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Motivation

"The discovery of duality symmetries in string theory has led to
spectacular progress in our understanding of non-perturbative
aspects of the theory. However, we still do not have a deep
understanding of the meaning of these symmetries... ... A clear
appreciation of symmetry principles is a sacred principle of physics.
Given any physical system, we should formulate the theory in a
way that makes all of the symmetries manifest.... ... One would like
to have a formulation of string theory in which all of the duality
symmetries are classically visible. ... There is a classical geometric
system which shares all the U- duality symmetries of M-theory
compactified on rectangular tori... ... The U-duality group of
M-theory on Tk for rectangular compactifications with no C field
vevs is given by the Weyl group W/(Ey). It is mapped to a
subgroup of the global diffeomorphisms of the del Pezzo surfaces
Bg...."

(Igbal, Neitzke and Vafa 2001, arXiv:0111068)
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Motivation

Here we would like to show that the Weyl groups W/(Es) and
W(E7) show up naturally as automorphism groups of finite
geometric structures associated to simple few qubit systems.
Surprisingly, all the groups W/(Ey) mentioned by Igbal et.al. can
be shown to be arising naturally as automorphism groups of finite
geometric structures associated to the four-qubit Pauli group. But
here we merely restrict attention to the k = 6,7 cases that provide
a new way of looking at the well-known structures of D = 4 and
D =5 black hole entropy formulas.
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Mermin Squares

Our starting point is the Kochen Specker theorem stating that in
general it is impossible to ascribe to an individual quantum system
a definite value for each set of observables not all of which
necessarily commute. The point of the KS theorem is to extract
this directly from the formalism of Quantum Theory, rather
than merely appealing to percepts enunciated by the founder
fathers. If such an assignment of values turned out to be possible
in spite of those precepts then for instance the uncertainty
relations could be viewed as manifestations of statistical scatter of
some hidden variables.
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Mermin Squares

10 01 0 —i 1 0
=) =G (o) =64

Notation: A, B, C will be called multiqubit observables, e.g. for
three qubit an example is

A=XYZ XY Z

Suppose we would like to ascribe to A, B, C, ... the values
a,b,c,... to be revealed by measurements. Since any commuting
subset of the full set of observables can be measured
simultaneously, if the values are to agree with the predictions of
QT they must be constrained by the condition that any relation
f(A,B,C,...) =0 holding as an identity in a commuting subset
must also hold for their values f(a, b, c,...). (Implicitly it is
assumed that e.g. the value " 3" is independent of the context in
which A is measured.)
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A Mermin square
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The Doily
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The Doily with the Mermin square inside
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The full set of Mermin squares living in the Doily
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Finite generalized quadrangles GQ(s, t)

A finite generalized quadrangle of order (s, t), is an incidence
structure S = (P, B,I), where P and B are disjoint (non-empty)
sets of objects, called respectively points and lines, and where | is a
symmetric point-line incidence relation satisfying the following
axioms:
@ each point is incident with 1+ ¢ lines (t > 1) and two distinct
points are incident with at most one line

It readily follows that |P| = (s + 1)(st 4+ 1) and

|B| = (t+ 1)(st + 1).

In what follows, we shall be uniquely concerned with generalized
quadrangles having lines of size three, GQ(2,t). From a theorem
of Feit and Higman it follows that we have the unique possibilities
t=1,2,4.
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Finite generalized quadrangles GQ(s, t)

A finite generalized quadrangle of order (s, t), is an incidence
structure S = (P, B,I), where P and B are disjoint (non-empty)
sets of objects, called respectively points and lines, and where | is a
symmetric point-line incidence relation satisfying the following
axioms:
@ each point is incident with 1+ ¢ lines (t > 1) and two distinct
points are incident with at most one line
@ each line is incident with 1 + s points (s > 1) and two distinct
lines are incident with at most one point
© if x is a point and L is a line not incident with x, then there
exists a unique pair (y, M) € P x B for which xIMIyIL
It readily follows that |P| = (s + 1)(st 4+ 1) and
|B| = (t+ 1)(st + 1).
In what follows, we shall be uniquely concerned with generalized
quadrangles having lines of size three, GQ(2,t). From a theorem
of Feit and Higman it follows that we have the unique possibilities
t=1,2,4.
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A Grid, GQ(2,1)
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The Doily, GQ(2,2)
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The Duad construction of GQ(2,4)




Geometric hyperplanes

A geometric hyperplane H of a point-line incidence geometry
(P, L) is a proper subset of P such that each line of ' meets H in

one or all points.
(0 1
=5 o)

Redefine

Then the 9 symmetric real two-qubit " Pauli operators” form
geometric hyperplanes. As another example define for a 4 x 4
matrix the Wootters spin-flip operation as

M=(Y®Y)MT(Y®Y).

