Black Hole Scattering, Isomonodromy and Hidden Symmetries

Fábio Novaes and Bruno Cunha

International Institute of Physics Federal University of Rio Grande do Norte

June 17, 2015

Fábio Novaes (IIP-UFRN)

Theoretical Frontiers in BH and Cosmology

"The main of life is composed ... of meteorous pleasures which dance before us and are dissipated" - Samuel Johnson

Main Message of My Work

Scattering amplitudes of conformal fields in Kerr-NUT-(A)dS black holes can be calculated using monodromy data of wave solutions and these monodromies can be generally obtained by Painlevé asymptotics and isomonodromic flows.

Main Message of My Work

Scattering amplitudes of conformal fields in Kerr-NUT-(A)dS black holes can be calculated using monodromy data of wave solutions and these monodromies can be generally obtained by Painlevé asymptotics and isomonodromic flows.

Main Message of My Work

Scattering amplitudes of conformal fields in Kerr-NUT-(A)dS black holes can be calculated using monodromy data of wave solutions and these monodromies can be generally obtained by Painlevé asymptotics and isomonodromic flows.

What is the importance of all that?

Importance of Black Hole Scattering Theory

- Astrophysical phenomena: detection of gravitational waves
- Stability criteria of gravitational solutions
- AdS/CFT applications: quark-gluon plasma and condensed matter systems
- Quantum description of black holes

Matter Accretion Disk around a Black Hole

International Institute of Physics

Detection of Gravitational Waves

- Hulse Taylor Binary Pulsar
- BICEP-2 and Inflation: tensor-to-scalar ratio
- aLIGO, aVIRGO: ground-based interferometers (4 km L-shaped arms. High-frequencies)
- eLISA: coalescing binary black holes and EMRIs. $(10^6 \text{ km arms}, \text{ free-falling test masses}.$ $10^4 - 10^7 M_{\odot}).$
- Pulsar Time Arrays: $10^9~M_{\odot}$

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique
- 2 Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS
- Scattering Amplitudes from Monodromy
 - Monodromy Group of Heun Equation
 - Isomonodromic Flows and Painlevé VI
 - Kerr/CFT and Monodromies

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique
- 2 Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS
- 3 Scattering Amplitudes from Monodromy
 - Monodromy Group of Heun Equation
 - Isomonodromic Flows and Painlevé VI
 - Kerr/CFT and Monodromies

Linear Perturbation of Gravitational Systems

• Gravity (M,g) + Matter field Φ

$$S = \frac{1}{16\pi G} \int_M d^D x \sqrt{-g} \ (R - 2\Lambda) + \int_M d^D x \sqrt{-g} \ \mathcal{L}_m(\Phi, \nabla \Phi)$$

• Linear perturbation of equations of motion

$$g_{ab} = g_{ab}^{BG} + h_{ab}, \quad \Phi = \Phi^{BG} + \phi$$

Scalar Field Perturbation

- Scalar and gravitational perturbations decouple
- Non-minimally coupled massless scalar field $\phi(x)$

$$(\nabla^2 + \xi R)\phi(x) = 0, \quad \nabla^2 \phi \equiv \frac{1}{\sqrt{-g}}\partial_a(\sqrt{-g}g^{ab}\partial_b\phi)$$

• Separable solutions: $\phi(t,r,\theta,\varphi)=e^{-i\omega t}e^{im\varphi}S_{\omega\ell m}(\theta)\phi_{\omega\ell m}(r)$

• Radial and Angular equations

$$\partial_r (P_r(r)\partial_r \phi_{\omega\ell m}) - Q_r(r)\phi_{\omega\ell m} = 0$$
$$\partial_\theta (P_\theta(\theta)\partial_\theta S_{\omega\ell m}) - Q_\theta(\theta)S_{\omega\ell m} = 0$$

• Angular eigenvalues from angular equation

Fábio Novaes (IIP-UFRN)

Scalar Scattering by Black Holes

• One-dimensional Schrödinger scattering

$$\frac{d^2\phi_\omega}{dr^{*2}} + (\omega^2 - V(r))\phi_\omega = 0$$

• Typical Schwarzschild potentials

Ingoing and Outgoing Boundary Conditions

• Classical scattering (IN mode)

$$\begin{split} \phi^{IN}_{\omega} \sim e^{-i\omega r^*} - \mathcal{R} e^{i\omega r^*}, & r^* \to +\infty, \\ \phi^{IN}_{\omega} \sim \mathcal{T} e^{-i\omega r^*}, & r^* \to -\infty, \end{split}$$

• Semiclassical scattering (OUT or UP mode)

Radiation Flux and Greybody Factor

• Radiation Flux (Wronskian)

$$J := \frac{1}{2i} \left(\phi_{-\omega} \frac{d\phi_{\omega}}{dr^*} - \phi_{\omega} \frac{d\phi_{-\omega}}{dr^*} \right)$$

