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”The main of life is composed ... of meteorous pleasures which dance
before us and are dissipated” - Samuel Johnson
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Main Message of My Work

Scattering amplitudes of conformal fields in Kerr-NUT-(A)dS black holes
can be calculated using monodromy data of wave solutions and these
monodromies can be generally obtained by Painlevé asymptotics and
isomonodromic flows.

What is the importance of all that?
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Importance of Black Hole Scattering Theory

Astrophysical phenomena: detection of gravitational waves

Stability criteria of gravitational solutions

AdS/CFT applications: quark-gluon plasma and condensed matter
systems

Quantum description of black holes
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Matter Accretion Disk around a Black Hole
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Detection of Gravitational Waves

Hulse -Taylor Binary Pulsar

BICEP-2 and Inflation: tensor-to-scalar
ratio

aLIGO, aVIRGO: ground-based
interferometers
(4 km L-shaped arms.
High-frequencies)

eLISA: coalescing binary black holes
and EMRIs.
(106 km arms, free-falling test masses.
104 − 107M�).

Pulsar Time Arrays: 109 M�
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Black Hole Scattering Theory Scattering Amplitudes
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Black Hole Scattering Theory Scattering Amplitudes

Linear Perturbation of Gravitational Systems

Gravity (M, g) + Matter field Φ

S =
1

16πG

∫
M
dDx
√
−g (R− 2Λ) +

∫
M
dDx
√
−g Lm(Φ,∇Φ)

Linear perturbation of equations of motion

gab = gBGab + hab, Φ = ΦBG + φ
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Black Hole Scattering Theory Scattering Amplitudes

Scalar Field Perturbation

Scalar and gravitational perturbations decouple

Non-minimally coupled massless scalar field φ(x)

(∇2 + ξR)φ(x) = 0, ∇2φ ≡ 1√
−g

∂a(
√
−ggab∂bφ)

Separable solutions: φ(t, r, θ, ϕ) = e−iωteimϕSω`m(θ)φω`m(r)

Radial and Angular equations

∂r(Pr(r)∂rφω`m)−Qr(r)φω`m = 0

∂θ(Pθ(θ)∂θSω`m)−Qθ(θ)Sω`m = 0

Angular eigenvalues from angular equation
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Black Hole Scattering Theory Scattering Amplitudes

Scalar Scattering by Black Holes

One-dimensional Schrödinger scattering

d2φω
dr∗2

+ (ω2 − V (r))φω = 0

Typical Schwarzschild potentials

-10 -5 5 10 r
*/M

0.1

0.2

0.3

0.4

V(r)

l=0

l=1

l=2

l=3
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Black Hole Scattering Theory Scattering Amplitudes

Ingoing and Outgoing Boundary Conditions

Classical scattering (IN mode)

φINω ∼ e−iωr∗ −Reiωr∗ , r∗ → +∞,
φINω ∼ T e−iωr∗ , r∗ → −∞,

Semiclassical scattering (OUT or UP mode)

φUP−ω ∼ T ′eiωr
∗
, r∗ → +∞,

φUP−ω ∼ eiωr
∗ −R′e−iωr∗ , r∗ → −∞,
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Black Hole Scattering Theory Scattering Amplitudes

Radiation Flux and Greybody Factor

Radiation Flux (Wronskian)

J :=
1

2i

(
φ−ω

dφω
dr∗
− φω

dφ−ω
dr∗

)
Flux Conservation and Greybody factor

RR̃+ T T̃ = 1, γ`(ω) =
Jhor
Jin

= T (ω)T̃ (ω)

Relation between basis(
φUPω

φUP−ω

)
=

( 1
T

R
T

R̃
T̃

1
T̃

)(
φINω

φIN−ω

)
,
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Black Hole Scattering Theory Scattering Amplitudes

Scattering for real frequencies

For real frequency ω, flux conservation implies that

|R|2 + |T |2 = 1

and the greybody factor

γ`(ω) = |T (ω)|2

Mean number of emitted particles:

〈n(ω)〉 =
γ`(ω)

eω/TH − 1
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Black Hole Scattering Theory Monodromy Technique
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Black Hole Scattering Theory Monodromy Technique

Complex ODEs and Monodromy

Self-adjoint radial equation

∂z(U(z)∂zφ(z))− V (z)φ(z) = 0, z ∈ CP1

Regular singular points {zi}, i = 1, ..., n.

