instantons and non-Abelian black holes

Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,

Redefining the radial coordinate r = ρ2/4

dŝ 2 =
ρ2

4
(dz + cos θ)2 + dρ2 +

ρ2

4
(dθ2 + sin2 θdϕ2) = dρ2 + ρ2dΩ2

(3) .
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,

Redefining the radial coordinate r = ρ2/4

dŝ 2 =
ρ2

4
(dz + cos θ)2 + dρ2 +

ρ2

4
(dθ2 + sin2 θdϕ2) = dρ2 + ρ2dΩ2

(3) .

The coordinate z is now an angular coordinate. The uplifted monopoles will depend
on ρ = |~x(4)|.
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Simplest HK metric: H = 1, ω = 0, which is R4. The uplifted monopoles will have a
translational invariance and the metric a translational isometry:

Strings, but no black holes.

Next simplest HK metric: H = 1/r, ω = cos θ, which is R4
−{0}:

dŝ 2 = r(dz + cos θ)2 +
dr2

r
+ r(dθ2 + sin2 θdϕ2) ,

Redefining the radial coordinate r = ρ2/4

dŝ 2 =
ρ2

4
(dz + cos θ)2 + dρ2 +

ρ2

4
(dθ2 + sin2 θdϕ2) = dρ2 + ρ2dΩ2

(3) .

The coordinate z is now an angular coordinate. The uplifted monopoles will depend
on ρ = |~x(4)|.

We may obtain black holes, but beware of the singularities!!.
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Monopoles, instantons and non-Abelian black holes

Applying the inverse Kronheimer mechanism to the BPS monopoles of G=SU(2) we
find (Bueno, Meessen, Ramı́rez & O. 2015)
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Applying the inverse Kronheimer mechanism to the BPS monopoles of G=SU(2) we
find (Bueno, Meessen, Ramı́rez & O. 2015)

➳ The Wu-Yang monopole corresponds to a trivial (gauge-equivalent to zero)
gauge field in the 4-d HK space with H = 1/r, ω = cos θ.
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Applying the inverse Kronheimer mechanism to the BPS monopoles of G=SU(2) we
find (Bueno, Meessen, Ramı́rez & O. 2015)

➳ The Wu-Yang monopole corresponds to a trivial (gauge-equivalent to zero)
gauge field in the 4-d HK space with H = 1/r, ω = cos θ.

➳ The singular coloured monopole corresponds to the globally-regular
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton. The parameter λ is the
inverse of the one that measures the “size” of the instanton.
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Monopoles, instantons and non-Abelian black holes

Applying the inverse Kronheimer mechanism to the BPS monopoles of G=SU(2) we
find (Bueno, Meessen, Ramı́rez & O. 2015)

➳ The Wu-Yang monopole corresponds to a trivial (gauge-equivalent to zero)
gauge field in the 4-d HK space with H = 1/r, ω = cos θ.

➳ The singular coloured monopole corresponds to the globally-regular
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton. The parameter λ is the
inverse of the one that measures the “size” of the instanton.

➳ All the other monopoles (including the regular BPS ‘t Hooft-Polyakov one)
correspond to singular instantons and it is not clear how to used them to
construct 5-dimensional black holes.
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Monopoles, instantons and non-Abelian black holes

Applying the inverse Kronheimer mechanism to the BPS monopoles of G=SU(2) we
find (Bueno, Meessen, Ramı́rez & O. 2015)

➳ The Wu-Yang monopole corresponds to a trivial (gauge-equivalent to zero)
gauge field in the 4-d HK space with H = 1/r, ω = cos θ.

➳ The singular coloured monopole corresponds to the globally-regular
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton. The parameter λ is the
inverse of the one that measures the “size” of the instanton.

➳ All the other monopoles (including the regular BPS ‘t Hooft-Polyakov one)
correspond to singular instantons and it is not clear how to used them to
construct 5-dimensional black holes.

Let’s see what we can get

from the coloured monopole
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Monopoles, instantons and non-Abelian black holes

13 – From d=4 to d=5 N=2 gauged supergravity

(Just the basic facts)

The dimensional reduction of any N = 2, d = 5 ungauged supergravity gives a
N = 2, d = 4 ungauged supergravity of the cubic type.
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13 – From d=4 to d=5 N=2 gauged supergravity

(Just the basic facts)

The dimensional reduction of any N = 2, d = 5 ungauged supergravity gives a
N = 2, d = 4 ungauged supergravity of the cubic type.

Only the solutions of cubic models can be uplifted to d = 5.
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13 – From d=4 to d=5 N=2 gauged supergravity

(Just the basic facts)

The dimensional reduction of any N = 2, d = 5 ungauged supergravity gives a
N = 2, d = 4 ungauged supergravity of the cubic type.