• Flux Conservation and Greybody factor

$$\mathcal{R}\tilde{\mathcal{R}} + \mathcal{T}\tilde{\mathcal{T}} = 1, \quad \gamma_{\ell}(\omega) = \frac{J_{hor}}{J_{in}} = \mathcal{T}(\omega)\tilde{\mathcal{T}}(\omega)$$

• Relation between basis

$$\begin{pmatrix} \phi^{UP}_{\omega} \\ \phi^{UP}_{-\omega} \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathcal{T}} & \frac{\mathcal{R}}{\mathcal{T}} \\ \frac{\tilde{\mathcal{R}}}{\tilde{\mathcal{T}}} & \frac{1}{\tilde{\mathcal{T}}} \end{pmatrix} \begin{pmatrix} \phi^{IN}_{\omega} \\ \phi^{IN}_{-\omega} \end{pmatrix},$$

Scattering for real frequencies

• For real frequency ω , flux conservation implies that

$$|\mathcal{R}|^2 + |\mathcal{T}|^2 = 1$$

and the greybody factor

$$\gamma_{\ell}(\omega) = |\mathcal{T}(\omega)|^2$$

• Mean number of emitted particles:

$$\langle n(\omega) \rangle = \frac{\gamma_{\ell}(\omega)}{e^{\omega/T_H} - 1}$$

Fábio Novaes (IIP-UFRN)

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique
- 2 Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS
- 3 Scattering Amplitudes from Monodromy
 - Monodromy Group of Heun Equation
 - Isomonodromic Flows and Painlevé VI
 - Kerr/CFT and Monodromies

Complex ODEs and Monodromy

• Self-adjoint radial equation

$$\partial_z (U(z)\partial_z \phi(z)) - V(z)\phi(z) = 0, \quad z \in \mathbb{CP}^1$$

- Regular singular points $\{z_i\}$, i = 1, ..., n.
- Ingoing and Outgoing solutions

$$\phi_i^{\pm}(z) = (z - z_i)^{\pm \theta_i/2} (1 + \mathcal{O}(z - z_i))$$

• Singular points = Branch points \Rightarrow Monodromy

$$\phi_i^{\pm}(ze^{2\pi i}) = e^{\pm i\pi\theta_i}\phi_i^{\pm}(z)$$

Monodromies and Gauge Connection

• Gauge connection formulation

$$(\partial_z - A(z))\Phi(z) = 0 ,$$

$$A(z) = \begin{pmatrix} 0 & U^{-1} \\ V & 0 \end{pmatrix} \quad , \quad \Phi(z) = \begin{pmatrix} \phi_1 & \phi_2 \\ U \partial_z \phi_1 & U \partial_z \phi_2 \end{pmatrix}$$

• Monodromy matrix

$$\Phi_{\gamma}(z) = \mathcal{P} \exp\left(\oint_{\gamma} A\right) \Phi(z) =: \Phi(z)M_{\gamma}$$

Monodromies and Frobenius solutions

- Loop around only one pole $z=z_i \ \ \Rightarrow \ \ \Phi_{\gamma_i}=\Phi M_i$
- Loop enclosing all poles gives monodromy identity

$$M_1 M_2 \dots M_n = \mathbb{1}$$

• General Frobenius solution

$$\Phi(z) = \Phi_i(z) g_i$$

= $\left(\Phi_0^i + \mathcal{O}(z - z_i)\right) \begin{pmatrix} (z - z_i)^{\theta_i/2} & 0\\ 0 & (z - z_i)^{-\theta_i/2} \end{pmatrix} g_i$

Monodromy matrix in arbitrary basis

$$M_i = g_i^{-1} \left(\begin{array}{cc} e^{i\pi\theta_i} & 0\\ 0 & e^{-i\pi\theta_i} \end{array} \right) g_i$$

Scattering Amplitudes and Connection Matrix

• Change of basis matrix = Connection matrix

$$\mathcal{M}_{ij} = \Phi_i^{-1} \Phi_j = g_i g_j^{-1}$$

$$\mathcal{M}_{ij} = \begin{pmatrix} \frac{1}{\mathcal{T}} & \frac{\mathcal{R}^*}{\mathcal{T}^*} \\ \frac{\mathcal{R}}{\mathcal{T}} & \frac{1}{\mathcal{T}^*} \end{pmatrix} , \qquad |\mathcal{R}|^2 + |\mathcal{T}|^2 = 1$$

• Kerr scattering = 2 regular and 1 irregular singular point = 3-point monodromy group [Castro et al 13']

Transmission between Two Regular Singular Points

• For higher-point monodromy groups (Cunha and Novaes arXiv:1404.5188)

