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Péter Lévay Hitchin functionals related to measures of entanglement



Plan of the talk

1 Special entangled systems and their measures

2 Hitchin functionals in six and seven dimensions

3 Hitchin functionals and black hole entropy

4 The 4D − 5D lift and the coupled cluster method

5 A new form of the seventh order invariant

6 Perturbing states belonging to the stable orbit

7 Generalized Hitchin functional and entanglement in fermionic
Fock space

8 Conclusions
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The Black Hole-Qubit ”Correspondence” (BHQC)

The main correspondence is between the structure of the
Bekenstein-Hawking entropy formulas in extremal BPS or non BPS
black hole solutions in supergravity and certain multipartite
entanglement measures of composite quantum systems with either
distinguishable or indistinguishable constituents.

As an other aspect of the correspondence it has also been realized
that the classification problem of entanglement types of special
entangled systems and special types of black hole solutions can be
mapped to each other .

Apart from structural correspondences the BHQC also addressed
issues of dynamics. The attractor mechanism as a ”distillation”
procedure. Attractors from vanishing Wootters concurrence.
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Motivation: What is the reason for the BHQC?

1 Similar symmetry structures
On the string theory side there are the U-duality groups
leaving invariant the black hole entropy formulas, on the other
hand on the quantum information theoretic side there are the
groups of admissible transformations used to represent local
manipulations on the entangled subsystems leaving invariant
the corresponding entanglement measures.

2 Stability
For special entangled systems we have dense (stable) orbits
and unique relative invariants under these groups that can be
used to build up action functionals for form theories of gravity.
(Sato,Kimura 1977, Hitchin 2001, Dijkgraaf et.al. 2005.)
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Entanglement from homology and cohomology

Main idea: Wrapped membranes around homology cycles of
extra dimensions should give rise to qubits and other pure states
of simple entangled systems.

”To wrap or not to wrap that is the qubit” (M. J. Duff).

One can make this idea precise by obtaining simple entangled
systems from the cohomology of the extra dimensions. We have
seen that we can construct and use pure entangled states
depending on both the charges and the moduli.

The strange feature of this approach that one can repackage
information on classical geometry of the extra dimensions in the
form of pure multipartite entangled ”quantum states”.
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Measures of entanglement for special entangled systems.

Fermions on an M dimensional single particle Hilbert space
V = CM . The Hilbert space is spanned by the basis(

f †1

)n1
(
f †2

)n2

. . .
(
f †M

)nM
|0〉

For the N particle subspace
∑

j nj = N.
E.g. a three fermion state (N = 3) with six single particle states or
modes (M = 6) is

|P〉 =
∑

1≤i1<i2<i3≤6

Pi1i2i3f
†
i1
f †i2 f
†
i3
|0〉

P =
∑

1≤i1<i2<i3≤6

Pi1i2i3e
i1 ∧ e i2 ∧ e i3 ∈ ∧3V ∗

{e j} basis of V ∗ , {ej} basis of V .
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Measures of entanglement for special entangled systems.

SLOCC transformations

|P〉 7→ (S ⊗ S ⊗ S)|P〉

Pi1i2i3 7→ Pj1j2j3S
j1
i1S

j2
i2S

j3
i3 , S j

i ∈ GL(6,C)

The SLOCC entanglement classes are the orbits under this
action.
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Measures of entanglement for special entangled systems.

Let
(1, 2, 3, 4, 5, 6)↔ (1, 2, 3, 1, 2, 3)

η ≡ P123, ξ ≡ P123

X =

X11 X12 X13

X21 X22 X23

X31 X32 X33

 ≡
P123 P131 P112

P223 P231 P212

P323 P331 P312


Y =

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

 ≡
P123 P131 P112

P223 P231 P212

P323 P331 P312

 .

D(P) = [ηξ − Tr(XY )]2 − 4Tr(X ]Y ]) + 4ηDet(X ) + 4ξDet(Y )

D(P) defines an entanglement measure.

0 ≤ T123 = 4|D(P)|

where T123 ≤ 1 for normalized states.
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Measures of entanglement for special entangled systems.

SLOCC classes over C

P = e1∧e2∧e3 +e1∧e2∧e3 +e2∧e3∧e1 +e3∧e1∧e2, D(P) 6= 0

P = e1∧e2∧e3 +e1∧e2∧e3 +e2∧e3∧e1, D(P) = 0, P̃ 6= 0

P = e1 ∧ (e2 ∧ e3 + e2 ∧ e3), D(P) = 0, P̃ = 0

P = e1 ∧ e2 ∧ e3, D(P) = 0, P̃ = 0.

