Semiclassical calculation of (n-point) spectral correlation functions for chaotic systems

Sebastian Müller (Bristol) and Marcel Novaes (Uberlândia)

Natal, March 2019
Universal spectral statistics

Classical chaos \Rightarrow universal statistics of quantum energy levels, in agreement with random matrix theory (BGS conjecture)
Correlation functions

- **level density** \(\rho(E) = \sum_i \delta(E - E_i) \)

- **\(n \)-point correlation function**

\[
R_n(\epsilon_1, \epsilon_2, \ldots \epsilon_n) = \langle \rho(E + \epsilon_1) \rho(E + \epsilon_2) \cdots \rho(E + \epsilon_n) \rangle_E
\]

(we take \(\bar{\rho} = 1 \))

- for chaotic systems **without time reversal invariance:** agreement with prediction from **Gaussian Unitary Ensemble** (average over hermitian matrices)

\[
R_n(\epsilon_1, \epsilon_2, \ldots \epsilon_n) = \text{det} \left[\frac{\sin(\pi(\epsilon_j - \epsilon_k))}{\pi(\epsilon_j - \epsilon_k)} \right]_{j,k}
\]
Correlation functions

for chaotic systems **with time reversal invariance:** agreement with prediction from **Gaussian Orthogonal Ensemble**
(average over real symmetric matrices)

\[
R_n(\epsilon_1, \epsilon_2, \ldots, \epsilon_n) = \text{Pf} \left(\begin{array}{cc}
D(\epsilon_i - \epsilon_j) & S(\epsilon_i - \epsilon_j) \\
-S(\epsilon_i - \epsilon_j) & I(\epsilon_i - \epsilon_j)
\end{array} \right)
\]

\[
S(x) = \frac{\sin(\pi x)}{\pi x}
\]

\[
D(x) = \int_0^1 du \, u \sin(\pi ux)
\]

\[
I(x) = -\int_1^\infty \frac{du}{u} \sin(\pi ux)
\]
2-point function

\[R_2(\epsilon_1, \epsilon_2) = \langle \rho (E + \epsilon_1) \rho (E + \epsilon_2) \rangle \]

\[= \text{Re} \left(\sum_m c_m \left(\frac{1}{\epsilon_1 - \epsilon_2} \right)^m + \sum_m d_m \left(\frac{1}{\epsilon_1 - \epsilon_2} \right)^m e^{2\pi i(\epsilon_1 - \epsilon_2)} \right) \]

c_m, d_m predicted by random matrix theory, depend only on symmetry
2-point function

use Gutzwiller's trace formula

\[\rho(E) \approx \bar{\rho} + \frac{1}{\pi \hbar} \text{Re} \sum_{\text{per. orbits } p} T_p^{\text{prim}} F_p e^{iS_p(E)/\hbar} \]

\[\bar{\rho} = 1 \quad \text{(for convenience)} \quad T_p^{\text{prim}} = \text{primitive period} \]

\[F_p = \frac{1}{\sqrt{|\det(M_p - I)|}} e^{-i\mu_p \frac{\pi}{2}} \]

\[S_p = \text{action} \]

\[R_2(\epsilon_1, \epsilon_2) \approx 1 + \frac{1}{(\pi \hbar)^2} \text{Re} \sum_{p,q} \left\langle T_{p}^{\text{prim}} F_{p} T_{q}^{\text{prim}} F_{q}^{*} e^{i(S_p(E+\epsilon_1) - S_q(E+\epsilon_2))/\hbar} \right\rangle_E \]

⇒ need pairs of orbits with small action difference action correlations (Argaman et al 1993)
2-point function

- Diagonal approximation:
 \(q = p \) or time reversed of \(p \)
 \[\Rightarrow \frac{1}{(\epsilon_1 - \epsilon_2)^2} \] term
 (Hannay & Ozorio de Almeida, Berry)

- Sum rule: \(\sum_p T_p^2 |F_p|^2 \delta(T_p - T) \approx T \)

- Sieber-Richter pairs
 \[\Rightarrow \frac{1}{(\epsilon_1 - \epsilon_2)^3} \] term for time rev. inv. systems
2-point function

\[\Rightarrow \frac{1}{(\epsilon_1 - \epsilon_2)^4} \text{ term} \]

etc ...

for oscillatory terms: need improved semiclassical approximation (Riemann-Siegel lookalike formula, Berry & Keating)

Agreement with random matrix theory 😊

\[n\text{-point functions} \]

use

\[\rho(E) \approx \bar{\rho} + \frac{1}{\pi \hbar} \text{Re} \sum_{\text{per. orbits } \rho} T^\text{prim}_\rho F_\rho e^{iS_\rho(E)/\hbar} \]

for factors in

\[R_n(\epsilon_1, \epsilon_2, \ldots \epsilon_n) = \langle \rho(E + \epsilon_1)\rho(E + \epsilon_2) \ldots \rho(E + \epsilon_n) \rangle_E \]

two kinds of orbits:

- \(p \)-orbits contribute with \(e^{iS_\rho(E+\epsilon_j)/\hbar} \)
- \(q \)-orbits contribute with \(e^{-iS_q(E+\eta_k)/\hbar} \)

(after relabeling energy increments)

need small action difference

\[\Delta S = \sum_{j=1}^{J} S_{\rho_j} - \sum_{k=1}^{K} S_{q_k} \]
\textit{n-point functions}

use

$$\rho(E) \approx \bar{\rho} + \frac{1}{\pi \hbar} \text{Re} \sum_{\text{per. orbits } p} T^{\text{prim}}_p F_p e^{iS_p(E)/\hbar}$$

for factors in

$$R_n(\epsilon_1, \epsilon_2, \ldots \epsilon_n) = \langle \rho(E + \epsilon_1)\rho(E + \epsilon_2)\ldots \rho(E + \epsilon_n) \rangle_E$$

further book-keeping:

- Taylor expand action using $\frac{dS}{dE} = T$
- get period factors using derivatives of actions
- contributions with Weyl term related to lower-order correlations
Contributing orbits

ccontributions with small small action difference

\[\Delta S = \sum_{j=1}^{J} S_{p_j} - \sum_{k=1}^{K} S_{q_k} \]

- **diagonal approximation**: \(p \)- and \(q \)-orbits coincide pairwise
- \(p \)- and \(q \)-orbits coincide up to connections in **encounters**
- can also have mix of both mechanisms
Contributing orbits

3-point function: reconnections in one orbit give 2 orbits
Contributing orbits

Some contributions to 4-point function:
Semiclassical calculation

- action difference: e.g. for 2-encounter product of stable and unstable deviations between encounter stretches (Turek & Richter 2003, Spehner 2003)
- ergodicity: Hannay-Ozorio de Almeida sum rule, probability for encounters
- each link gives \((\epsilon_j - \eta_k)^{-1}\) \(j = \) index of \(p\)-orbit, \(k = \) index of \(q\)-orbit
- encounter contributions cancel some link contributions

Result proportional to:

\[
\prod_j \frac{\partial}{\partial \epsilon_j} \prod_j \frac{\partial}{\partial \eta_k} \sum_{\text{diagrams}} (-1)^{\# \text{enc}} \prod_{\text{links (uncancelled)}} (\epsilon_j - \eta_k)^{-1}
\]
general diagrammatic rule for non-oscillatory contributions
for systems with and without time-reversal invariance:
agreement with RMT up to 5-point correlation function for leading few orders,
for systems without time-reversal invariance:
proof that encounter contributions cancel in all orders, for arbitrary n–point functions
based on mapping to matrix model
(diagonal approximation evaluated in Nagao & S.M. 2009)
Matrix model

Encounter contributions proportional to

\[
\prod_{j=1}^{J} \frac{\partial}{\partial \epsilon_j} \prod_{k=1}^{K} \frac{\partial}{\partial \eta_k} \left[r^{J+K} \right] \int d\mu(Z) \exp \left(- \sum_{q \geq 2} \text{Tr}[X(ZZ^\dagger)^q - (Z^\dagger Z)^q Y] \right)
\]

where

\[
d\mu(Z) = \exp \left(-\text{Tr}[XZZ^\dagger - Z^\dagger ZY] \right) dZ
\]

\[
X \propto \text{diag}(\epsilon_1, \ldots, \epsilon_1, \epsilon_2, \ldots, \epsilon_2, \ldots)
\]

\[
Y \propto \text{diag}(\eta_1, \ldots, \eta_1, \eta_2, \ldots, \eta_2, \ldots)
\]
Matrix model: Motivation

\[
\prod_{j=1}^{J} \frac{\partial}{\partial \epsilon_j} \prod_{k=1}^{K} \frac{\partial}{\partial \eta_k} \left[r^{J+K} \right] \int d\mu(Z) \exp \left(- \sum_{q \geq 2} \text{Tr}[X(ZZ^\dagger)^q - (Z^\dagger Z)^q Y] \right)
\]

- expansion of exponential and Wick's theorem lead to terms like

\[
\int d\mu(Z) \text{Tr}[X(ZZ^\dagger ZZ^\dagger)] \text{Tr}[X(ZZ^\dagger ZZ^\dagger)]
\]

- contraction lines analogous to links, give factors \((\epsilon_j - \eta_k)^{-1}\)

- traces analogous to encounters, with \(Z_{jk}\) and \(Z_{jk}^*\) corresponding to 'ports' at the ends of encounter stretches and \(j, k\) corresponding to orbits:
can do integral exactly:

\[
\frac{\det(e^{X_j-Y_k}\text{Ei}(2N, X_j-Y_k))}{\det((X_j-Y_k)^{-1})}
\]

all terms in result vanish either due to \([r^J+K]\) or due to derivatives

off-diagonal contributions to all correlation functions cancel (for time-reversal invariant systems)
Conclusions

- n-point correlations of chaotic systems determined by multiple sums over orbits
- contributions arise if orbits are identical (up to time reversal) or differ in encounters
- n-point correlation functions agree with RMT with time-reversal invariance: checked leading few orders up to $n = 5$ (for non-oscillatory terms)
- without time-reversal invariance: cancellation of off-diagonal contributions shown using matrix integral
Oscillatory terms

Need improved semiclassical approximation: **Riemann-Siegel lookalike formula** (Berry, Keating 1990)

\[
\rho(E) = -\frac{1}{2\pi} \text{Im} \left. \frac{\partial}{\partial E'} \frac{\det(E - H)}{\det(E' - H)} \right|_{E' = E}
\]

\[
\det(E - H) = e^{-i\pi E} \times \sum_A F_A e^{iS_A(E)/\hbar} + \text{c.c.}
\]

Derivation:
- Gutzwiller formula for \(\text{tr} \frac{1}{E - H} \)
- \(\det(E - H) = \exp \text{tr} \ln(E - H) = \exp \left(\int \text{tr} \frac{1}{E - H} \right) \)
- expand exponential
- get relation between short and long orbits from sum over sets of classical periodic orbits shorter than \(T_H/2 \)