Let $g_i \in SL(2, \mathbb{C})$. If we define

$$m_{ij} = \operatorname{Tr} M_i M_j = 2 \cos \pi \sigma_{ij}$$

then

$$|\mathcal{T}|^2 = \left| \frac{\sin \pi \theta_i \sin \pi \theta_j}{\sin \frac{\pi}{2} (\sigma_{ij} + \theta_i - \theta_j) \sin \frac{\pi}{2} (\sigma_{ij} - \theta_i + \theta_j)} \right|$$

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique

Scattering on Kerr-NUT-(A)dS Black Holes
 Kerr-NUT-(A)dS spacetime

Scattering on Kerr-dS

3 Scattering Amplitudes from Monodromy

- Monodromy Group of Heun Equation
- Isomonodromic Flows and Painlevé VI
- Kerr/CFT and Monodromies

Killing-Yano Tensors and Separability

- Most general spacetime with separable equations?
- D = 2n + ε Kerr-NUT-(A)dS spacetime (ε = ±1)
 (Frolov and Kubzniak 07')
- Closed Conformal Killing-Yano tensor $h_{ab} \Rightarrow$

(n-1) Killing Tensors + $(n+\epsilon)$ Killing vectors + 1 metric

- $= 2n + \epsilon$ conserved quantities
- Separability of Klein-Gordon, Dirac and Gravitational equations (Frolov; Oota and Yasui)

D = 4 Kerr-NUT-(A)dS Black Hole

$$\begin{split} ds^2 &= -\frac{Q(r)}{r^2 + p^2} (dt + p^2 d\phi)^2 + \frac{P(p)}{r^2 + p^2} (dt - r^2 d\phi)^2 \\ &+ \frac{r^2 + p^2}{Q(r)} dr^2 + \frac{r^2 + p^2}{P(p)} dp^2 \end{split}$$

$$P(p) = -\frac{\Lambda}{3}p^4 - \epsilon p^2 + 2np + k$$
$$Q(r) = -\frac{\Lambda}{3}r^4 + \epsilon r^2 - 2Mr + k$$

Separation of Variables in KG equation

- Separation of variables: $\phi(t,r,\varphi,\theta)=e^{-i\omega t}e^{im\varphi}R(r)S(\theta)$
- Radial and angular equations

$$\partial_p (P(p)\partial_p S(p)) + \left(-4\Lambda\xi p^2 - \frac{(\Psi_0 p^2 - \Psi_1)^2}{P(p)}\right)S(p) = -C_\ell S$$

$$\partial_r (Q(r)\partial_r R(r)) + \left(-4\Lambda\xi r^2 + \frac{(\Psi_0 r^2 + \Psi_1)^2}{Q(r)}\right)R(r) = C_\ell R$$

• Each equation has 5 regular singular points

Kerr-NUT-(A)dS Radial Equation

Radial equation

$$\partial_r(Q(r)\partial_r R(r)) + \left(-4\Lambda\xi r^2 + \frac{(\Psi_0 r^2 + \Psi_1)^2}{Q(r)}\right)R(r) = C_\ell R$$

• Frobenius coefficients

$$\rho_i^{\pm} = \pm i \left(\frac{\Psi_0 r_i^2 + \Psi_1}{Q'(r_i)} \right), \quad i = 1, ..., 4$$
$$\rho_{\infty}^{\pm} = \frac{3}{2} \pm \frac{1}{2} \sqrt{9 - 48\xi}$$

• $\theta_{\infty} = \sqrt{9 - 48\xi}$ is an integer when $\xi = 0, \frac{5}{48}, \frac{1}{6}, \frac{3}{16}$

Removable Singularity for Conformally Coupled Case

- For $\xi = \frac{1}{6}$, $r = \infty$ is a removable singularity
- Homographic transformation:

$$z = \frac{r - r_1}{r - r_4} \frac{r_2 - r_4}{r_2 - r_1}, \quad (r_1, r_2, r_3, r_4, \infty) \ \mapsto \ (0, 1, t_0, \infty, z_\infty)$$

• Homotopic transformation:

$$R(z) = z^{-\theta_0/2} (z-1)^{-\theta_1/2} (z-t_0)^{-\theta_t/2} (z-z_\infty) y(z)$$

Heun Equation for Conformally Coupled Case

• Heun equation (4 regular singular points)

$$y'' + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_{t_0}}{z-t_0}\right)y' + \left(\frac{1+\theta_\infty}{z(z-1)} - \frac{t_0(t_0-1)K_0}{z(z-1)(z-t_0)}\right)y = 0$$

Frobenius coefficients

$$\theta_k = 2i\left(\frac{\Psi_0 r_k^2 + \Psi_1}{Q'(r_k)}\right), \quad k = 0, 1, t_0, \infty$$