SLOCC classes over R

%+ = e1∧e2∧e3+e1∧e2∧e3+e2∧e3∧e1+e3∧e1∧e2, D(%+) > 0

%− = e1∧e2∧e3−e1∧e2∧e3−e2∧e3∧e1−e3∧e1∧e2, D(%−) < 0
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Measures of entanglement for special entangled systems

F 1,2,3 ≡ e1,2,3 + e1,2,3, F 1,2,3 ≡ e1,2,3 − e1,2,3

E 1,2,3 ≡ e1,2,3 + ie1,2,3, E 1,2,3 ≡ e1,2,3 − ie1,2,3

%+ =
1

2

(
F 1 ∧ F 2 ∧ F 3 + F 1 ∧ F 2 ∧ F 3

)
, D(%+)

%− =
1

2

(
E 1 ∧ E 2 ∧ E 3 + E 1 ∧ E 2 ∧ E 3

)
, D(%−)

Notice that these are states similar to the GHZ states known for
three-qubits. This is not a coincidence. Ordinary three qubits and
three bosonic qubits can be described in this formalism. The
invariants D(P) and d(P) arising from D(P) are Cayley’s
hyperdeterminant and the discriminant function for cubic curves.
Other special entangled tripartite systems containing bosons and
fermions can also be described by embedding them into three
fermion systems with six modes.
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Stability

A prehomogeneous vector space (PV) is a triple (G ,R,V) where V
is a finite dimensional vector space over C, G is a group and R is a
representation R : G → GL(V ) such that for a generic element
v ∈ V G has an open dense orbit R(G )v in V. An element
v ∈ V is called stable if it lies in such an open orbit of G .

For a PV one should have dimG − dimGv = dimV where Gv is the
stabilizer of a v ∈ V.

Stability means that states in a neighborhood of a particular one
are equivalent with respect to the group G of local manipulations.

Now G = GL(6,C), V = ∧3V ∗, R is just the SLOCC action. One
can show that Gv = SL(3,C)× SL(3,C) for the GHZ class with
D 6= 0.

36− 16 = 20↔ dimG − dimGv = dimV
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Hitchin’s functional

Let us consider the real vector space W = R6 and a three-form
% ∈ ∧3W ∗. Define

(K%)ab =
1

2!3!
εac2c3c4c5c6%bc2c3%c4c5c6

Hitchin’s invariant is

λ(%) =
1

6
TrK 2

% .

Notice that for % ≡ P then

D(%) = λ(%)
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Hitchin’s invariant

Define
I% ≡ K%/

√
|D(%)|

Now one can show that

I 2
% = −id , D(%) < 0

This means that I% defines a % dependent complex structure
on W .
On the other hand define

%̃abc = %dbc(K%)da
then

%̂(%) =
%̃√
|D(%)|

, Freudenthal dual

which satisfies

2sgn(D)
√
|D(%)|ε = % ∧ %̂(%) ε = e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6
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Hitchin’s invariant

If D(%) 6= 0 i.e. it belongs to one of the real stable orbits then

α = %+ %̂(%), β = %− %̂(%), D(%) > 0

Ω = %+ i %̂(%), Ω = %− i %̂(%), D(%) < 0

are belonging to the fully separable entanglement class, hence

% =
1

2
(α + β), D(%) > 0

% =
1

2
(Ω + Ω), D(%) < 0

are of the GHZ forms.

With respect to the complex structure I% the separable state
(complex Slater determinant) Ω is of type (3, 0). This metod of
finding the GHZ form of any stable state works also over C.
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Hitchin’s functional

Now M is a real closed oriented 6-manifold and % is a three-form.

% =
1

3!
%abc(x)dxa ∧ dxb ∧ dxc ∈ ∧3T ∗M

Hitchin’s functional is defined as

VH(%) =

∫
M

√
|D(%)|d6x =

1

2
sgn(D(%))

∫
M
% ∧ %̂(%).

Let D < 0 and [%] ∈ H3(M,R) i.e. % = %0 + dσ and d% = 0 then

δσVH = 0 =⇒ d %̂(%) = 0.

Hence the separable state Ω = %+ i %̂(%) of type (3, 0) is closed
and one can show that the almost complex structure I% is
integrable. Hence a critical point or a classical solution of VH(%)
defines a complex structure on M with a non-vanishing
holomorphic three-form Ω. Calabi-Yau structures are coming
from a functional related to an entanglement measure D.

Péter Lévay Hitchin functionals related to measures of entanglement



Hichin functionals and black hole entropy

Basic idea: The microstates of extremal black holes are coming
from wrapping configurations of branes and strings around
nontrivial homology cycles of extra dimensions. Our manifold M of
extra dimensions is a real 6 dimensional manifold. The duals of the
cycles on M give rise to cohomology classes of forms. These are
the objects interpreted as entangled states.

γ ∈ H3(M,Z)

Γ ∈ H3(M,Z)

We make the identification

[Γ] ≡ % ∈ H3(M,R)
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Hichin functionals and black hole entropy

A

B

AA′
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Complex structure and Kähler structure deformations
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Hichin functionals and black hole entropy

Define a partition function (Dijkgraaf et. al. 2005) as

ZH(γ) =

∫
[%]=Γ

eVH(%)D%

Using the method of steepest descent it is easy to demonstrate that

SBH = πVH(%crit), [%] = Γ.

