


Content

Introduction

Rosenzweig-Porter model

Power law random-banded matrices and ultrametric matrices

The matrix ensembles in this talk are real Hermitian

1) Eugene Bogomolny & M.S., PRE 98, 032139 (2018)

2) Eugene Bogomolny & M.S., PRE 98, 042116 (2018)



Motivations for unusual random matrix ensembles

Random regular graphs with on-site energy disorder:

Anderson Transition between localised and extended states on Bethe
lattices (infinite regular trees) (Abou-Chacra et al,1973)

No consensus about extended states on random regular graphs (RRG)
Only one ergodic extended phase (Mirlin, Tikhonov, 2018;
Biroli,Tarzia, 2018)
There is a second transition between ergodic and non-ergodic
states with non-trivial fractal dimensions (Kravtsov et al, 2018)

Porter-Thomas distribution for eigenstates:

The distribution of eigenvectors is universal for all standard invariant
ensembles distribution. For real matrices: (x =

√
NΨj )

P(x) =
1√
2π

e−
x2
2 , P(y = x2) =

e−y/2√
2πy

, 〈Ψ2〉 = 1

Recent experimental neutron resonance data are in contradiction with
this distribution (Koehler et al, 2011 and 2013)



Rosenzweig-Porter model

Each element is i.i.d. Gaussian variable (up to symmetry)

〈Hij〉 = 0, 〈H2
ii 〉 = 1, 〈H2

ij 〉i 6=j =
ε2

Nγ
, 1 ≤ i , j ≤ N

Rule of thumb for the different regimes

S1(N) =
1
N

N∑
i,j=1

〈
∣∣Hij
∣∣〉, S2(N) =

1
N

N∑
i,j=1

〈
∣∣Hij
∣∣2〉.

If limN→∞ S1(N) <∞ =⇒ eigenvectors are localised and the
spectral statistics is Poissonian
If limN→∞ S2(N) =∞ =⇒ eigenvectors are fully delocalised and
the spectral statistics is GOE

γ > 2 =⇒ localisation

γ < 1 =⇒ standard GOE



Intermediate region: 1 < γ < 2 (Kravtsov et al, 2015)

Moments of eigenvectors (q > 1/2)

Iq = 〈
∑

j

|Ψj |2q〉 −→
N→∞

Cq N−(q−1)Dq

where Dq is the fractal dimension

Localised regime (γ > 2): Dq = 0

Ergodic regime (γ < 1): Dq = 1

Intermediate regime (1 < γ < 2): Dq = 2− γ

Recent rigorous proofs (von Soosten & Warzel, 2017)

In this talk: distribution of eigenvectors when 1 < γ < 2 based on

Breit-Wigner distribution of the variances 〈|Ψj (E)|2〉

Local Gaussian distribution for Ψj (E)

Follows from rigorous results (Benigni, 2017)



Breit-Wigner distribution of eigenvector variances

Σ2
j (E) ≡ 〈|Ψj (E)|2〉 ≈ Γ(E)

πρ(E)N
[
(E − ej )2 + Γ2(E)

]
Average is over off-diagonal elements, diagonal elements ej = Hjj are fixed.

The spreading width Γ(E) is given by the Fermi golden rule

Γ(E) =
πε2

Nγ−1 ρ(E)

The normalised level density ρ(E) is given by

ρ(E) =
1√
2π

exp

(
−E2

2

)
the density of diagonal elements for N →∞ and γ > 1.

Standard normalisation is assumed∑
j

|Ψj (Eα)|2 = 1 or
∑
α

|Ψj (Eα)|2 = 1



Derivation of the Breit-Wigner formula

Recursive relation for the Green function G = (E − iη − H)−1

Gii (E − iη) =
(

E − iη − Hii −
∑
j,k 6=i

HijG
(i)
jk (E − iη)Hki

)−1

where G(E)(i) is the Green function after removing the row and column i
from H. (Schur complement formula, also Feshbach’s projection method)

For large N

∑
j,k 6=i

HijG
(i)
jk Hki ≈

ε2

Nγ

∑
j 6=i

G(i)
jj −→N→∞

ε2

Nγ

∫
Nρ(e)de

E − iη − e

The variance 〈|Ψi (E)|2〉 follows from

Im Gii (E − iη) −→
η→0

π〈|Ψi (E)|2〉ρ(E)