Ingoing and Outgoing solutions

φ±i (z) = (z − zi)±θi/2
(
1 +O(z − zi)

)
Singular points = Branch points ⇒ Monodromy

φ±i (ze2πi) = e±iπθiφ±i (z)
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Black Hole Scattering Theory Monodromy Technique

Monodromies and Gauge Connection

Gauge connection formulation

(∂z −A(z))Φ(z) = 0 ,

A(z) =

(
0 U−1

V 0

)
, Φ(z) =

(
φ1 φ2

U∂zφ1 U∂zφ2

)
Monodromy matrix

Φγ(z) = P exp

(∮
γ
A

)
Φ(z) =: Φ(z)Mγ
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Black Hole Scattering Theory Monodromy Technique

Monodromies and Frobenius solutions

Loop around only one pole z = zi ⇒ Φγi = ΦMi

Loop enclosing all poles gives monodromy identity

M1M2...Mn = 1

General Frobenius solution

Φ(z) = Φi(z) gi

=
(

Φi
0 +O(z − zi)

)( (z − zi)θi/2 0

0 (z − zi)−θi/2

)
gi

Monodromy matrix in arbitrary basis

Mi = g−1
i

(
eiπθi 0

0 e−iπθi

)
gi
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Black Hole Scattering Theory Monodromy Technique

Scattering Amplitudes and Connection Matrix

Change of basis matrix = Connection matrix

Mij = Φ−1
i Φj = gi g

−1
j

Mij =

(
1
T

R∗
T ∗

R
T

1
T ∗

)
, |R|2 + |T |2 = 1

Kerr scattering = 2 regular and 1 irregular singular point = 3-point
monodromy group [Castro et al 13’]
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Black Hole Scattering Theory Monodromy Technique

Transmission between Two Regular Singular Points

For higher-point monodromy groups (Cunha and Novaes
arXiv:1404.5188)

Let gi ∈ SL(2,C). If we define

mij = TrMiMj = 2 cosπσij

then

|T |2 =

∣∣∣∣ sinπθi sinπθj
sin π

2 (σij + θi − θj) sin π
2 (σij − θi + θj)

∣∣∣∣
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

Contents

1 Black Hole Scattering Theory
Scattering Amplitudes
Monodromy Technique

2 Scattering on Kerr-NUT-(A)dS Black Holes
Kerr-NUT-(A)dS spacetime
Scattering on Kerr-dS

3 Scattering Amplitudes from Monodromy
Monodromy Group of Heun Equation
Isomonodromic Flows and Painlevé VI
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

Killing-Yano Tensors and Separability

Most general spacetime with separable equations?

D = 2n+ ε Kerr-NUT-(A)dS spacetime (ε = ±1)

(Frolov and Kubzniak 07’)

Closed Conformal Killing-Yano tensor hab ⇒
(n− 1) Killing Tensors + (n+ ε) Killing vectors + 1 metric

= 2n+ ε conserved quantities

Separability of Klein-Gordon, Dirac and Gravitational equations
(Frolov; Oota and Yasui)
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

D = 4 Kerr-NUT-(A)dS Black Hole

ds2 = − Q(r)

r2 + p2
(dt+ p2dφ)2 +

P (p)

r2 + p2
(dt− r2dφ)2

+
r2 + p2

Q(r)
dr2 +

r2 + p2

P (p)
dp2

P (p) = − Λ

3
p4 − εp2 + 2np+ k

Q(r) = − Λ

3
r4 + εr2 − 2Mr + k
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

Separation of Variables in KG equation

Separation of variables: φ(t, r, ϕ, θ) = e−iωteimϕR(r)S(θ)