This establishes a link between the value of the extremized action
VH(%) based on an entanglement measure D(%) and the
semiclassical (Bekenstein-Hawking) black hole entropy.
However one can even be more ambitious and conjecture
that this is the correct formula accounting for also the
quantum corrections. If this is true then we would be able to use
the BHQC in a more general context.
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Example:T 6

Real coordinates ui , v i , i = 1, 2, 3.

α0 = du1 ∧ du2 ∧ du3, αij =
1

2
εii ′j ′du

i ′ ∧ duj
′ ∧ dv j

β0 = −dv1 ∧ dv2 ∧ dv3, βij =
1

2
εji ′j ′du

i ∧ dv i
′ ∧ dv j

′

as
Γ = p0α0 + P ijαij − Qijβ

ij − q0β
0

The real three-form % belonging to the class with D(%) < 0

% =
∑

1≤a<b<c≤6

%abc f
a ∧ f b ∧ f c

where

(f 1, f 2, f 3, f 4, f 5, f 6) ≡ (du1, du2, du3, dv1, dv2, dv3)
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Example: T 6

Γ = [%]

p0 = %123,

P11 P12 P13

P21 P22 P23

P31 P32 P33

 =

%231 %232 %233

%311 %312 %313

%121 %122 %123



q0 = %123,

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 =

%123 %131 %112

%223 %231 %212

%323 %331 %312



Now a critical point of VH(%) gives rise to a fully separable state of
the form Ω = %+ i %̂(%) where %̂ is the Freudenthal dual of %
expressed in terms of the charges.
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Example: T 6

p̂0 =
p̃0

√
−D

, P̂ =
P̃√
−D

q̂0 =
q̃0

√
−D

, Q̂ =
Q̃√
−D

p̃0 = −2N(P)− p0(p0q0 − (P,Q)),

P̃ = 2(p0Q] − Q × P])− (p0q0 − (P,Q))P

q̃0 = 2N(Q) + q0(p0q0 − (P,Q))

Q̃ = −2(q0P] − P × Q]) + (p0q0 − (P,Q))Q.

(A,B) = Tr(AB), N(A) = Det(A)

A× B = (A + B)] − A] − B]

D = [p0q0 − (P,Q)]2 − 4(P],Q]) + 4p0N(Q) + 4q0N(P)
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Example: T 6

Now this particular Ω arising from the critical point of VH(%) can
be expanded as

Ω = CΩ0 = C
(
α0 + τ jkαjk + τ ]jkβ

kj − (Detτ)β0
)

One can then introduce complex coordinates

z i = ui + τ ijv j

such that the separable form is manifest

Ω = CΩ0 = Cdz1 ∧ dz2 ∧ dz3 = %+ i %̂(%)

Here for the expansion coefficients τ ij fixing the complex structure
of T 6 we chose the convention

τ ij = x ij − iy ij , y ij > 0
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Example: T 6

The complex structure obtained from the extremization of
Hitchin’s functional is

τ =
P + i P̂

p0 + i p̂0

Finally

τ =
1

2

[
−(2PQ + [p0q0 − (P,Q)]) + i

√
−D
]

(P] − p0Q)−1.

Using this we obtain the final result

SBH = πVH(%crit) = π
√
−D

This result shows that the semiclassical black hole entropy is given
by the entanglement measure D for the three-fermion state.
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Example: T 6

It is instructive to express [%] = Γ in the form

Γ =
1

2
(CΩ0 + CΩ0)

Let us introduce the Hermitian inner product for three-forms as

〈ϕ|ψ〉 =

∫
T 6

ϕ ∧ ∗ψ

One can then regard H3(T 6,C) equipped with 〈·|·〉 as a 20
dimensional Hilbert space. One can then see that

|Γ〉 = (−D)1/4
(
e iα|123〉 − e−iα|123〉

)
, tanα =

p0

p̂0
.

Notice that this ”state” is of the GHZ-like form.
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Hitchin related to a measure of entanglement

Note that though in the example we used T 6, the relation

SBH = πVH(%crit), [%] = Γ.

holds for a general CY giving rise to an entanglement based
reinterpretation of SBH even for this general case.

Moreover, in the T 6 case it can be shown that the quantity

KK † − 2|D|

evaluated in the Hodge diagonal basis can be regarded as a
generalization of the Wootters concurrence showing up in a
fermionic generalization of the monogamy inequality (G. Sárosi
and P.L. 2014). For the T 6 example one can show that this
quantity vanishes iff the BPS attractor equations hold. Can we
make sense of this quantity also in the general CY case?