Full eigenvector distribution

The second ingredient is a local Gaussian distribution of Ψj (E) (for fixed ej )

P(Ψj (E)) =
1√

2πΣ2
j (E)

exp

(
−
|Ψj (E)|2

2Σ2
j (E)

)

Integrating over the diagonal element ej gives [x = Ψj (E)]

P(x)E =

∫
ρ(E)√

2πΣ2
j (E)

exp

(
− x2

2Σ2
j (E)

)
dej

Result for the distribution in a small window around E = 0

P(x)E=0 =
δ2

4π
√

a
[
K0(ζ) + K1(ζ)

]
e−ζ+

δ2
2

where

a =
C2ε2

Nγ
, δ = Γ(0) =

√
π ε2√

2 Nγ−1
, ζ =

δ2

4a
(x2 + a).



Distribution in the bulk and in the tail

In the bulk, x has values of the order of
√

a. It is convenient to scale

y = Nγ/2 Ψj (E)

As N →∞
Pbulk(y) ≈ ε

π(y2 + ε2)

In the tail (small δ, finite ζ) it is convenient to rescale

z = N1−γ/2

Then

Ptail(z) =
2
√

2 b3

π
√
πNγ−1 (K0(b2z2) + K1(b2z2))e−b2z2

, b =

√
πε

2
√

2



Distribution of eigenvector components in the bulk
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Distribution of y = Nγ/2 Ψj (E) for the RP model with γ = 1.5 and ε = 1√
2

for
N = 4096,2048,1024.



Distribution in logarithmic scale
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Distribution of y = Nγ/2 Ψj (E) for the RP model with γ = 1.5 and ε = 1√
2

for
N = 4096 (red), N = 2048 (blue) and N = 1024 (black).



Rescaled distribution of eigenvector components in the tail
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Distribution of z = N1−γ/2 Ψj (E) for the RP model with γ = 1.5 and ε = 1√
2

for
N = 4096 (red), N = 2048 (blue) and N = 1024 (black).



Moments of the eigenvectors

Results for the centre of the spectrum

Iq ≡ 〈
N∑

j=1

|Ψj (E)|2q〉 =
2q−1/2aqΓ(q + 1/2)√

πδ2q−1 Ψ
(1

2
,

3
2
− q;

δ2

2

)
where Ψ(α, β; z) = is the Tricomi confluent hypergeometric function

In the limit δ → 0

I
q> 1

2
= N−(q−1)(2−γ) C

q> 1
2
, C

q> 1
2

=
Γ(q − 1/2)Γ(q + 1/2)

π b2q−2 2q−2 Γ(q)

I
q= 1

2
= N1−γ/2 C 1

2
, C 1

2
=
ε

π

[
2(γ − 1) ln N − ln

(πε4
16
)
− γ
]

I
q< 1

2
= N−γq+1 C

q< 1
2
, C

q< 1
2

=
ε2q

π
Γ(q + 1/2)Γ(1/2− q)ccor(q)

Corrective factor for q < 1/2

ccor(q) = 1 +
π1−q ε2−4q Γ(q − 1/2)

21−2q Γ(q) Γ(1/2− q)
N−(γ−1)(1−2q)



Eigenvector moments for N = 512,1024,2048,4096
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Eigenvector moments for q = 1
8 (red), q = 2 (blue) and q = 1

2 (black).

Here C 1
8

= 1.19 with ccor = (1− .44/N1/4), and C2 = 1.19.



Summary of first part

The statistical distribution for eigenvectors of the Rosenzweig-Porter
model has been obtained in the regime 1 < γ < 2.

The derivation is based on two physical assumptions (which are exact
for the considered model).

The first states that the mean square modulus of eigenvectors is given
by a Breit-Wigner formula with a spreading width in agreement with the
Fermi golden rule.

The second states that the eigenvectors have a local Gaussian
distribution with variance given by the above formula.

This approach leads to explicit formulas that agree extremely well with
numerical calculations.