Radial and angular equations

∂p(P (p)∂pS(p)) +

(
−4Λξp2 − (Ψ0p

2 −Ψ1)2

P (p)

)
S(p) = −C`S

∂r(Q(r)∂rR(r)) +

(
−4Λξr2 +

(Ψ0r
2 + Ψ1)2

Q(r)

)
R(r) = C`R

Each equation has 5 regular singular points
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

Kerr-NUT-(A)dS Radial Equation

Radial equation

∂r(Q(r)∂rR(r)) +

(
−4Λξr2 +

(Ψ0r
2 + Ψ1)2

Q(r)

)
R(r) = C`R

Frobenius coefficients

ρ±i = ±i
(

Ψ0r
2
i + Ψ1

Q′(ri)

)
, i = 1, ..., 4

ρ±∞ =
3

2
± 1

2

√
9− 48ξ

θ∞ =
√

9− 48ξ is an integer when ξ = 0, 5
48 ,

1
6 ,

3
16
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

Removable Singularity for Conformally Coupled Case

For ξ = 1
6 , r =∞ is a removable singularity

Homographic transformation:

z =
r − r1

r − r4

r2 − r4

r2 − r1
, (r1, r2, r3, r4,∞) 7→ (0, 1, t0,∞, z∞)

Homotopic transformation:

R(z) = z−θ0/2(z − 1)−θ1/2(z − t0)−θt/2(z − z∞)y(z)
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Scattering on Kerr-NUT-(A)dS Black Holes Kerr-NUT-(A)dS spacetime

Heun Equation for Conformally Coupled Case

Heun equation (4 regular singular points)

y′′ +

(
1− θ0

z
+

1− θ1

z − 1
+

1− θt0
z − t0

)
y′+

+

(
1 + θ∞
z(z − 1)

− t0(t0 − 1)K0

z(z − 1)(z − t0)

)
y = 0

Frobenius coefficients

θk = 2i

(
Ψ0r

2
k + Ψ1

Q′(rk)

)
, k = 0, 1, t0,∞
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Kerr-dS Black Hole

ds2 = − ∆r(r)

(r2 + p2)χ4

(
dt− (a2 − p2)

a
dφ

)2

+

+
∆p(p)

(r2 + p2)χ4

(
dt− (r2 + a2)

a
dφ

)2

+
r2 + p2

∆p(p)
dp2 +

r2 + p2

∆r(r)
dr2

∆p(p) = − 1

L2
p4 − (1− a2

L2
)p2 + a2,

∆r(r) = − 1

L2
r4 + (1− a2

L2
)r2 − 2Mr + a2
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Kerr-dS Black Hole

5 singular points (r−−, r−, rH , rC ,∞)

r =∞ removable by conformal coupling

Horizon angular velocity

ΩH,C =
a

r2
H,C + a2

Horizons temperatures

TH =
|∆′r(rH)|

4πχ2(r2
H + a2)

, TC =
|∆′r(rC)|

4πχ2(r2
C + a2)

Regular black hole if TH ≥ 0 and a < L

Fábio Novaes (IIP-UFRN) Theoretical Frontiers in BH and Cosmology June 17, 2015 30 / 67



Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Causal Diagram of Kerr-dS
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

(A)dS Spheroidal Harmonics

Set p = au

∂u(1− u2)(1− â2u2)∂uS+(
Au2 +B − m2(1− â2)2

(1− u2)(1− â2u2)

)
S = −C`S

where â = a/L

Connects to angle from u = cos θ
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Kerr-dS Angular Eigenvalues (Λ > 0)

Case ` = m = 0

0.2 0.4 0.6 0.8 1.0 aω

-0.3

-0.2

-0.1

Cl

â = 0 (blue), â = 0.02 (yellow), â = 0.04 (green)
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Kerr-dS Conformally Coupled Radial Equation

y′′ +

(
1− θ0

z
+

1− θ1

z − 1
+

1− θt0
z − t0

)
y′+

+

(
1 + θ∞
z(z − 1)