Only the solutions of cubic models can be uplifted to d = 5.

If one gauges only symmetries common to the d = 4 and d = 5 theories, the relation
between the 4- and 5-dimensional fields is the same as in the ungauged cases.
(Simpler)
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13 – From d=4 to d=5 N=2 gauged supergravity

(Just the basic facts)

The dimensional reduction of any N = 2, d = 5 ungauged supergravity gives a
N = 2, d = 4 ungauged supergravity of the cubic type.

Only the solutions of cubic models can be uplifted to d = 5.

If one gauges only symmetries common to the d = 4 and d = 5 theories, the relation
between the 4- and 5-dimensional fields is the same as in the ungauged cases.
(Simpler)

A d = 4 model admitting a SO(3) gauging which can be uplifted to d = 5 is the
ST [2, 4] (a consistent truncation of the Heterotic string on T 6)

F(X ) = − 1
3!

dijkX iX jX k

X 0
, (d1αβ) = (ηαβ) = diag(+−−−) , α, β = 2, 3, 4, 5 .
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13 – From d=4 to d=5 N=2 gauged supergravity

(Just the basic facts)

The dimensional reduction of any N = 2, d = 5 ungauged supergravity gives a
N = 2, d = 4 ungauged supergravity of the cubic type.

Only the solutions of cubic models can be uplifted to d = 5.

If one gauges only symmetries common to the d = 4 and d = 5 theories, the relation
between the 4- and 5-dimensional fields is the same as in the ungauged cases.
(Simpler)

A d = 4 model admitting a SO(3) gauging which can be uplifted to d = 5 is the
ST [2, 4] (a consistent truncation of the Heterotic string on T 6)

F(X ) = − 1
3!

dijkX iX jX k

X 0
, (d1αβ) = (ηαβ) = diag(+−−−) , α, β = 2, 3, 4, 5 .

SO(3) acts on α = 3, 4, 5. The d = 5 model admits exactly the same gauging.
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Monopoles, instantons and non-Abelian black holes

Instead of giving the relation between all the fields of both theories we can just give
the relation between the H-variables which are harmonic functions on R3.
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Monopoles, instantons and non-Abelian black holes

Instead of giving the relation between all the fields of both theories we can just give
the relation between the H-variables which are harmonic functions on R3.

An alternative definition of the theory is in terms of the Hesse potential W(I) which
gives the metric function of black-hole solutions:

e−2U = 2

√

(ηαβIαIβ − 2I1I0) (ηαβIαIβ + 2I0I1)− (I0I0 − I1I1 + IαIα)2 .
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Instead of giving the relation between all the fields of both theories we can just give
the relation between the H-variables which are harmonic functions on R3.

An alternative definition of the theory is in terms of the Hesse potential W(I) which
gives the metric function of black-hole solutions:

e−2U = 2

√

(ηαβIαIβ − 2I1I0) (ηαβIαIβ + 2I0I1)− (I0I0 − I1I1 + IαIα)2 .

The metric of static supersymmetric 5-dimensional solutions is of the form

dŝ2 = f2dt2 − f−1hmndx
mdxn ,

where hmndx
mdxn is the HK metric determined by the harmonic function H .
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Instead of giving the relation between all the fields of both theories we can just give
the relation between the H-variables which are harmonic functions on R3.

An alternative definition of the theory is in terms of the Hesse potential W(I) which
gives the metric function of black-hole solutions:

e−2U = 2

√

(ηαβIαIβ − 2I1I0) (ηαβIαIβ + 2I0I1)− (I0I0 − I1I1 + IαIα)2 .

The metric of static supersymmetric 5-dimensional solutions is of the form

dŝ2 = f2dt2 − f−1hmndx
mdxn ,

where hmndx
mdxn is the HK metric determined by the harmonic function H .

The metric and other fields of the 5-dimensional theory are also determined by
several functions harmonic in R3

H ,M ,L0 , Lα , K
0 , Kα .
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Instead of giving the relation between all the fields of both theories we can just give
the relation between the H-variables which are harmonic functions on R3.

An alternative definition of the theory is in terms of the Hesse potential W(I) which
gives the metric function of black-hole solutions:

e−2U = 2

√

(ηαβIαIβ − 2I1I0) (ηαβIαIβ + 2I0I1)− (I0I0 − I1I1 + IαIα)2 .

The metric of static supersymmetric 5-dimensional solutions is of the form

dŝ2 = f2dt2 − f−1hmndx
mdxn ,

where hmndx
mdxn is the HK metric determined by the harmonic function H .

The metric and other fields of the 5-dimensional theory are also determined by
several functions harmonic in R3

H ,M ,L0 , Lα , K
0 , Kα .