Contents

- Scattering Amplitudes
- Monodromy Technique
- Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS
- 3 Scattering Amplitudes from Monodromy
 - Monodromy Group of Heun Equation
 - Isomonodromic Flows and Painlevé VI
 - Kerr/CFT and Monodromies

Kerr-dS Black Hole

$$ds^{2} = -\frac{\Delta_{r}(r)}{(r^{2} + p^{2})\chi^{4}} \left(dt - \frac{(a^{2} - p^{2})}{a} d\phi \right)^{2} + \frac{\Delta_{p}(p)}{(r^{2} + p^{2})\chi^{4}} \left(dt - \frac{(r^{2} + a^{2})}{a} d\phi \right)^{2} + \frac{r^{2} + p^{2}}{\Delta_{p}(p)} dp^{2} + \frac{r^{2} + p^{2}}{\Delta_{r}(r)} dr^{2}$$
$$\Delta_{p}(p) = -\frac{1}{L^{2}}p^{4} - (1 - \frac{a^{2}}{L^{2}})p^{2} + a^{2},$$
$$\Delta_{r}(r) = -\frac{1}{L^{2}}r^{4} + (1 - \frac{a^{2}}{L^{2}})r^{2} - 2Mr + a^{2}$$

Kerr-dS Black Hole

- 5 singular points $(r_{--}, r_{-}, r_H, r_C, \infty)$
- $r = \infty$ removable by conformal coupling
- Horizon angular velocity

$$\Omega_{H,C} = \frac{a}{r_{H,C}^2 + a^2}$$

• Horizons temperatures

$$T_H = \frac{|\Delta'_r(r_H)|}{4\pi\chi^2(r_H^2 + a^2)}, \quad T_C = \frac{|\Delta'_r(r_C)|}{4\pi\chi^2(r_C^2 + a^2)}$$

• Regular black hole if $T_H \ge 0$ and a < L

Causal Diagram of Kerr-dS

Scattering on Kerr-dS

(A)dS Spheroidal Harmonics

• Set
$$p = au$$

$$\partial_u (1 - u^2)(1 - \hat{a}^2 u^2) \partial_u S + \left(Au^2 + B - \frac{m^2(1 - \hat{a}^2)^2}{(1 - u^2)(1 - \hat{a}^2 u^2)}\right) S = -C_\ell S$$

where $\hat{a} = a/L$

• Connects to angle from $u=\cos\theta$

Kerr-dS Angular Eigenvalues ($\Lambda > 0$)

$$\hat{a} = 0$$
 (blue), $\hat{a} = 0.02$ (yellow), $\hat{a} = 0.04$ (green)

Kerr-dS Conformally Coupled Radial Equation

$$y'' + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_{t_0}}{z-t_0}\right)y' + \left(\frac{1+\theta_\infty}{z(z-1)} - \frac{t_0(t_0-1)K_0}{z(z-1)(z-t_0)}\right)y = 0,$$

 $\bullet\,$ Frobenius coefficients are purely imaginary for real $\omega\,$

$$\theta_k = \pm \frac{i}{2\pi} \left(\frac{\omega - \Omega_k m}{T_k} \right), \quad k = 0, t_0, 1, \infty$$

Scattering on Kerr-dS

Kerr-dS Greybody Factor

$$\gamma_{\ell}(\omega,m) = \frac{\sinh(\frac{\omega - \Omega_H m}{2T_H})\sinh(\frac{\omega - \Omega_C m}{2T_C})}{\cosh\left(\frac{\omega - \Omega_H m}{2T_H} + \frac{\omega - \Omega_C m}{2T_C}\right) - \cosh(\pi\nu_{HC})}$$

where $\nu_{HC} = i\sigma_{HC}(\omega, \ell, m)$

- ν_{HC} encodes scattering global information
- $\omega = \Omega_H m \Rightarrow$ onset of superradiance

Superradiant Scattering

• Superradiance = wave analog of Penrose process

• In terms of the classical impact parameter $b=\mathcal{L}/\mathcal{E}\sim\ell/\omega$

$$\frac{\omega}{m} = \frac{\omega}{\ell} \frac{\ell}{m} \sim \frac{1}{b} \frac{\mathcal{L}}{\mathcal{L}_z}$$

Fábio Novaes (IIP-UFRN)

Theoretical Frontiers in BH and Cosmology

Properties of Greybody Factor

Scattering regimes

$$\begin{cases} \omega > \Omega_H m \quad \text{or} \quad \Omega_C m > \omega & \text{Normal scattering} \\ \Omega_H m > \omega > \Omega_C m & \text{Superradiant scattering} \end{cases}$$