− t0(t0 − 1)K0

z(z − 1)(z − t0)

)
y = 0,

Frobenius coefficients are purely imaginary for real ω

θk = ± i

2π

(
ω − Ωkm

Tk

)
, k = 0, t0, 1,∞
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Kerr-dS Greybody Factor

γ`(ω,m) =
sinh(ω−ΩHm

2TH
) sinh(ω−ΩCm

2TC
)

cosh
(
ω−ΩHm

2TH
+ ω−ΩCm

2TC

)
− cosh(πνHC)

where νHC = iσHC(ω, `,m)

νHC encodes scattering global information

ω = ΩHm ⇒ onset of superradiance
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Superradiant Scattering

Superradiance = wave analog of Penrose process

In terms of the classical impact parameter b = L/E ∼ `/ω
ω

m
=
ω

`

`

m
∼ 1

b

L
Lz
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Properties of Greybody Factor

Scattering regimes{
ω > ΩHm or ΩCm > ω Normal scattering

ΩHm > ω > ΩCm Superradiant scattering

Poles of scattering matrix (resonances)

ω =

{
mΩH − 2πinTH

mΩC + 2πinTC
(n ∈ Z+)

We expect that

γl(ω)→ 1, as ω →∞

γl(ω)→ 0 or constant as ω → 0
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Quasinormal Modes

Modes purely ingoing at rH and purely outgoing at rC

Possible only for complex ω

In this case,

MCH =

(
1
T

R′
T ′

R
T

1
T ′

)
=

(
0 1

−1 1
T ′

)

Poles of transcendental equation

νHC(ω, `,m) =
ω − ΩHm

2TH
+
ω − ΩCm

2TC
+ 2πin, n ∈ Z
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Scattering on Kerr-NUT-(A)dS Black Holes Scattering on Kerr-dS

Summary of Part 2

Perturbations for Kerr-NUT-(A)dS are separable into angular and
radial part

Angular eigenvalues obtained numerically

Conformal coupling removes singularity at r =∞
Greybody factor accounts for superradiance and quasinormal modes

How to find σHC?
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Scattering Amplitudes from Monodromy Monodromy Group of Heun Equation
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Scattering Amplitudes from Monodromy Monodromy Group of Heun Equation

Four-point Monodromy Group

detMi = 1, mi ≡ TrMi = 2 cosπθi,

M∞M1MtM0 = 1
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Scattering Amplitudes from Monodromy Monodromy Group of Heun Equation

SL(2,C) Representations of Free Groups

Free group with n− 1 generators

Gn−1 =< M1,M2, ...,Mn−1 >

Dimension of moduli space with fixed monodromies mi is 2(n− 3)

Composite trace coordinates map moduli space

m12...k = TrM1M2...Mk , k < n− 1

Fábio Novaes (IIP-UFRN) Theoretical Frontiers in BH and Cosmology June 17, 2015 42 / 67



Scattering Amplitudes from Monodromy Monodromy Group of Heun Equation

Representation of Heun Monodromy Group

3 composite traces

mij = Tr(MiMj) = 2 cos(πσij), i, j = 0, 1, t

Only 2 are independent because of Fricke-Jimbo relation

W4(m1,m2,m3,m13,m23,m12,m4) ≡
m13m23m12 +m2

13 +m2
23 +m2

12

−m13(m2m4 +m1m3)−m23(m1m4 +m2m3)−m12(m3m4 +m1m2)

+m2
1 +m2

2 +m2
3 +m2

4 +m1m2m3m4 − 4 = 0

Monodromy representations are parametrized by two composite traces
(σ0t, σ1t), (σ0t, σ01) or (σ1t, σ01)
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Scattering Amplitudes from Monodromy Isomonodromic Flows and Painlevé VI
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Scattering Amplitudes from Monodromy Isomonodromic Flows and Painlevé VI

How to obtain the composite monodromies σij?