In particular

f−1 =
1

H

[

1
4

(

6L0H + ηαβK
αKβ

) (

9H2ηαβLαLβ + 6HK0LαK
α + (K0)2ηαβK

αKβ
)]1/3

.
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Monopoles, instantons and non-Abelian black holes

The relation between the 4- and 5-dimensional harmonic functions is

H = −2I0 , M = −I0 , Lα = − 2
3Iα , L0 = − 2

3I1 , K0 = −2I1 , Kα = −2Iα ,
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The relation between the 4- and 5-dimensional harmonic functions is

H = −2I0 , M = −I0 , Lα = − 2
3Iα , L0 = − 2

3I1 , K0 = −2I1 , Kα = −2Iα ,

Thus, in order to use Kronheimer’s inverse mechanism to produce black holes we
need 4-dimensional solutions with I0 = − 1

2r and Iα = −
√
2δαiΦ

i for the Higgs field
of the “coloured monopole”. Adding U(1) fields to have a regular horizon

I0 = − 1

2r
, I1 = A1+

q1/
√
2

r
, I2 = A2+

q2/
√
2

r
, Iα = −

√
2

gr(1 + λ2r)
δαm

ym

r
.
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The relation between the 4- and 5-dimensional harmonic functions is

H = −2I0 , M = −I0 , Lα = − 2
3Iα , L0 = − 2

3I1 , K0 = −2I1 , Kα = −2Iα ,

Thus, in order to use Kronheimer’s inverse mechanism to produce black holes we
need 4-dimensional solutions with I0 = − 1

2r and Iα = −
√
2δαiΦ

i for the Higgs field
of the “coloured monopole”. Adding U(1) fields to have a regular horizon

I0 = − 1

2r
, I1 = A1+

q1/
√
2

r
, I2 = A2+

q2/
√
2

r
, Iα = −

√
2

gr(1 + λ2r)
δαm

ym

r
.

The integration constants can be adjusted to have a regular BH as in the CP
3

model, but regular in 4d means in there singular in 5d and, therefore, it is
convenient to choose them only after uplifting. Remember we must change the radial
coordinate r = ρ2/4!!
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The relation between the 4- and 5-dimensional harmonic functions is

H = −2I0 , M = −I0 , Lα = − 2
3Iα , L0 = − 2

3I1 , K0 = −2I1 , Kα = −2Iα ,

Thus, in order to use Kronheimer’s inverse mechanism to produce black holes we
need 4-dimensional solutions with I0 = − 1

2r and Iα = −
√
2δαiΦ

i for the Higgs field
of the “coloured monopole”. Adding U(1) fields to have a regular horizon

I0 = − 1

2r
, I1 = A1+

q1/
√
2

r
, I2 = A2+

q2/
√
2

r
, Iα = −

√
2

gr(1 + λ2r)
δαm

ym

r
.

The integration constants can be adjusted to have a regular BH as in the CP
3

model, but regular in 4d means in there singular in 5d and, therefore, it is
convenient to choose them only after uplifting. Remember we must change the radial
coordinate r = ρ2/4!!

We have obtained the first non-Abelian,
supersymmetric, statisc and asymptotically
flat black hole in d = 5, which I have the

pleasure to introduce to you −→
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14 – A 5-dimensional non-Abelian black hole

The black hole has only one non-trivial scalar, φ1.
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14 – A 5-dimensional non-Abelian black hole

The black hole has only one non-trivial scalar, φ1.

All the fields are determined by the harmonic functions

I0 =
−2

ρ2
, I1 = −2−4/3(φ1∞)2/3 +

4q1
ρ2

, I2 = −(2φ1∞)−1/3 +
4q2
ρ2

,

(Iα)2 =
32

g2ρ4(1 + λ2ρ2/4)2
.
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14 – A 5-dimensional non-Abelian black hole

The black hole has only one non-trivial scalar, φ1.

All the fields are determined by the harmonic functions

I0 =
−2

ρ2
, I1 = −2−4/3(φ1∞)2/3 +

4q1
ρ2

, I2 = −(2φ1∞)−1/3 +
4q2
ρ2

,

(Iα)2 =
32

g2ρ4(1 + λ2ρ2/4)2
.