Then we can consider from the 15 nontrivial Pauli operators the
Wootters self-dual ones for which M = M. It turns out that we
have again 9 such forming a geometric hyperplane.
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The real Pauli group

The n-qubit real Pauli group is the subgroup of GL(2",R)
consisting of n-fold tensor products of the matrices
+/,£X,+£Y,+£Z. The central quotient of the Pauli group can be
given the structure of a symplectic vectors space (V,, (-,-)) of
dimension 2n as follows.

Let us consider the correspondence

I+ (00), X~ (01), Y (11), Z— (10).

For example, XZ is taken to the 4-component vector

(0110) eV, = 224.

For two vectors (p, q) € V,, x V,, with components (a1b; ... anbn)
and (c1d; . .. cpdy) we define

(p,q) = ardi + bicy + - - - + and, + bycy (1)

It can be shown (p, g) = 0 when the corresponding real Pauli
operators commute and (p, g) = 1 when they anticommute.
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The automorphism group of the doily GQ(2,2)

Label the 15 points of the doily with the 15 "duads”
{12},{13},...{56} i.e. 1 <i < j <6. Then the lines are the
triples like ({12}, {34},{56}) From this duad constriction it is
clear that the automorphism group of GQ(2,2) is the symmetric
group Sg.

Let us denote by Sp(2n,Z,) the symplectic group for n-qubits as
the group of 2n x 2n matrices with entries taken from Z, that
leave invariant the symplectic form of (Vj, (-, -))

Sp(2n,Z,) ={T € M(2n,Z2)|(Tx, Ty) = (x,y)}

Then we have

Aut(GQ(Q, 2)) = 56 >~ Sp(4,Z2)
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The automorphism group of GQ(2,4)

Let us define on V,, a quadratic form @ : V,, — Z as follows
Qo(p) =aibi + -+ anbn,  pEVn  p<>(arbi...anbn)

Then Qp(p) = 0(1) for the Pauli operator corresponding to p being
symmetric (antisymmetric). Actually one can define a whole set of
quadratic forms compatible to our symplectic form as follows

Qp(x) = Qo(x) +{p,x),  px€Vq

One has two classes of quadratic forms: ones with Qo(p) =0, and
ones with Qp(p) = 1. For these correspond two classes of
subgroups of Sp(2n,Z;). They are called O+(2n,Zj3), hence for
instance

0-(2n,25) = {T € Sp(2n, Z2)| Qu(Tx) = Qp(x).  Qulp) = 1}
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The Symplectic Polar Space G,

The incidence structure G, of the real n-qubit Pauli group is
(P, L,e) where P =V, — {0} and

L={{x,y,x+y}x,y € P,x#y,(x,y) =0}

Points of this incidence geometry are pairs of real Pauli
operators differing in sign, with the identity operator and its
negative removed. On every line there are three points that are
represented by pairwise commuting operators any two of which has
the third as its product up to sign.

Obviously we have

Aut(Gn) = Sp(2n,7Z3)

Note that Go = GQ(2,2), having 15 points and 15 lines.
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The group E; and three-qubits

The next item in the line is G3 an incidence geometry which has 63
points and 315 lines. Here we meet a surprise

Aut(g3) = 5p(6,22) = W(E7)/Zz

In order to understand this notice that the number of generators of
E7 is 133 = 7 + 63 + 63 hence we expect that there should exist a
natural bijection between the pairs of roots and the pairs of Pauli
operators differing in sign. It can be proved that it is indeed the
case hence the points of G3 can be mapped bijectively to the pairs
of roots of E7. In this picture the Weyl reflections defined by a
root o are mapped onto the so called symplectic transvections
T, defined by an element p € V3

TP(X) =x+ <X7p>p

Péter Lévay Black Hole Entropy and Finite Geometry.