• Poles of scattering matrix (resonances)

$$\omega = \begin{cases} m\Omega_H - 2\pi i nT_H \\ m\Omega_C + 2\pi i nT_C \end{cases} \quad (n \in \mathbb{Z}^+)$$

• We expect that

 $\gamma_l(\omega) \to 1,$ as $\omega \to \infty$

 $\gamma_l(\omega)
ightarrow 0$ or constant as $\omega
ightarrow 0$

Quasinormal Modes

- Modes purely ingoing at r_H and purely outgoing at r_C
- Possible only for complex ω
- In this case,

$$\mathcal{M}_{CH} = \begin{pmatrix} \frac{1}{\mathcal{T}} & \frac{\mathcal{R}'}{\mathcal{T}'} \\ \frac{\mathcal{R}}{\mathcal{T}} & \frac{1}{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & \frac{1}{\mathcal{T}'} \end{pmatrix}$$

• Poles of transcendental equation

$$\nu_{HC}(\omega,\ell,m) = \frac{\omega - \Omega_H m}{2T_H} + \frac{\omega - \Omega_C m}{2T_C} + 2\pi i n, \qquad n \in \mathbb{Z}$$

Summary of Part 2

- Perturbations for Kerr-NUT-(A)dS are separable into angular and radial part
- Angular eigenvalues obtained numerically
- Conformal coupling removes singularity at $r = \infty$
- Greybody factor accounts for superradiance and quasinormal modes

How to find σ_{HC} ?

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique
- 2 Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS

Scattering Amplitudes from Monodromy
 Monodromy Group of Heun Equation

- Isomonodromic Flows and Painlevé VI
- Kerr/CFT and Monodromies

Four-point Monodromy Group

 $\det M_i = 1, \quad m_i \equiv \operatorname{Tr} M_i = 2\cos\pi\theta_i,$

 $M_{\infty}M_1M_tM_0 = \mathbb{1}$

$SL(2,\mathbb{C})$ Representations of Free Groups

• Free group with n-1 generators

$$G_{n-1} = \langle M_1, M_2, ..., M_{n-1} \rangle$$

- Dimension of moduli space with fixed monodromies m_i is 2(n-3)
- Composite trace coordinates map moduli space

$$m_{12...k} = \operatorname{Tr} M_1 M_2 ... M_k , \quad k < n-1$$

Representation of Heun Monodromy Group

• 3 composite traces

$$m_{ij} = \operatorname{Tr}(M_i M_j) = 2\cos(\pi\sigma_{ij}), \quad i, j = 0, 1, t$$

• Only 2 are independent because of Fricke-Jimbo relation

$$W_4(m_1, m_2, m_3, m_{13}, m_{23}, m_{12}, m_4) \equiv m_{13}m_{23}m_{12} + m_{13}^2 + m_{23}^2 + m_{12}^2 - m_{13}(m_2m_4 + m_1m_3) - m_{23}(m_1m_4 + m_2m_3) - m_{12}(m_3m_4 + m_1m_2) + m_1^2 + m_2^2 + m_3^2 + m_4^2 + m_1m_2m_3m_4 - 4 = 0$$

• Monodromy representations are parametrized by two composite traces $(\sigma_{0t}, \sigma_{1t})$, $(\sigma_{0t}, \sigma_{01})$ or $(\sigma_{1t}, \sigma_{01})$

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique
- 2 Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS

3 Scattering Amplitudes from Monodromy

Monodromy Group of Heun Equation

Isomonodromic Flows and Painlevé VI

• Kerr/CFT and Monodromies

How to obtain the composite monodromies σ_{ij} ?

Miwa, Jimbo and Ueno 1980, Jimbo 1982

Painlevé VI asymptotics depend explicitly on monodromy data of a 4-point Fuchsian system

Garnier System and Apparent Singularity

• Fuchsian System with 4 singular points

$$\partial_z \mathcal{Y}(z) = A(z)\mathcal{Y}(z), \quad A(z) = \sum_{i=1}^3 \frac{A_i}{z - z_i},$$

with
$$\mathcal{Y}(z) = (y_1(z) \ y_2(z))^T$$

• Component y_1 obeys the ODE

$$\partial_z^2 y - (\partial_z \log A_{12} + \operatorname{Tr} A(z))\partial_z y + (\det A(z) - \partial_z A_{11} + A_{11}\partial_z \log A_{12})y = 0$$

Garnier System and Apparent Singularity

• Apparent singularity at $z = \lambda$ if

$$A_{12}(z) = k \frac{z - \lambda}{z(z - 1)(z - t)}, \quad k \in \mathbb{C}$$

• Deformed Heun equation with one apparent singularity

$$\partial_z^2 y + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_t}{z-t} - \frac{1}{z-\lambda}\right) \partial_z y$$
$$+ \left(\frac{\kappa}{z(z-1)} - \frac{t(t-1)K}{z(z-1)(z-t)} + \frac{\lambda(\lambda-1)\mu}{z(z-1)(z-\lambda)}\right) y = 0$$