Péter Lévay Hitchin functionals related to measures of entanglement



Three fermions with seven modes

Let V = C7 and

P =
1

3!
PI1I2I3e

I1 ∧ e I2 ∧ e I3 ∈ ∧3V ∗

Now I , J,A,B,C = 1, . . . 7 and i , j , a, b, c = 1, . . . 6. The SLOCC
group is GL(V ) = GL(7,C) with the usual diagonal action.
We define

(MA)BC =
1

12
εABI1I2I3I4I5PCI1I2PI3I4I5

NAB =
1

24
εI1I2I3I4I5i6I7PAI1I2PBI3I4PI5I6I7

LAB ≡ (MA)CD(MB)DC .

They are covariants with transformation properties

(MA)BC 7→ (Detg ′)gA
Dg

B
Eg
′
C
F

(MD)EF

NAB 7→ (Detg ′)g ′A
C
g ′B

D
NCD

LAB 7→ (Detg ′)2gA
Cg

B
DL

CD
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Invariants

It is worth relating the seven mode case to the six mode one via a
35 = 20 + 15 split.

P = P + ω ∧ e7

ω =
1

2
ωije

i ∧ e j .

We form the following relative invariant

J (P) =
1

24327
LABNAB

with transformation property

J (P) 7→ (Detg ′)3J (P).

The invariant is very complicated, but if we employ the constraint

ω ∧ P = 0

then we get

J (P) =
1

4
Pf(ω)D(P)
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One might think that a new relative invariant is Det(N) or a
Det(L). However,

Det(N) = −6 · (9Pf(ω)D(P))3

Note that when V = R7 the quantity

BIJ = −1

6
NIJ .

is used in string theory. Then we have the nice formula

DetB = (J (P))3

Note that originally it was Engel who showed in 1900 that the
polynomial J exists and it must be related to a symmetric bilinear
form (BIJ) in this way.
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SLOCC classification

This classification problem has been solved by Reichel in 1907.
However, his classification was not complete. The number of
nontrivial classes is nine and not seven as claimed by him. It was
Schouten in 1931 who used much simpler methods to obtain a full
classification. In this scheme one of the SLOCC classes plays a
similar role than the famous GHZ class in the six mode case.
Denote by eA the basis vectors of the seven dimensional vector
space V ∗ and by ea the basis vectors of its six dimensional
subspace. Define

E 1,2,3 = e1,2,3 + ie4,5,6, E 1,2,3 = e1,2,3 − ie4,5,6, E 7 = ie7

Then we take GHZ -like state of the six mode case

E 123 + E 123 = 2(e123 − e156 + e246 − e345)

and we add to this the one: (E 11 + E 22 + E 33) ∧ E 7.
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The GHZ-like state for seven modes

In this way we obtain the state P0 of the form

P0 = e123 − e156 + e246 − e345 + e147 + e257 + e367

e6 e1 e5

e3

e4

e2

e7

Figure: The oriented Fano plane. The points of the plane correspond to
the basis vectors of the seven dimensional single particle space. The lines
of the plane represent three fermion basis vectors with the arrows
indicating the order of single particle states in them to get a plus sign.
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The SLOCC classes and their relation to the Fano plane

Type Kanonical form

NULL 0
SEP e367

BISEP e367 + e257

W e246 − e345 − e156

GHZ e123 − e156 + e246 − e345

SYMPL/NULL e147 + e257 + e367

SYMPL/SEP e123 + e147 + e257 + e367

SYMPL/BISEP e123 − e156 + e246 − e345 + e147

SYMPL/W e123 − e156 + e246 − e345 + e147 + e257

SYMPL/GHZ e123 − e156 + e246 − e345 + e147 + e257 + e367

Table: SLOCC classes for three fermions with seven modes
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Metrics with G2 holonomy

Now the three-form P belonging to the stable (dense) SLOCC orbit
playing the role of an associative 3-form of a G2 holonomy metric.
The entanglement measure J (P) gives rise to a Hitchin functional
defined for a real seven-manifold. The rank of the basic covariant
BIJ is characterizing the entanglement classes. Interestingly this
quantity is defining a metric tensor on the seven manifold.

gAB = Det(B)−1/9BAB

This gives rise to an interesting link between the structure of gAB
and patterns of entanglement.
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Rank of the metric as related to patterns of entanglement

Name Type Rank NIJ(P) J (P)

I NULL 0 0
II SEP 0 0
III BISEP 0 0
IV W 0 0
V GHZ 0 0
VI SYMPL/NULL 1 0
VII SYMPL/SEP 1 0
VIII SYMPL/BISEP 2 0
IX SYMPL/W 4 0
X SYMPL/GHZ 7 6= 0

Table: Entanglement classes of three fermions with seven single particle
states.
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An example

A. Brandhuber, J. Gomis, S. S. Gubser, S. Gukov, Nucl.Phys.
B611 (2001) 179-204

P =
9

16
r3
0 εabc (σa ∧ σb ∧ σc − Σa ∧ Σb ∧ Σc)

+ d

[
r

18
(r2 − 27

4
r2
0 )(σ1 ∧ Σ1 + σ2 ∧ Σ2) +

r0
3

(r2 − 81

8
)σ3 ∧ Σ3

]

Pr∗ =
54

16
r3
0 (E1 − E1) ∧ (E2 − E2) ∧ (E3 − E3)

+ A(r)dr ∧ (σ1 ∧ Σ1 + σ2 ∧ Σ2) + B(r)dr ∧ σ3 ∧ Σ3

r∗ ≡ 9

2
r0, E123 ≡ σ1 ∧ Σ2 ∧ Σ3.