The split Cayley (Gy(2)) hexagon of order two




GQ(2,4) as a geometric hyperplane of G3

Let us choose /1Y <+ (000011) € V3 — {0} and consider the set of
points
Hp = {x € V3 —{0}|Qp(x) = 0}

Then it can be shown that H, is a geometric hyperplane of G3
having 27 points. In fact we have

Hp ~ GQ(2,4)

In the language of pairs of Pauli operators the above constraint
yields 12 antisyimmetric operators anticommuting with /Y and 15
symmetric ones commuting with //Y. The lebelling of GQ(2,4)
obtained in this way can be seen on the next slide.
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The labeling of GQ(2,4) with three qubit Pauli operators




The hyperplane of the Hexagon with 27 points

Xzy
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Aut(GQ(2,4)) = O_(6,Z2) >~ W(E6)

The action of W(Eg) of order 51840 on GQ(2,4) is given as follows
0_(6,7Z) = (c,d|c® = d° = (cd®)® = [c,d?]? = [c,d%cd®] = 1).
For the action of ¢

IXl < XZI, ZYX < YIX, 1ZI < XXI

ZYZ < YIZ,  ZI & YYI,  ZYY © YIY,

the remaining 15 operators are left invariant. For the action of d
we get

IXI'— YXZ — YZX — YIX = XYZ = IYZ = YXX — ZZ] — YXY —

IZl = ZYY — Xl = YZY — XYX = XYY = YIY = YIZ = IYY —
IYX = ZXI — ZYZ — ZYX = YYI] — YZZ — ZI — XZ] — XXI —
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The Mermin square again
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Determinant encodes the structure of Mermin

If we change XX — —XX and ZZ — —ZZ we have three negative
signs for the rows and three positive ones for the column. This
configuration is captured by the structure of the determinant of a
3 X 3 matrix

a c e
M=|f B a| e MB3R)
b d ~
M = —aXIX-BZRZ+7Y QY +al@X+bZXI+

+ ZRIX+dXRI+elRZ+IXRZ

| = —Tr(M?3) = DetM

1
24
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Determinant encodes the structure of Mermin

Clearly for M € M(3,R) / is an invariant under the action of the
group generated by

M — S MS] M- MT, S1,S € SL(3,R)

For M € M(3,Z) one can consider a special discrete subgroup of
SL(3,7Z) x SL(3,Z) which is generated by the 4 generators of

S3 x S3 (two copies of the symmetric group), taken together with
an involution exchanging the two factors. This object is the wreath
product of S3!Z,. Now

Aut(GQ(2, 1)) = S5317>

Notice that the connection between DetM and Tr(M?3) makes it
possible to define a representation of S31Z; on the 9 Pauli
operators. The 9 integers times these operators can be regarded as
noncommutative coordinates for GQ(2,1).
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Black Hole Entropy in D =4 and D =5

The Bekenstein-Hawking entropy formula

— k= _ oo
> 412" b c3

for Reissner-Nordstrom type solutions arising from M-theory/String
theory compactifications are described by cubic (D = 5) and
quartic (D = 4) invariants as

S=nm “3’, 5:71'\/‘/4‘.

Here
485 = Tr(QZQZ0Q2)

1, _
- Z(HZZ)2 + 4(PfZ + Pf2).

Zag = —(x"+iy) )T ag, Zag=—Zga, AB,I,J=1,...8.

641, = Tr(ZZ)?
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These entropy formulas containing 27 (D = 5) and 56 (D = 4)
charges characterizing the black hole, are invariant under Egg)(Z)
(D =5) and E7(7)(Z) (D = 4) respectively.
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Cubic Jordan algebras and entropy formulas in D =5

The charge configurations describing electric black holes and
magnetic black strings of the N =2, D =5 (N =8, D = 5) magic
supergravities are described by cubic Jordan algebras over a
division algebra A (or its split cousin Ay).