• $\lambda(t_0) = t_0$ and $\mu_0 = -K_0/ heta_t$ for our Heun

Fábio Novaes (IIP-UFRN)

Garnier Hamiltonian System

• $z = \lambda$ is an apparent singularity if

$$\begin{split} K(\lambda,\mu,t) &= \frac{1}{t(t-1)} [\lambda(\lambda-1)(\lambda-t)\mu^2 - \{\theta_0(\lambda-1)(\lambda-t) \\ &\quad + \theta_1\lambda(\lambda-t) + (\theta_t-1)\lambda(\lambda-1)\}\mu + \kappa(\lambda-t)] \end{split}$$

• Garnier System

$$\frac{d\lambda}{dt} = \frac{\partial K}{\partial \mu}, \quad \frac{d\mu}{dt} = -\frac{\partial K}{\partial \lambda}$$

generates isomonodromic flow $(\lambda(t),\mu(t),K(\lambda,\mu,t))$

• Second-order equation for $\lambda(t) = \text{Painlevé VI}$

Schlesinger System and Painlevé VI

• Schlesinger system

$$\begin{split} \partial_z Y(z,t) &= A(z,t) Y(z,t), \quad A(z,t) = \frac{A_0(t)}{z} + \frac{A_1(t)}{z-1} + \frac{A_t(t)}{z-t}, \\ \partial_t Y(z,t) &= B(z,t) Y(z,t), \quad B(z,t) = -\frac{A_t(t)}{z-t} \end{split}$$

Integrability condition

$$\partial_t A - \partial_z B + [A, B] = 0$$

is equivalent to Schlesinger equations

$$\frac{dA_0}{dt} = \frac{[A_t, A_0]}{t}, \quad \frac{dA_1}{dt} = \frac{[A_t, A_1]}{t-1}, \quad \frac{dA_t}{dt} = \frac{[A_0, A_t]}{t} + \frac{[A_1, A_t]}{t-1}$$

Schlesinger System Asymptotics

• Near t = 0

$$A_0\approx t^\Lambda A_0^0t^{-\Lambda} \ \, \text{and} \ \, A_t\approx t^\Lambda A_t^0t^{-\Lambda}, \ \, \text{where} \ \Lambda=A_0^0+A_t^0$$

• Schlesinger system degenerates into two hypergeometric systems

$$\frac{dY_0}{dz} = \left(\frac{\Lambda}{z} + \frac{A_1^0}{z-1}\right)Y_0, \quad \frac{dY_1}{dz} = \left(\frac{A_0^0}{z} + \frac{A_t^0}{z-1}\right)Y_1$$

Painlevé VI Asymptotics

Using that

$$A_{12}(z) = k \frac{z - \lambda}{z(z - 1)(z - t)}$$

and homographic transformations, we get P_{VI} asymptotics for $0 < \, {\rm Re} \, \sigma_{ij} < 1$

$$\lambda(t) = \begin{cases} a_0 t^{1-\sigma_{0t}} (1+O(t^{\delta})), & |t| < r, \\ 1+a_1 (1-t)^{1-\sigma_{t1}} (1+O((1-t)^{\delta}), & |t-1| < r, \\ a_{\infty} t^{\sigma_{01}} (1+O(t^{-\delta})), & |1/t| < r, \end{cases}$$

where a_i are functions of monodromy data and $r, \delta > 0$.

Numerical Integration of P_{VI}

Fábio Novaes (IIP-UFRN)

Theoretical Frontiers in BH and Cosmology

Numerical Integration of P_{VI} near t = 0

Kerr-dS Greybody Factor

Transcendental Solution from $\tau\text{-}\mathsf{function}$

• Definition of τ -function

$$K(\lambda, \mu, t) = \frac{d}{dt} \log(t^A (t-1)^B \tau(t, \{\theta_i\}))$$

• τ -function asymptotics

$$\tau(t) \propto t^{\sigma^2/4 - (\theta_0 - \theta_t)^2/4} [1 + \mathcal{O}(t^{1\pm\sigma}, t)]$$

Near-extremal Case and Tau Function

• Initial conditions can be inverted to obtain σ

$$\begin{split} \frac{d}{dt} \log \tau(t, \{\theta_i\}) \bigg|_{t=t_0} &= \frac{\theta_0 \theta_t}{t_0} + \frac{\theta_1 \theta_t}{t_0 - 1} + K_0 \\ \frac{d^2}{dt^2} \log \tau(t, \{\theta_i\}) \bigg|_{t=t_0} &= -\frac{\theta_0 \theta_t}{t_0^2} - \frac{\theta_1 \theta_t}{(t_0 - 1)^2} \\ &+ \frac{\kappa_1 \theta_t}{t_0(t_0 - 1)} - \frac{2t_0 - 1}{t_0(t_0 - 1)} K_0. \end{split}$$