The metric of the solution is

dŝ2 = f2dt2 − f−1
(

dρ2 + ρ2dΩ2
(3)

)

, f = −
[

2(I2)2
(

2I1 −
(Iα)2

I0

)]−1/3

,

and describes a regular static black hole under the conditions

sign(q1) = −1 , sign(q2) 6= sign(φ1∞) .
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The rest of the non-vanishing physical fields are

φ1 =
−(Iα)2 + 2I0I1

I2I0
,

and the vectors






































Â0 = −4
√
3I0(I2)2
e−4U

dt ,

Â1 = −
√
3

I2
dt ,

Âα = − 2
√
6

g(1 + λ2ρ2/4)
δαiv

i ,

where vi are the SU(2) left-invariant Maurer-Cartan 1-forms.
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The rest of the non-vanishing physical fields are

φ1 =
−(Iα)2 + 2I0I1

I2I0
,

and the vectors






































Â0 = −4
√
3I0(I2)2
e−4U

dt ,

Â1 = −
√
3

I2
dt ,

Âα = − 2
√
6

g(1 + λ2ρ2/4)
δαiv

i ,

where vi are the SU(2) left-invariant Maurer-Cartan 1-forms.

The mass and entropy of the black hole are given by

M = 24/3π

[

1

(φ1∞)2/3
|q1|+ (φ1∞)1/3q2

]

, S = 8π2

[(

−2
1

g2
+ |q1|

)

q22

]1/2

.
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15 – Conclusions
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15 – Conclusions

⋆ We have reviewed the general way of constructing all the timelike
supersymmetric solutions of N = 2, d = 4 Einstein-Yang-Mills SUGRAs finding
an interesting class of non-Abelian solutions that describe in a fully analytic
form:
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15 – Conclusions

⋆ We have reviewed the general way of constructing all the timelike
supersymmetric solutions of N = 2, d = 4 Einstein-Yang-Mills SUGRAs finding
an interesting class of non-Abelian solutions that describe in a fully analytic
form:
➳ Monopoles (’t Hooft-Polyakov’s in SU(2) (also Weinberg’s in SO(5) and

Wilkinson-Bais’ in SU(N) monoples, not reviewed here).
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15 – Conclusions

⋆ We have reviewed the general way of constructing all the timelike
supersymmetric solutions of N = 2, d = 4 Einstein-Yang-Mills SUGRAs finding
an interesting class of non-Abelian solutions that describe in a fully analytic
form:
➳ Monopoles (’t Hooft-Polyakov’s in SU(2) (also Weinberg’s in SO(5) and

Wilkinson-Bais’ in SU(N) monoples, not reviewed here).

➳ Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.
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15 – Conclusions

⋆ We have reviewed the general way of constructing all the timelike
supersymmetric solutions of N = 2, d = 4 Einstein-Yang-Mills SUGRAs finding
an interesting class of non-Abelian solutions that describe in a fully analytic
form:
➳ Monopoles (’t Hooft-Polyakov’s in SU(2) (also Weinberg’s in SO(5) and

Wilkinson-Bais’ in SU(N) monoples, not reviewed here).

➳ Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

➳ Coloured (Bartnik-McKinnon’s-like) black-holes with no charge at infinity but
with a charge that contributes to the entropy (P. Meessen arXiv:0803.0684)
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15 – Conclusions

⋆ We have reviewed the general way of constructing all the timelike
supersymmetric solutions of N = 2, d = 4 Einstein-Yang-Mills SUGRAs finding
an interesting class of non-Abelian solutions that describe in a fully analytic
form:
➳ Monopoles (’t Hooft-Polyakov’s in SU(2) (also Weinberg’s in SO(5) and

Wilkinson-Bais’ in SU(N) monoples, not reviewed here).

➳ Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

➳ Coloured (Bartnik-McKinnon’s-like) black-holes with no charge at infinity but
with a charge that contributes to the entropy (P. Meessen arXiv:0803.0684)

⋆ We have studied the uplifting to black holes of N = 2, d = 5 Einstein-Yang-Mills
SUGRAs. Only the coloured black holes give regular black holes (first in the
literature).
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15 – Conclusions

⋆ We have reviewed the general way of constructing all the timelike
supersymmetric solutions of N = 2, d = 4 Einstein-Yang-Mills SUGRAs finding
an interesting class of non-Abelian solutions that describe in a fully analytic
form:
➳ Monopoles (’t Hooft-Polyakov’s in SU(2) (also Weinberg’s in SO(5) and

Wilkinson-Bais’ in SU(N) monoples, not reviewed here).

➳ Regular extreme black-holes with truly non-Abelian hair (i.e. not just
Abelian embeddings) in which the attractor mechanism works in a
gauge-covariant way.

➳ Coloured (Bartnik-McKinnon’s-like) black-holes with no charge at infinity but
with a charge that contributes to the entropy (P. Meessen arXiv:0803.0684)

⋆ We have studied the uplifting to black holes of N = 2, d = 5 Einstein-Yang-Mills
SUGRAs. Only the coloured black holes give regular black holes (first in the
literature).

⋆ There many new, potentially interesting, black-hole solutions than can be
obtained in this way whose entropies need to be explained. Also string-
and black-ring solutions (work in progress).
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