@ Q@
AQ)=1Q" ¢ Q° g eR, Q€A
Q° Q° g3

The black hole entropy is given by the cubic invariant
B(Q) = q10293 — (1 RQ°Q° + @2 QQ°+ g3Q" Q") +2Re(Q" Q° Q°)
as

s = /[B(Q).
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U-duality groups

The groups preserving I3 are the ones SL(3,R), SL(3,C), SU*(6)
and Eﬁ(—26)'
For the split octonions we have

QQ = (Q0)2+( Q1)+ (Q2)%4+(Q3)>—(Qa)>—(Qs5)*—(Q6)*— (@),

and the group preserving /3 is Egg).

The groups Eg(_26) and Ege) are the symmetry groups of the
corresponding classical supergravities. In the quantum theory the
black hole/string charges become integer-valued and the relevant
3 x 3 matrices are defined over the integral octonions and integral
split octonions, respectively. Hence, the U-duality groups are in
this case broken to Eg(_26)(Z) and Eg(6)(Z) accordingly.
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Summary of patterns

Generalized quadrangles
QO GQ(2,1) (grid) 9 points and 6 lines.

Jordan algebras (Charge configurations)
@ J;5(C) Number of real numbers: 3+3-2=09.

Cubic invariants (Black Hole entropy)
@ /3(C) Number of terms: 6. (Determinant)
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Summary of patterns

Generalized quadrangles
QO GQ(2,1) (grid) 9 points and 6 lines.
@ GQ(2,2) (doily) 15 points and 15 lines.

Jordan algebras (Charge configurations)
@ J;5(C) Number of real numbers: 3+3-2=09.
@ J3(H) Number of real numbers: 3+ 3 -4 = 15.

Cubic invariants (Black Hole entropy)

@ /3(C) Number of terms: 6. (Determinant)
@ (H) Number of terms: 15. (Pfaffian)
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Summary of patterns

Generalized quadrangles
QO GQ(2,1) (grid) 9 points and 6 lines.
@ GQ(2,2) (doily) 15 points and 15 lines.
© GQ(2,4) 27 points and 45 lines.
Jordan algebras (Charge configurations)
© J3(C) Number of real numbers: 3+3-2=09.
@ J3(H) Number of real numbers: 3+ 3 -4 = 15.
@ J(0) Number of real numbers: 3+ 3-8 = 27.
Cubic invariants (Black Hole entropy)
@ /3(C) Number of terms: 6. (Determinant)
@ /3(H) Number of terms: 15. (Pfaffian)
@ (0) Number of terms: 45.

Péter Lévay Black Hole Entropy and Finite Geometry.



A Grid, GQ(2,1)
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The Doily, GQ(2,2)
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The labeling of GQ(2,4) with three qubit Pauli operators




The cubic invariant and the duad construction

E6(6) D SL(2) X 5L(6)

under which
27 — (2,6') @ (1,15).

This decomposition is displaying nicely its connection with the
duad construction of GQ(2,4). Under this decomposition /3 factors

as
s = Pf(A) + u' Av,

where u and v are two six-component vectors and for the 6 x 6
antisymmetric matrix A we have

1 ..
Pf(A) = ﬁe,jk/mnA”Ak'Am”.
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The cubic invariant and qutrits

We also have the decomposition
Es6) O SL(3,R)a x SL(3,R)g x SL(3,R)c
under which
27 - (3,3,1)®(1,3,3)®(3,1,3).

The above-given decomposition is related to the " bipartite
entanglement of three-qutrits” interpretation of the 27 of E¢(C).
In this case we have

I3 = Deta + Detb + Detc — Tr(abc),

where a, b, ¢ are 3 x 3 matrices transforming accordingly.
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Truncations

@ Truncations to 36 possible doilies (" quaternionic magic” with
15 charges).

Perp-sets are obtained by selecting an arbitrary point and
considering all the points collinear with it. A decomposition which
corresponds to perp-sets is of the form

E6(6) > 50(5,5) X 50(1, 1)

under which
27 — 167 ©10_, d 14.

This is the usual decomposition of the U-duality group into T
duality and S duality.
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Truncations

@ Truncations to 36 possible doilies (" quaternionic magic” with
15 charges).

@ Truncations to 120 possible grids (" complex magic” with 9
charges).

Perp-sets are obtained by selecting an arbitrary point and
considering all the points collinear with it. A decomposition which
corresponds to perp-sets is of the form

E6(6) > 50(5,5) X 50(1, 1)

under which
27 — 167 ©10_, d 14.