Miwa, Jimbo and Ueno 1980, Jimbo 1982

Painlevé VI asymptotics depend explicitly on monodromy data of a 4-point
Fuchsian system
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Scattering Amplitudes from Monodromy Isomonodromic Flows and Painlevé VI

Garnier System and Apparent Singularity

Fuchsian System with 4 singular points

∂zY(z) = A(z)Y(z), A(z) =

3∑
i=1

Ai
z − zi

,

with Y(z) = (y1(z) y2(z))T

Component y1 obeys the ODE

∂2
zy − (∂z logA12 + TrA(z))∂zy

+ (detA(z)− ∂zA11 +A11∂z logA12)y = 0
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Scattering Amplitudes from Monodromy Isomonodromic Flows and Painlevé VI

Garnier System and Apparent Singularity

Apparent singularity at z = λ if

A12(z) = k
z − λ

z(z − 1)(z − t)
, k ∈ C

Deformed Heun equation with one apparent singularity

∂2
zy +

(
1− θ0

z
+

1− θ1

z − 1
+

1− θt
z − t

− 1

z − λ

)
∂zy

+

(
κ

z(z − 1)
− t(t− 1)K

z(z − 1)(z − t)
+

λ(λ− 1)µ

z(z − 1)(z − λ)

)
y = 0

λ(t0) = t0 and µ0 = −K0/θt for our Heun
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Scattering Amplitudes from Monodromy Isomonodromic Flows and Painlevé VI

Garnier Hamiltonian System

z = λ is an apparent singularity if

K(λ, µ, t) =
1

t(t− 1)
[λ(λ− 1)(λ− t)µ2 − {θ0(λ− 1)(λ− t)

+ θ1λ(λ− t) + (θt − 1)λ(λ− 1)}µ+ κ(λ− t)]

Garnier System
dλ

dt
=
∂K

∂µ
,

dµ

dt
= −∂K

∂λ

generates isomonodromic flow (λ(t), µ(t),K(λ, µ, t))

Second-order equation for λ(t) = Painlevé VI
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Schlesinger System and Painlevé VI

Schlesinger system

∂zY (z, t) = A(z, t)Y (z, t), A(z, t) =
A0(t)

z
+
A1(t)

z − 1
+
At(t)

z − t
,

∂tY (z, t) = B(z, t)Y (z, t), B(z, t) = −At(t)
z − t

Integrability condition

∂tA− ∂zB + [A,B] = 0

is equivalent to Schlesinger equations

dA0

dt
=

[At, A0]

t
,

dA1

dt
=

[At, A1]

t− 1
,

dAt
dt

=
[A0, At]

t
+

[A1, At]

t− 1
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Schlesinger System Asymptotics

Near t = 0

A0 ≈ tΛA0
0t
−Λ and At ≈ tΛA0

t t
−Λ, where Λ = A0

0 +A0
t

Schlesinger system degenerates into two hypergeometric systems

dY0

dz
=

(
Λ

z
+

A0
1

z − 1

)
Y0,

dY1

dz
=

(
A0

0

z
+

A0
t

z − 1

)
Y1
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Painlevé VI Asymptotics

Using that

A12(z) = k
z − λ

z(z − 1)(z − t)
and homographic transformations, we get PV I asymptotics for
0 < Reσij < 1

λ(t) =


a0t

1−σ0t(1 +O(tδ)), |t| < r,

1 + a1(1− t)1−σt1(1 +O((1− t)δ), |t− 1| < r,

a∞t
σ01(1 +O(t−δ)), |1/t| < r,

where ai are functions of monodromy data and r, δ > 0.
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Numerical Integration of PV I
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Numerical Integration of PV I near t = 0

4.×10-30 6.×10-30 8.×10-30 1.×10-29
t

-2.×10-29

2.×10-29

4.×10-29

6.×10-29

λ
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Kerr-dS Greybody Factor
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Transcendental Solution from τ -function