At r = r∗ P belongs to the degenerate class ”SYMPL/SEP”.
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An example

Note that in this example the metric defines a circle bundle over a
six dimensional manifold. At r →∞ the circle reaches a finite size
r0 and in the interior when r → 9r0/2 the circle shrinks to zero.
This metric describes the M-theory lift of a wrapped D6 brane. (In
the type IIA picture r0 determines the string coupling constant.)

It can be shown at infinity this metric is

R+ × S1 × S2 × S3

On the other hand at the interior the geometry is

R4 × S3

This change of geometry is indicated by the change of
entanglement type for the corresponding three forms as changing
r ∈ R+.
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The 4D − 5D lift and the coupled cluster method

Let us split the six single particle states to ones that are occupied
and not occupied.

i , j , k = 1, 2, 3, a, b, c = 1, 2, 3.

Define
|ψ0〉 ≡ p̂1p̂2p̂3|0〉

Now the Coupled Cluster (CC) and full CI expansions are
respectively

|ψ〉 = eT̂1+T̂2+T̂3 |ψ0〉
and

|ψ〉 = (1̂ + Ĉ1 + Ĉ2 + Ĉ3)|ψ0〉.
Here

T̂1 = Ta
i p̂an̂i , T̂2 =

1

4
Tab

ij p̂an̂i p̂
bn̂j T̂3 = T123

123p̂1n̂1p̂
2n̂2p̂

3n̂3

and similar expressions for Ĉ1,2,3. Notice that we have two
1 + 9 + 9 + 1 splits of the 20 amplitudes.
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The 4D − 5D lift and the coupled cluster method

Hence we have

(α,A,B, β)↔ (1̂, Ĉ2, Ĉ1, Ĉ3) (η,X ,Y , ξ)↔ (1̂, T̂2, T̂1, T̂3)

α = 1, Aa
i =

1

4
εabcεijkCbc

jk , B i
a = Ca

i , β = C123
123

η = 1, X a
i =

1

4
εabcεijkTbc

jk , Y i
a = Ta

i , ξ = T123
123

1 = ψ123, Ca
i =

1

2
εijkψjka, Cab

ij = εijkψabk , C123
123 = ψ123

We obtain the following dictionary between the CC and CI pictures

α = η = 1, B = Y , A = Y ]+X , β = DetY+(X ,Y )+ξ

where
(X ,Y ) ≡ Tr(XY ), XX ] = (DetX )I
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The 4D − 5D lift and the coupled cluster method

The inverse relations are

η = α = 1, Y = B, X = A− B], ξ = β + 2DetB − (A,B)

Now

D(ψ) = 4[κ2− (A],B]) +αDetA+βDetB], 2κ = αβ− (A,B).

This expression displays the parameters (α,A,B, β) i.e. the ones of
the full CI expansion of |ψ〉. Its new expression in terms of the CC
expansion parameters (η,Y ,X , ξ) is

D(ψ) = ξ2 + 4DetX

which is much simpler and not featuring the matrix Y at all! The

reason for this is the fact that eT̂1 ∈ SL(6,C) is a SLOCC
transformation...
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The 4D − 5D lift and the coupled cluster method

There is a simple correspondence between between the entropy of
4D BPS black holes in type IIA compactified on a Calabi-Yau M
and 5D BPS black holes in M-theory on M × TNα. Using this
correspondence the electric black hole Qe charge and spin Jβ or
the magnetic black string charge Qm and spin Jα maybe identified
with the dyonic charges of the 4D black hole.
See D. Gaiotto, A. Strominger and X. Yin, JHEP 02 (2006) 024,
L. Borsten, D. Dahanayake and M. J. Duff and W. Rubens, Phys.
Rev. Phys.Rev.D80 (2009) 026003.