This is the usual decomposition of the U-duality group into T
duality and S duality.
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Truncations

@ Truncations to 36 possible doilies (" quaternionic magic” with
15 charges).

@ Truncations to 120 possible grids (" complex magic” with 9
charges).

© Truncations to 27 possible perp sets (with 11 charges).

Perp-sets are obtained by selecting an arbitrary point and
considering all the points collinear with it. A decomposition which
corresponds to perp-sets is of the form

E6(6) > 50(5,5) X 50(1, 1)

under which
27 — 167 ©10_,  14.

This is the usual decomposition of the U-duality group into T
duality and S duality.
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A D = 4 interpretation

Note that the decomposition

Ez(7) O Ee(6) X SO(1,1) (2)
under which

56 - 1902702701 (3)
describes the relation between the D = 4 and D =5 duality

groups.
Notice that Wootters self-duality in the N = 8 language means
that

(Q2)=0, Z=Q2Q"7 Q=YYY.
The usual choice for N = 8 supergravity is Q2 = /IY =T; . With
this choice one can prove that

. 1 . .
QOZ=8+iA= EXJkrljk +i(yo;iT1j — »1,T}), (4)

(summation for j, k =2,3,...,7).
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Connecting different forms of the cubic invariant.

Hence, with the notation
ik — _j+1k+1 _ _ .
AR = T ; Uj = Yoj+1, Vi = Y1j+1, Jyk=1,2,...,6,

we get

Iy = %Tr(QZQZQZ) = Pf(A) +u Av.
Notice that the operators
M, Ty, Ty j,k=23...7
give rise to our noncommutative labelling, where
{M1,T2,T3,Ta,Ts5,T6,T7} = {IIY,ZYX,YIX,YZZ,XYX,IYZ, YXZ}.

Hence the connection between the D =4 and D =5 is related to
a one between the structures of GQ(2,4) and one of the geometric
hyperplanes of the hexagon.
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Embedding the STU model

The most general class of black holes in N/ =8
supergravity/M-theory is defined by 56 charges and the entropy
formula is given by the square root of the quartic
Cartan-Cremmer-Julia E7(7) invariant

5 = T/ ‘J4‘
1
Jy = —Tr(xy)? + 7 (Trxy)? — 4 (Pfx + Pfy)
The Cremmer-Julia form of this invariant is given in terms of the

8 x 8 complex central charge matrix Z

1, _
—ﬂﬁZZV+MHZ+HZ)

1
Zpg = ———=(x" + iyy) (T
AB 4\@( yi) (M) A

Jy = Tr(Z2Z)?
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Embedding the STU model

Let us chose

X Ly = —4r — iy, X +iysg = Y1 + i (5)
X fiyas = o tiks, x>+ iysy = 4+ iths
Then
Jy = —D(v)) (6)
annonica/ = diag{zh 71, Z3, 24} K e,
2 jg(—w7 by o+ s+ (o + P + s + ¥3))
- jg(—w7 —apy + 12— + i(—tbo — 6 + 5 — ¥3)

These results show that we should be able to obtain the three-qubit
interpretation of the STU model as a consistent truncation of a
larger entangled system living within N' =8, d = 4 SUGRA.
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A multiqubit representation of the 56 of E;

A multiqubit description is possible if the complexification of E7(7)
i.e. E7(C) contains the product of some number of copies of the
SLOCC subgroup SL(2,C). We indeed have

56 — (2,2,1,2,1,1,1)+(1,2,2,1,2,1,1) +(1,1,2,2,1,2,1)
+ (1,1,1,2,2,1,2) +(2,1,1,1,2,2,1)
+ (1,2,1,1,1,2,2) +(2,1,2,1,1,1,2)

~
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The Fano plane and its Dual

Figure: {1,2,3,4,5,6,7} <+ {A,B,C,D,E,F,G}
{17 2, 3747 57 677} H {a’ b, C7 d7 e7 f’ g}

H = Vasp ® Vece ® Vepr @ Vpec ® Vera ® Vece @ Vieac
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The Cartan-Fano dictionary of Borsten et.al.
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Connecting the seven STU sectors

There is an automorphism « of order seven which is transforming
cyclically the amplitudes a, b, ... g of the relevant three qubit
states into each other. « is transforming cyclically the points
1,2,...7 of the dual Fano plane. One can find an 8 x 8 orthogonal
matrix representation D(«) acting on the central charge as

Z + D(a)ZDT(a). It can be expressed in terms of the two-qubit
“controlled not” (CNOT) operators

D(ar) = (C12Co1)(Cr2Ca1) Go3(C12Ga)

This representation for the automorphism of order seven can be
generalized to the full automorphism group of the Fano plane.