Power-law random banded matrices and ultrametric matrices

Each matrix element is i.i.d. Gaussian variable (up to symmetry)

〈Hij〉 = 0, 〈H2
ii 〉 = 2, 〈H2

ij 〉i 6=j = a2(i , j)

Power-law random banded matrices (Mirlin et al, 1996)
a(r) with r = |i − j | decreases as a power of the distance a(r) −→

r→∞
ε r−s

A translation-invariant choice to avoid boundary effects is

a(r) = ε

[
1 +

(N
π

sin(
πr
N

)
)2
]−s/2

.

Ultrametric random matrices (Fyodorov et al, 2009)
2n × 2n matrices with a(i , j) = ε2−s dist(i,j)

81 2 3 4 5 6 7

dist(i , j) is the ultrametric distance on a binary tree.
For example, dist(1,2) = 1, dist(1,3) = 2 and dist(1,5) = 3.



Intermediate region 1
2 < s < 1

The rule of thumb for the two moments S1(N) and S2(N) predicts for both
ensembles

s > 1 =⇒ eigenvectors are localised and the spectral statistics is
Poissonian

s < 1
2 =⇒ eigenvectors are fully delocalised and the spectral statistics is

GOE

Intermediate region
1
2
< s < 1

Due to the absence of a small or large parameter standard analytical
approaches to random matrices are not applicable.

=⇒ Numerical investigation of the two ensembles



Main numerical results

No indication of non-trivial fractal dimensions when 1
2 < s < 1.

Distribution of x =
√

NΨj becomes quickly independent of N

Eigenvector distribution is extremely well approximated by the
generalised hyperbolic distribution (GHD)(symmetric case)

PGHD(x) =

√
α√

2πδλKλ(αδ)
(x2 + δ2)(λ−1/2)/2 Kλ−1/2

(
α
√

x2 + δ2
)

GHD is a variance mixture of the normal distribution with variance distributed
according to the generalised inverse Gaussian distribution (GIG)
(normal variance-mean mixture)

PGHD(x) =

∫ ∞
0

PGIG(y)
e−x2/2y√

2πy
dy

where

PGIG(x) =
αλ

2δλKλ(αδ)
xλ−1e−

1
2 (α

2x+δ2x−1)



Parameters and moments

GHD and GIG depend on three parameters α, δ and λ.

The moments are known analytically

Cq ≡ 〈x2q〉GHD = CGOE(q)〈xq〉GIG

CGOE(q) =
2qΓ(q + 1

2 )
√
π

, 〈xq〉GIG =
( δ
α

)q Kλ+q(αδ)

Kλ(αδ)

The variance of the GHD is fixed to one by the normalisation. We set

α =

√
ξKλ+1(ξ)

Kλ(ξ)
, δ =

ξ

α
, ξ = αδ

With this choice the distributions depend on two parameters: λ and ξ.



Eigenvector distribution for PLBM with s = 0.7 and ε = 1
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Distribution of x =
√

NΨj for N = 8192 (black), N = 4096 (red), N = 2048
(blue), N = 1024 (green) and N = 512 (magenta).
Compared to GHD with α = 2.6154, λ = 3.3615, δ = 0.2903 (red line)



Eigenvector distribution for UMM with s = 0.7 and ε = 1
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Distribution of x =
√

NΨj for N = 8192 (black), N = 4096 (red), N = 2048
(blue), N = 1024 (green) and N = 512 (magenta).
Compared to GHD with α = 1.1673, λ = 0.3880, δ = 0.4409 (red line)



Eigenvector distribution for PLBM with s = 0.3 and ε = 1 (GOE)
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Distribution of x =
√

NΨj for N = 8192 (black), N = 4096 (red), N = 2048
(blue), N = 1024 (green) and N = 512 (magenta).
Compared to Gaussian with zero mean and unit variance (red line)



PLBM with s = 0.7 and different ε (N=2048)
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ε = 0.3 (black circles), ε = 0.5 (blue squares) and ε = 1.5 (red diamond)
GHD for ε = 0.3: α = 0.6506, λ = −0.1067, δ = 0.2805
GHD for ε = 0.5: α = 1.2754, λ = 0.5862, δ = 0.3945
GHD for ε = 1.5: α = 2.9341, λ = 3.6392, δ = 1.0377



PLBM with s = 0.7 and different ε in logarithmic scale (N = 2048)
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ε = 0.3 (black circles), ε = 0.5 (blue squares) and ε = 1.5 (red diamond)



Local eigenvector variance

Choose interval I = [E − δE/2,E + δE/2] with MI consecutive levels

Calculate local variance

x =
1

MI

∑
Eα∈I

N|Ψj (Eα)|2

Calculate the distribution P(x) of x for the ensemble

If Ψj (Eα) are independent (GOE) then P(x) is χ2-distribution with ν = MI

Pχ2 (x , ν) =
νν xν/2−1

2ν/2Γ(ν/2)
e−ν x/2, 〈x〉χ2 = 1 .