S4 =
1

α
S5(bs) =

1

β
S5(bh)

Now we see that

2Jα=1 = ξ = β − (A,B) + 2DetB, Qm = −X

We see that J and Qm are related to coefficients of cluster
operators of entanglement, namely triples T̂3 and doubles T̂2.
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A new form of the seventh order invariant, for N = 7

We split the modes to ones that are occupied labelled by
i , j , k = 1, 2, 3 and the ones that are not occupied by
a, b, c = 1, 2, 3, 4. Now the CC and CI expansions will be just the
same form with the exception of T̂3 having the new form

T̂3 =
1

3!
Tabc

123p̂an̂1p̂
bn̂2p̂

c n̂3

We write

|Ψ〉 = |ψ〉+ |ω〉, |ω〉 =
1

2
ωµν p̂

µν4|0〉

ω ≡
(

E D
−DT F

)
Hence in the CI and CC pictures we group the 35 amplitudes to
three 3× 3 matrices, and two 3× 3 antisymmetric ones so in the
CI picture we will have five matrices A,B,D,E ,F , and two scalars
α and β. Similarly in the CC picture the five matrices will be
denoted as X ,Y ,Z ,U,V , and scalars are η and ξ.
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A new form of the seventh order invariant, for N = 7

We relate the CI and CC amplitudes

(α,A,B, β,D,E ,F )↔ (η,X ,Y , ξ,Z ,U,V )

α = η = 1, β = ξ+Tr(XY )+DetY , B = Y , A = X+Y ]

D = Z+VY , E = V , F = U+(ZTY−Y TZ )+[(X+Y ])v ]

Here

v i =
1

2
εijkVjk , Vij ≡ [v ]ij = εijkv

k

We expect that the invariant J (Ψ) in the CC picture is only
featuring the quantities (η = 1, ξ,X ,Z ,U). Indeed a calculations
shows that

J (Ψ) = −Det(G )− 1

4ξ
Det(UX +ξZT ), G ≡ 1

2
(ZX +XTZT )

When G = ZX and U = 0 we have

J (Ψ) = −DetZ (ξ2 + 4DetX )/4 =
1

4
Pf(ω)D(ψ)
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Perturbing states belonging to the stable orbit

First we would like to perturb |Ψ−〉 defined as

|Ψ−〉 = (p̂123 − p̂123 − p̂231 − p̂312 + p̂114 + p̂224 + p̂334)|0〉.
having only contributions from doubles

(α,A,B, β,D,E ,F ) = (η,X ,Y , ξ,Z ,V ,U) = (1,−I , 0, 0, I , 0, 0).

by adding to it terms also containing contribution from triples.

|Φ−〉 = |Ψ−〉+|χ〉, |χ〉 =
(
ξp̂123 + u1p̂234 + u2p̂314 + u3p̂124

)
|0〉.

We obtain

J (Φ−) = 1− 1

4

(
ξ2 + (u1)2 + (u2)2 + (u3)2

)
.

Hence we remain in the dense orbit unless the condition

ξ2 + (u1)2 + (u2)2 + (u3)2 = ε2, ε = 2

holds. The condition needed for leaving the dense SLOCC orbit is
the one of the perturbing parameters coming from triples defining
a deformed conifold with the deformation parameter ε = 2.
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Perturbing the real classes

For real parameters (ξ, ua) ∈ R4 if the 4 parameters corresponding
to the cluster operators describing triples are belonging to a three
dimensional sphere of radius 2 then the entanglement type is
changed as X 7→ IX . Indeed

BIJ(Φ−) =

 I −1
2 (ξI + U) −1

2u
−1

2 (ξI − U) I 0
−1

2u
T 0 1

 .

We can diagonalize B

Bdiag = STBS , S =
1√
2ε

 εI εI 0

ξI − U U − ξI
√

2u

uT −uT −
√

2ξ

 ∈ SO(7,R)

Bdiag =

(1− 1
2ε
)
I 0 0

0
(
1 + 1

2ε
)
I 0

0 0 1


hence the rank is changed as 7 7→ 4.
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Perturbing the real classes

As an other example let us consider the state

|Φ+〉 = |Ψ+〉+ |χ〉

|Ψ+〉 = (p̂123 + p̂123 + p̂231 + p̂312 + p̂114 + p̂224 + p̂334)|0〉.
This state is labelled by the set of parameters

(α,A,B, β,D,E ,F ) = (η,X ,Y , ξ,Z ,V ,U) = (1, I , 0, ξ, I , 0,U),

Now

J (Φ+) = −
(

1 +
1

4
ε2

)
However, for complex parameters if the constraint ε2 = −4 is
satisfied then the rank of B is again changing from seven to four.
If we change the sign of the X parameters of the doubles then the
perturbation due to triples cannot induce a transition to a different
SLOCC class. Hence in this special case the entanglement encoded
into the parameters of the doubles is protected from the
perturbating effect of the triples.
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Perturbing the real classes

Note that the class of |Ψ−〉 is just the one giving rise to the usual
constructions of noncompact manifolds of G2 holonomy. The
possibility of changing its entanglement type under perturbation is
reminiscent of the change of structure for asymptotically conical
manifolds. Such manifolds X are foliated by principal orbits of the
form G/K over the positive real line R+. As we move along R+

the size and shape of G/K is changing in such a way that at some
value of t0 ∈ R+ it collapses into a degenerate orbit