5L(3,Z2) C W(E7) C E7(Z)

SL(3,Z3) can also be represented on the 28 charges regarded as
composites of electric and magnetic ones with their incidence
geometry corresponding to the Coxeter graph living inside G3.
W(E7) is a subgroup of the U-duality group E7(Z) implementing

electric-magnetic duality.
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A subgeometry of the Hexagon. The Coxeter graph
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The split Cayley hexagon of order two




Structure of E; and the Hamming code

Consider the matrix of the three-qubit discrete Fourier
transformation the tensor product of three Hadamard gates where

= h( )

Delete the first column of H® H ® H and replace the —1s with Os
in the remaining 8 x 7 matrix.

1111111 0 000O0OO0OTO
0101010 1 010101
1 001100 0110011
0 01 1001 1100110
1110000 0001111
0100101 1 011010
1 000011 0111100
001 0110 1 1 01001
Codeword: (0,1,0,1,0,1,0), check digits (011), message digits

(0010).
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The tripartite entanglement of seven qubits and Hamming

Use the first of the two matrices of as the incidence matrix of yet
another copy of the Fano plane

rlc AB CDEFG

a 0101010 ZBDF
b1 0 0 1 1 0 0 ADE
c 00 1 10 0 1 ZCDG
d 1 1 1 00 0 0] |98
e 01 00 1 0 1 efBEG
f 10 0 0 0 1 1 AFG
g 00 1 0 1 1 0 ECEF

(Hoo1, Ho1os - - -, H111) < (VBoF, VaDE, - - - » VCEF)

Reverting to reverse binary labelling
H = Vasc ® Vape ® Varc © Vepr © Veec © Vepe © Vcer
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Hamming labelling of Fano plane

Figure: The Hamming labelling convention for the points and lines of
the Fano plane.
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The e; algebra and Hamming

We clearly have Wygo = s/(2)®7 as a subalgebra of dimension
7 x 3 =21. These 21 generators are acting on H via the well
known action of the SLOCC subgroup. The remaining 112
generators? How do they act on H? Let us now consider the
second matrix of codewords (containing four 1s).

W = Vperc © Vecre © Vecpe ® Vacec © Vacor © Vaser © Vaepe

Notice that since the complements of the quadrangles of the Fano
plane are lines that can be associated to seven three-qubit states
one can label each of these 16 dimensional spaces as

Woo1, Wo1o, - - - Wh11.

[Tacee, Teerrer) = ®(ACEG, BC'FG')eccreer Taser

ez=W,[ ), W = Wooo & W
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Black Hole Entropy and Error Correcting Codes?

One can see that the generators of e; can be written as
combinations of tripartite entanglement transformations. Some of
them are of SLOCC form and the others are establishing
correlations between the different tripartite states . One can also
show that the representation theoretic details are entirely encoded
in the (7,3,1) and (7, 4,2) designs corresponding to the two
matrices of codewords which are related to lines and quadrangles
of the Fano plane. The Hamming code in turn is clearly related to
the Hadamard matrix which is the discrete Fourier transform on
three-qubits. Such Hadamard transformations and elementary
observations based on bit and phase flip errors acting on
three-qubits also play a role in obtaining a nice characterization of
BPS and non-BPS solutions of the STU truncation. This gives a
hint that black hole solutions of more general type might be
understood in a framework related to error correcting codes. What
is the connection between these observations and the recent
flurry of activity on ER = EPR?!
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The Dual Fano Plane taking care of truncations

eB EG

gCEF dABC Ceng

Figure:  The dual Fano plane. To its points now we attached three qubit
states with the representative amplitudes indicated. To the lines we
associate the common qubits these tripartite states share.
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The new form of Cartan’s quartic invariant