Definition of τ -function

K(λ, µ, t) =
d

dt
log(tA(t− 1)Bτ(t, {θi}))

τ -function asymptotics

τ(t) ∝ tσ2/4−(θ0−θt)2/4[1 +O(t1±σ, t)]
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Near-extremal Case and Tau Function

Initial conditions can be inverted to obtain σ

d

dt
log τ(t, {θi})

∣∣∣∣
t=t0

=
θ0θt
t0

+
θ1θt
t0 − 1

+K0

d2

dt2
log τ(t, {θi})

∣∣∣∣
t=t0

= −θ0θt
t20
− θ1θt

(t0 − 1)2

+
κ1θt

t0(t0 − 1)
− 2t0 − 1

t0(t0 − 1)
K0.

Near-Extremal case

σ = θ0 + θt +
2K0 − θ1θt
θ0 + θt

t0 +O(t20)

Fábio Novaes (IIP-UFRN) Theoretical Frontiers in BH and Cosmology June 17, 2015 56 / 67



Scattering Amplitudes from Monodromy Kerr/CFT and Monodromies

Contents

1 Black Hole Scattering Theory
Scattering Amplitudes
Monodromy Technique

2 Scattering on Kerr-NUT-(A)dS Black Holes
Kerr-NUT-(A)dS spacetime
Scattering on Kerr-dS

3 Scattering Amplitudes from Monodromy
Monodromy Group of Heun Equation
Isomonodromic Flows and Painlevé VI
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Near-Horizon Extremal Kerr (NHEK) Metric

Extremal Kerr Properties

r± = a = M, S = 2πM2 = 2πJ, TH = 0, ΩH =
1

2M

Near-horizon limit

r =
r̂ −M
λM

, t =
λt̂

2M
, φ = φ̂− t̂

2M
,

When λ→ 0, we get AdS2 n S1

ds2 = 2Ω2J

[
dr2

r2
+ dθ2 − r2dt2 + Λ2(dφ+ rdt)2

]
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Kerr/CFT Correspondence

ASG = Allowed diffeos / Trivial diffeos (Brown, Henneaux 1986)

Most general perturbations δgab = hab preserving metric boundary
conditions are generated by a Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + Jm(m2 − 1)δn+m .

Corresponds to a chiral thermal CFT with temperature TL = 1
2π and

central charge c = 12J

Cardy formula for CFT entropy reproduces black hole entropy (Guica
et al 2009)

SCFT =
π2

3
cLTL = 2πJ = SBH
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Kerr/CFT Away From Extremality

Wave equation for Mω � 1 and rω � 1 also presents hidden
conformal symmetry (Castro et al 2010)

Hypergeometric scattering amplitudes match SL(2,C) symmetry of
dual CFT

For the Kerr black hole, we can write (Castro et al 2013)

T T ′ = sinh 2π(ωL + ωR) sinh(2παirr)

sinhπ(ωL − αirr) sinhπ(ωR + αirr)

For low-frequencies and ` 6= 0

iαirr = `− 2M2ω2f(`) +O(ω3)

suggesting no simple CFT description
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Lessons from Isomonodromic Flow

Confluence of PV I gives more information on αirr (Bruno’s talk)

This suggests that scattering data of non-extremal black holes is
equivalent in some sense to extremal black hole scattering
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Summary of Part 3

Composite traces σij map monodromy moduli space

PV I asymptotics depend explictly on σij

σij can be obtained either numerically in general or analytically in the
near-extremal case

Our results can maybe shed some light on the Kerr/CFT duality away
from the near-horizon infrared limit

Fábio Novaes (IIP-UFRN) Theoretical Frontiers in BH and Cosmology June 17, 2015 62 / 67



Scattering Amplitudes from Monodromy Kerr/CFT and Monodromies

Conclusions

Monodromy technique is the most powerful way to treat scattering
problems

Insights on CFT description of black holes

General formula for scattering amplitudes between two regular
singular points

Conformally coupled case is easier

Valid for higher-dimensional Kerr-NUT-(A)dS black holes
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Perspectives