B = G/H, K ⊂ H ⊂ G

The result is a noncompact space with a topologically nontrivial
cycle B a bolt. The normal space of B inside X is itself a cone on
H/K . However when H/K is sphere then the space X is smooth.
In our case we have found an S3 whose physical meaning would be
interesting to clarify. Moreover, what are the conditions on the
perturbing parameters such that the G2 structure is preserved?
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Quantum corrections from VH

Can we also recover the quantum corrections that has already been
calculated via topological string techniques? It turned out (Pestun
and Witten) that at the one loop level there is a discrepancy
between the result based on Hitchin’s functional and the result of
topological string theory. In order to resolve this discrepancy
Pestun and Witten suggested to use a partition function based on
the generalized Hitchin functional instead. Hitchin’s functional is
connected to Calabi-Yau structures on the other hand the
generalized Hitchin functional is connected to generalized
Calabi-Yau structure. For the resolution they have chosen
manifolds with b1(M) = 0 where the critical points and classical
values of both functionals coincide, however the quantum
fluctuating degrees of the two functionals are different. The upshot
of these consideration was that after a convenient interpretation it
turns out that the conjecture of Dijkgraaf et.al. remains true even
at the one loop level. What is the entanglement interpretation
of the generalized Hitchin functional?
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The fermionic Fock space

Let V be the N-dimensional complex vector space corresponding
to the space of single particle states or modes. Take the 2N

dimensional space

∧•V ∗ = C⊕ V ∗ ⊕ ∧2V ∗ ⊕ · · · ⊕ ∧NV ∗. (1)

as it is well-known there is a Fock space description of this space
and to an element ϕ ∈ ∧•V ∗ one can associate a Fock space
element |ϕ〉 of the form

|ϕ〉 = (ϕ(0) + ϕ
(1)
a f̂ †a +

1

2
ϕ

(2)
ab f̂

†a f̂ †a . . . )|0〉 ∈ F

On this space the group Sin(2N,C) acts and has two invariant
subspaces of positive and negative chirality

F = F+ ⊕F−. (2)
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Generalized SLOCC transzformations

Note that G = Spin(2N,C) is also describing particle creation and
annihilation. It is easy to see that if the underlying V vector space
is also equipped with a Hermitian scalar product, then
G -transformations which are also respecting this extra structure
are the Bogoliubov transformations well-known to physicists.
Moreover, G also contains the SLOCC group GL(N,C) describing
transformations with fixed fermion number as a subgroup. Hence it
is natural to consider G as a group of generalized SLOCC
transformations.

Finding the orbits under the group GL(1,C)× G is known in the
mathematics literature as the problem of classification of spinors.
Since these orbits are just our entanglement classes, then we can
simply use the se well-known results. However the classification
problem is a hard one and very little is known for N > 7. The
classification up to N = 6 is a result due to Igusa 1970. The
N = 7 case was tackled by Popov.
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Separable states as pure spinors

Let {ei} and {e i}, be the basis vectors of V and V ∗. Let us define
the 2N dimensional vector space

V = V ⊕ V ∗, x = v + α = v iei + αje
j ∈ V

Let us also define the (·, ·) : V × V → C symmetric bilinear form as

(x , y) = (v + α,w + β) ≡ αiwi + βivi

A subspace of V is called totally isotropic if for ∀u, v ∈ V we
have (u, v) = 0. Note that due to the structure of the bilinear
form the maximal dimension of such subspaces is N. In the Fock
space description we can associate to x an operator
x̂ = αi f̂i + vi f̂

†i Then a spinor is pure if its

Eϕ ≡ {x ∈ V| x̂ |ϕ〉 = 0}

annihilator subspace is maximally totally isotropic.
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Pure spinors. Example.

Let us consider the subspace : span{e1, . . . ek , ek+1, . . . , eN}. This
space is clearly a maximally totally isotropic one. The
corresponding operators

{f̂ †1, . . . , f̂ †k , f̂k+1, . . . , f̂N}

annihilate the state

|ϕ〉 = f̂ †1f̂ †2 · · · f̂ †k |0〉

Hence |ϕ〉 is a pure spinor. Since it is of the form of a single
Slater determinant this state is separable. Hence it is natural to
regard pure spinors as representatives of separable states under the
generalized SLOCC group GL(1,C)× Spin(2N,C). Note, however
that apart from this example of fixed fermion number there are
other states to be regarded as separable in this generalized sense.
These are superpositions of Slater determinants with different
numbers of fermions.
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Fermionic systems with six modes

Let us define: p̂a ≡ f̂ †a, n̂a ≡ f̂a, where

{p̂a, n̂b} = δab, {p̂a, p̂b} = {n̂a, n̂b} = 0

|ϕ〉 = (η+
1

2!
yabp̂

ap̂b+
1

2!4!
xabεabijkl p̂

i p̂j p̂k p̂l+ξp̂1p̂2p̂2p̂3p̂4p̂5p̂6)|0〉

The group of generalized SLOCC transformations is

GL(1,C)× Spin(12,C). An element Ĝ = e Ŝ ∈ Spin(12,C) is
generated by

Ŝ = −B̂ − β̂ + Â− 1

2
(TrA)1̂

where

Â = Ai
j p̂

j n̂i , B̂ =
1

2
Bij p̂

i p̂j , β̂ =
1

2
= βij n̂i n̂j
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The relative invariant for the even chirality case