Near-Extremal case

$$\sigma = \theta_0 + \theta_t + \frac{2K_0 - \theta_1 \theta_t}{\theta_0 + \theta_t} t_0 + \mathcal{O}(t_0^2)$$

Contents

Black Hole Scattering Theory

- Scattering Amplitudes
- Monodromy Technique
- 2 Scattering on Kerr-NUT-(A)dS Black Holes
 - Kerr-NUT-(A)dS spacetime
 - Scattering on Kerr-dS

Scattering Amplitudes from Monodromy

- Monodromy Group of Heun Equation
- Isomonodromic Flows and Painlevé VI
- Kerr/CFT and Monodromies

Near-Horizon Extremal Kerr (NHEK) Metric

Extremal Kerr Properties

$$r_{\pm} = a = M, \quad S = 2\pi M^2 = 2\pi J, \quad T_H = 0, \quad \Omega_H = \frac{1}{2M}$$

Near-horizon limit

$$r = \frac{\hat{r} - M}{\lambda M}, \quad t = \frac{\lambda \hat{t}}{2M}, \quad \phi = \hat{\phi} - \frac{\hat{t}}{2M},$$

• When $\lambda \to 0$, we get $AdS_2 \ltimes S^1$

$$ds^{2} = 2\Omega^{2}J\left[\frac{dr^{2}}{r^{2}} + d\theta^{2} - r^{2}dt^{2} + \Lambda^{2}(d\phi + rdt)^{2}\right]$$

Fábio Novaes (IIP-UFRN)

Kerr/CFT Correspondence

- ASG = Allowed diffeos / Trivial diffeos (Brown, Henneaux 1986)
- Most general perturbations $\delta g_{ab}=h_{ab}$ preserving metric boundary conditions are generated by a Virasoro algebra

$$[L_n, L_m] = (n - m)L_{n+m} + Jm(m^2 - 1)\delta_{n+m}$$

- Corresponds to a chiral thermal CFT with temperature $T_L=\frac{1}{2\pi}$ and central charge c=12J
- Cardy formula for CFT entropy reproduces black hole entropy (Guica et al 2009)

$$S_{\mathsf{CFT}} = \frac{\pi^2}{3} c_L T_L = 2\pi J = S_{BH}$$

Kerr/CFT Away From Extremality

- Wave equation for $M\omega \ll 1$ and $r\omega \ll 1$ also presents hidden conformal symmetry (Castro et al 2010)
- \bullet Hypergeometric scattering amplitudes match $\mathrm{SL}(2,\mathbb{C})$ symmetry of dual CFT
- For the Kerr black hole, we can write (Castro et al 2013)

$$\mathcal{TT}' = \frac{\sinh 2\pi(\omega_L + \omega_R)\sinh(2\pi\alpha_{irr})}{\sinh\pi(\omega_L - \alpha_{irr})\sinh\pi(\omega_R + \alpha_{irr})}$$

• For low-frequencies and $\ell \neq 0$

$$i\alpha_{\rm irr} = \ell - 2M^2\omega^2 f(\ell) + O(\omega^3)$$

Fábio Novaes (IIP-UFRN)

Lessons from Isomonodromic Flow

- Confluence of P_{VI} gives more information on α_{irr} (Bruno's talk)
- This suggests that scattering data of non-extremal black holes is equivalent in some sense to extremal black hole scattering

Summary of Part 3

- Composite traces σ_{ij} map monodromy moduli space
- P_{VI} asymptotics depend explicitly on σ_{ij}
- σ_{ij} can be obtained either numerically in general or analytically in the near-extremal case
- Our results can maybe shed some light on the Kerr/CFT duality away from the near-horizon infrared limit

Conclusions

- Monodromy technique is the most powerful way to treat scattering problems
- Insights on CFT description of black holes
- General formula for scattering amplitudes between two regular singular points
- Conformally coupled case is easier
- Valid for higher-dimensional Kerr-NUT-(A)dS black holes

Perspectives

- Higher-spin modes, gravitational stability and astrophysical problems
- Higher-dimensional Kerr-(A)dS and SUGRA backgrounds
- Recover literature via $\Lambda \rightarrow 0$ confluence. Irregular singular points (P_V and P_{III} for extremal BH)
- Quasinormal modes and plasma thermalization
- Twistorial and geometrical interpretation of isomonodromic symmetry

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relation with Fuchsian Equation