Asymptotic formula for MI →∞ (central limit theorem)

P(x)GOE −→
MI→∞

√
MI

4π
e−MI(x−1)2/4

Deviation from this distribution −→ Ψj (Eα) are not independent



Local eigenvector variance for PLBM with s = 0.3 (GOE)
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Results for ε = 1, N = 4096, different MI :

Staircase lines: MI = 200 (blue), MI = 100 (red), MI = 50 (black)

Solid lines: χ2-distribution with ν = MI , and their asymptotic form (dotted)



Local eigenvector variance for PLBM with s = 0.7
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Red staircase: ε = 0.5, N = 4096, MI = 100
Other staircases: ε = 1, N = 4096, different MI
(blue: MI = 50, black: MI = 100, green: MI = 200)
compared to GIG distribution with previous parameters (solid lines)
Insert: ε = 1, MI = 100 with N = 1024,2048,4096,8192



Local eigenvector variance for UMM with s = 0.7
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Staircases: ε = 1, N = 4096, different MI
(blue: MI = 50, black: MI = 100, green: MI = 200)
compared to GIG distribution with previous parameters (solid red line)
Insert: ε = 0.5, MI = 100, N = 4096



Comparison with experimental results

Experimental results for neutron widths were fitted with a χ2-distribution

Pχ2 (x , ν) =
νν/2 xν/2−1

2ν/2Γ(ν/2)
e−ν x/2, 〈x〉χ2 = 1 .

192Pt: ν = 0.57± 0.16, 194Pt: ν = 0.47± 0.19, 196Pt: ν = 0.60± 0.28

The normalised GHD depends on 2 parameters λ and ξ

We fixed ξ = 0.02, 0.2, 2 (black, red, blue) and fitted ν for different λ
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Eigenvector distribution for complex PLBM with s = 0.7 and ε = 0.3
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Data GUE s=0.7 eps 0.3  N=2048
Fit GHD alpha=1.585  lambda=0.388 delta= 0.261

Distribution of x =
√

NΨj for N = 2048 (red dots).
Compared to GHD with α = 1.585, λ = 0.388, δ = 0.261 (black line).



Eigenvector distribution for complex PLBM with s = 0.7 and ε = 0.5
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Data GUE s=0.7 eps=.5  N=2048 
GHD fit : alpha=2.963 lambda=2.148  delta=0.165

Distribution of x =
√

NΨj for N = 2048 (red dots).
Compared to GHD with α = 2.963, λ = 2.148, δ = 0.165 (black line).



Eigenvector distribution for complex UMM with s = 0.7 and ε = 0.5
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Hierarchical model, s=0.7, eps=0.5, N=2048
Fit GHD: alpha=1.264, lambda=0.125, delta=0.236

Distribution of x =
√

NΨj for N = 2048 (red dots).
Compared to GHD with α = 1.264, λ = 0.125, δ = 0.236 (black line).



Summary of second part

Power-law banded and ultrametric matrices are representatives of
random matrix ensembles with varying strength of interaction

We numerically investigated the intermediate region 1
2 < s < 1 between

the fully delocalised regime (s < 1/2) and the localised regime (s > 1)

No non-trivial fractal dimensions were observed. After rescaling by
√

N
the eigenvector distributions become N-independent

Main result: the eigenvector distributions can be extremely accurately
fitted by the generalised hyperbolic distribution

The investigation of the PLBM and UMM in the intermediate regime is of
importance as they constitute a new class of random matrices potentially
important for different applications

One possible application is the explanation of deviations of recent
experimental data of neutron widths from the Porter-Thomas distribution