J4(ϕ) = (ηξ − (x , y))2 + 4ηPf(x) + 4ξPf(y)− 4Tr(x̃ ỹ)

where

Pf(x) =
1

3!23
εabcdef x

abxcdxef

(x , y) = −1

2
Tr(xy)

x̃ab =
1

8
εabijklx

ijxkl

It can be shown that this invariant is just the one which
underlies the construction of the Generalized Hitchin
Functional.
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Generalized SLOCC classes for the even chirality case

Type J4(ϕ) Kϕϕ Kϕ ϕ

I. 6= 0 6= 0 6= 0 1 + e1234 + e3456 + e1256

II. 0 6= 0 6= 0 1 + e1234 + e3456

III. 0 0 6= 0 1 + e1234

IV. 0 0 0 1
V. 0 0 0 0

Table: Canonical forms, invariants and covariants in six dimension.

Notice that the structure of these classes is qualitatively the same
as the one for three-qubits, and three-fermions with six modes.
The IV.th class is the separable one, with the vaccum states as a
pure spinor.
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The odd chirality case

Using the theory of spinors there is a general technique for
constructing invariants. One can use this to give the Generalized
Hitchin Invariant a new look.

|ψ〉 = (uap̂
a +

1

3!
Pabc p̂ap̂bp̂c +

1

5!
vaεabcdef p̂

bp̂c p̂d p̂e p̂f )|0〉

Indeed one can calculate a quartic relative invariant under
generalized SLOCC

I4(ψ) = (vaua)2 − 1

3
ua ∗ PaijPbijvb +D(P)

where

∗Pabc =
1

3!
εabcijkPijk

which is featuring Hitchin’s Invariant D.
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Hitchin functionals and Freudenthal systems

J Inv(M) dimM Hitchin functional

H3(R) Sp(6,C) 14 Constrained Hitchin
H3(C) SL(6,C) 20 Hitchin
H3(H) Spin(12,C) 32 Generalized Hitchin
H3(O) E7(C) 56 Generalized Exceptional

Table: Freudenthal triple systems (M(J)) over cubic Jordan algebras (J),
their automorphism groups (InvM(J)) and the corresponding Hitchin
functional.
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Speculations on the physical basis of the BHQC

According to the OSV conjecture ZBH = |ZTOP |2.
Now it is conjectured that ZGH = ZBH .
Since ZGH is based on entanglement measures we can generalize
the BHQC substantially.
In the BHQC the entangled states are associated to cohomology
classes like H3(M,R). These are just classical phase spaces.
Moreover they parametrize locally the moduli space M of M which
is a complex space. Embedding to H3(M,C) gives rise to a Hilbert
space with the complex polarization coming from the Hodge star.
From OSV we know that geometric quantization on H3(M,R)
yields another wave function which is just the partition function for
topological strings.
How to connect these wave functions? This could be the clue for a
physical basis of the BHQC.
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Summary of patterns of Entanglement

1 n-qubits

C2 ⊗ · · · ⊗ C2, GL(2,C)× · · · × GL(2,C)

2 n-fermions with 2n modes

∧nC2n, GL(2n,C)

3 Even or odd number of fermions with 2n modes

∧•evenC2n, ∧•oddC2n, C× × Spin(4n,C)
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Conclusions

1 The invariants underlying the Hitchin functionals are
entanglement measures for special entangled systems.

2 The nondegenerate class of stable orbits corresponds to the
class of genuine entangled (GHZ-like) states.

3 Untill now entanglement measures were directly related to the
Bekenstein-Hawking entropy formulas. Here we have shown
that it is more natural to connect them to action functionals.

4 From such functionals one can recover the usual
correspondence with the Bekenstein-Hawking entropy merely
at the semiclassical level.

5 Via the OSV conjecture this interpretation also hints that one
can use the BHQC beyond the semiclassical level.

6 Using the coupled cluster description of entanglement we
obtained a new formula for the invariant underlying the G2

Hitchin functional.
7 We initiated studying perturbation theory of AC G2 structures

in this formalism.
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class of genuine entangled (GHZ-like) states.

3 Untill now entanglement measures were directly related to the
Bekenstein-Hawking entropy formulas. Here we have shown
that it is more natural to connect them to action functionals.

4 From such functionals one can recover the usual
correspondence with the Bekenstein-Hawking entropy merely
at the semiclassical level.

5 Via the OSV conjecture this interpretation also hints that one
can use the BHQC beyond the semiclassical level.

6 Using the coupled cluster description of entanglement we
obtained a new formula for the invariant underlying the G2

Hitchin functional.
7 We initiated studying perturbation theory of AC G2 structures
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