• Fuchsian ODE normal form with n finite singular points

$$\psi''(z) + T(z)\psi(z) = 0, \quad T(z) = \sum_{i=1}^{n} \left(\frac{\delta_i}{(z-z_i)^2} + \frac{c_i}{z-z_i}\right),$$

$$\sum_{i=1}^{n} c_i = 0 , \quad \sum_{i=1}^{n} (c_i z_i + \delta_i) = 0 , \quad \sum_{i=1}^{n} (c_i z_i^2 + 2\delta_i z_i) = 0$$

- Local monodromies: $\delta_i = (1 \theta_i^2)/4$
- Accessory parameters c_i have global properties
- 2(n-3) independent parameters: (c_i, z_i)

Symplectic Structure of Flat $SL(2, \mathbb{C})$ Connections

- $\bullet\,$ Moduli space of flat connections $A\sim$ moduli space of monodromy group
- Atiyah-Bott symplectic structure

$$\Omega = \sum_{i=1}^{n-3} dc_i \wedge dz_i = \sum_{i=1}^{n-3} d\nu_i \wedge d\mu_i$$

where (ν_i, μ_i) are trace coordinates (Nekrasov et al 2011)

- Canonical transformation connects both set of coordinates
- Suggests analytical approach to find composite monodromies
- Relation with classical conformal blocks of 2D CFT

Recurrence Relations

• Taylor solution $y(z) = \sum_{n=0}^{\infty} g_n z^{n/2}$, |z| < 1

$$-(Q_0 + q)g_0 + R_0g_1 = 0,$$

$$P_ng_{n-1} - (Q_n + q)g_n + R_ng_{n+1} = 0, \quad (n > 0)$$

$$P_n = (n - 1 + \alpha_+)(n - 1 + \alpha_-),$$

$$Q_n = n((t+1)(n - 1 + \gamma) + t\delta + \epsilon),$$

$$R_n = t(n+1)(n+\gamma)$$

• Solved using Leaver's continued-fraction method (Leaver 1985, Berti, Cardoso and Will (2006))

Continued-fraction Method

 \bullet Augmented convergence for $|z|\geq 1$ if

$$\lim_{n \to \infty} \left| \frac{g_{n+1}}{g_n} \right| = |t|^{-1} = \hat{a}^2 \implies a < L$$

• Recurrence relation in terms of $v_n = g_{n+1}/g_n \label{eq:velocity}$

$$v_{n-1} = \frac{P_n}{(Q_n+q) - R_n v_n}$$

• Equivalent to continued-fraction

$$(Q_0 + q) - \frac{R_0 P_1}{(Q_1 + q) -} \frac{R_1 P_2}{(Q_2 + q) -} \dots = 0$$

• Solve numerically with $v_N = \hat{a}^2$ for some large integer N

Schlesinger System Asymptotics

• Using that
$$\det A_i^0 = -\theta_i^2/4$$
 and $\det \Lambda = -\sigma_{0t}^2/4$

$$\Lambda + \frac{1}{2}\sigma\mathbb{1} = \frac{1}{4\theta_{\infty}} \left(\begin{smallmatrix} (-\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} - \theta_1 - \sigma) & (-\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} + \theta_1 + \sigma) \\ (\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} - \theta_1 - \sigma) & (\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} + \theta_1 + \sigma) \end{smallmatrix} \right)$$

$$A_1^0 + \frac{1}{2}\theta_1 \mathbb{1} = \frac{1}{4\theta_\infty} \left(\begin{smallmatrix} -(\theta_\infty - \theta_1)^2 + \sigma^2 & (\theta_\infty + \theta_1)^2 - \sigma^2 \\ -(\theta_\infty - \theta_1)^2 + \sigma^2 & (\theta_\infty + \theta_1)^2 - \sigma^2 \end{smallmatrix} \right)$$

$$A_0^0 + \frac{1}{2}\theta_0 \mathbb{I} = G_1 \frac{1}{4\sigma} \left(\begin{smallmatrix} (\theta_0 - \theta_t + \sigma)(\theta_0 + \theta_t + \sigma) & (\theta_0 - \theta_t + \sigma)(-\theta_0 - \theta_t + \sigma) \\ (\theta_0 - \theta_t - \sigma)(\theta_0 + \theta_t + \sigma) & (\theta_0 - \theta_t - \sigma)(-\theta_0 - \theta_t + \sigma) \end{smallmatrix} \right) G_1^{-1}$$

$$A_t^0 + \frac{1}{2}\theta_t \mathbb{I} = G_1 \frac{1}{4\sigma} \begin{pmatrix} (\theta_t + \sigma)^2 - \theta_0 & -(\theta_t - \sigma)^2 + \theta_0^2 \\ (\theta_t + \sigma)^2 - \theta_0 & -(\theta_t - \sigma)^2 + \theta_0^2 \end{pmatrix} G_1^{-1}.$$