J4=§(a4 + bt rdt et gt +
2[2b? + B2+ PP+ dPe? + ef2 + g2 1 g2 +
32C2 + b2d2+C262+d2f2+e2g2+f2a2+g2b2+
32d2 + b2e2—|—c2f2—|—d2g2+ezaz—|—f2b2—|—g2c2]
+8[aceg + bcfg + abef + defg + acdf + bede + abdg]

A1A; _B3By_CoC3 _DiDs _E1Es GG
bede = 18P 23 A2 BB B b 1 b €D, Gy DAL By G EBIEL Gy

d’b? = Q(d, b), d* = (d,d) = —2D(d)

212 _ _AiAs_B1By_C1Cy_AyAs_D3Dy _E5E.
d°b = " BRI d ) B ¢, dAyBy G DA D3 Es DALDLE,
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Truncations

As an example let us consider the decomposition
56 — (2,12) @ (1,32)
with respect to the maximal subgroup SL(2,C) x SO(12,C).

daBc
bape | € H(2,12) = Vasc®Vape®Varc = Va®(Vec® Vpe® V)
farc

and the (1, 32) part of the ones

aBDF
€BEG
¢cpG
8CEF

€ H(1,32) = VBor © Veec ® Vepe © Vcer.
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Triality in terms of qubits

It is also clear that by writing our representation space as

Vape® Va®(Vec @ VFc) @ Vp @ (Ver® Vee) ® VE® (Vee @ VeF).
one can easily understand the decomposition

(2,12)9(1,32) — (2,2,2,1)%(2,1,1,8,)9(1,2,1,8,)4(1,1, 2, 8)

with respect to the inclusion
SL(2) x SL(2) x SL(2) x SO(8) C SL(2) x SO(12).
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The meaning of the (2,12) truncation in the black hole
context

In this case the corresponding groups are real, hence in the
supergravity approximation we have SL(2,R) x SO(6,6). We have
in this case 2 x 12 charges. In the quantum theory they are
quantized, hence they are integers and the corresponding U-duality
group is SL(2,7Z) x SO(6,6,Z). The corresponding groups are
describing S and T duality transformations in toroidally
compactified string theories in the low energy regime. For the
black hole solutions in the corresponding models one can obtain
entropy formulas that are truncations of J; with the amplitudes
being now integers. Since we have seven lines in the dual Fano
plane such truncations can be obtained in seven different ways.
One can take for e.g. the line dbf in the dual Fano plane. The
relevant truncation of J; interpreted as a measure of pure state
entanglement one can take

Jon2) = 2Ib* + d* + £+ 2(b%d? + d2F2 + b*F2)|
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The meaning of the (2,12) truncation in the black hole
context

One can introduce a "state” describing the (NS-NS) charge
configuration as

) = YA @), A=01, p=12,..12

A
With
dOBC dlBC
pr = wO/L = | bope |, "= 1/}1/1 = | bipe
forc fiFG

J|(2.12) = 4/(pP)(qq) — (pa)?|
as a measure of entanglement this relates to black hole entropy as

™
525 J2,12)

coming from the truncation of the N/ = 8 case with E7(Z)
symmetry to the N = 4 one of SL(2,7Z) x SO(6,6,7Z).
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Weyl groups as a finite subgroups of U-duality groups

The maximal supergravity in D dimensions obtained by
Kaluza-Klein dimensional reduction from 11 dimension has an
En(n)(R) symmetry where n = 11 — D. It is conjectured that the
infinite discrete subgroup E,,)(Z) is an exact symmetry of the
corresponding string theory, known as U-duality group. It is useful
to identify a finite subgroup of the U-duality group that maps the
fundamental quantum states of string theory among themselves.
This group is W(E,) implementing electric magnetic duality.
Motivated by some of the techniques of quantum information
theory here we have obtained explicit realizations of W(Eg) and
W(E7) on finite geometries. Such structures equipped with
noncommutative coordinates (Pauli operators) provide natural
objects on which this physically important subgroup of the
U-duality group is represented. The nice feature of this approach is
that the notion of a duality-group is connected to the notion of the
automorphism group of a (discretized) "space”.
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