Higher-spin modes, gravitational stability and astrophysical problems

Higher-dimensional Kerr-(A)dS and SUGRA backgrounds

Recover literature via Λ→ 0 confluence. Irregular singular points (PV
and PIII for extremal BH)

Quasinormal modes and plasma thermalization

Twistorial and geometrical interpretation of isomonodromic symmetry
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Fábio Novaes (IIP-UFRN) Theoretical Frontiers in BH and Cosmology June 17, 2015 65 / 67



Relation with Fuchsian Equation

Fuchsian ODE normal form with n finite singular points

ψ′′(z) + T (z)ψ(z) = 0, T (z) =

n∑
i=1

(
δi

(z − zi)2
+

ci
z − zi

)
,

n∑
i=1

ci = 0 ,

n∑
i=1

(cizi + δi) = 0 ,

n∑
i=1

(ciz
2
i + 2δizi) = 0

Local monodromies: δi = (1− θ2
i )/4

Accessory parameters ci have global properties

2(n− 3) independent parameters: (ci, zi)
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Symplectic Structure of Flat SL(2,C) Connections

Moduli space of flat connections A ∼ moduli space of monodromy
group

Atiyah-Bott symplectic structure

Ω =

n−3∑
i=1

dci ∧ dzi =

n−3∑
i=1

dνi ∧ dµi

where (νi, µi) are trace coordinates (Nekrasov et al 2011)

Canonical transformation connects both set of coordinates

Suggests analytical approach to find composite monodromies

Relation with classical conformal blocks of 2D CFT
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Recurrence Relations

Taylor solution y(z) =
∑∞

n=0 gnz
n/2, |z| < 1

−(Q0 + q)g0 +R0g1 = 0,

Pngn−1 − (Qn + q)gn +Rngn+1 = 0, (n > 0)

Pn = (n− 1 + α+)(n− 1 + α−),

Qn = n((t+ 1)(n− 1 + γ) + tδ + ε),

Rn = t(n+ 1)(n+ γ)

Solved using Leaver’s continued-fraction method (Leaver 1985, Berti,
Cardoso and Will (2006))
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Continued-fraction Method

Augmented convergence for |z| ≥ 1 if

lim
n→∞

∣∣∣∣gn+1

gn

∣∣∣∣ = |t|−1 = â2 ⇒ a < L

Recurrence relation in terms of vn = gn+1/gn

vn−1 =
Pn

(Qn + q)−Rnvn

Equivalent to continued-fraction

(Q0 + q)− R0P1

(Q1 + q)−
R1P2

(Q2 + q)−
... = 0

Solve numerically with vN = â2 for some large integer N
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Schlesinger System Asymptotics

Using that detA0
i = −θ2

i /4 and det Λ = −σ2
0t/4

Λ +
1

2
σ1 =

1

4θ∞

(
(−θ∞−θ1+σ)(θ∞−θ1−σ) (−θ∞−θ1+σ)(θ∞+θ1+σ)
(θ∞−θ1+σ)(θ∞−θ1−σ) (θ∞−θ1+σ)(θ∞+θ1+σ)

)
A0

1 +
1

2
θ11 =

1

4θ∞

(
−(θ∞−θ1)2+σ2 (θ∞+θ1)2−σ2

−(θ∞−θ1)2+σ2 (θ∞+θ1)2−σ2

)
A0

0 +
1

2
θ0I = G1

1

4σ

(
(θ0−θt+σ)(θ0+θt+σ) (θ0−θt+σ)(−θ0−θt+σ)
(θ0−θt−σ)(θ0+θt+σ) (θ0−θt−σ)(−θ0−θt+σ)

)
G−1

1

A0
t +

1

2
θtI = G1

1

4σ

(
(θt+σ)2−θ0 −(θt−σ)2+θ20
(θt+σ)2−θ0 −(θt−σ)2+θ20

)
G−1

1 .
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