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Motivations for unusual random matrix ensembles

Random regular graphs with on-site energy disorder:

@ Anderson Transition between localised and extended states on Bethe
lattices (infinite regular trees) (Abou-Chacra et al,1973)
@ No consensus about extended states on random regular graphs (RRG)

e Only one ergodic extended phase (Mirlin, Tikhonov, 2018;
Biroli, Tarzia, 2018)

e There is a second transition between ergodic and non-ergodic
states with non-trivial fractal dimensions (Kravtsov et al, 2018)

Porter-Thomas distribution for eigenstates:

@ The distribution of eigenvectors is universal for all standard invariant
ensembles distribution. For real matrices: (x = VNW;)

PO = e %, Py =x) = o
V2r ’ \/271'}/’

@ Recent experimental neutron resonance data are in contradiction with
this distribution (Koehler et al, 2011 and 2013)



Rosenzweig-Porter model

@ Each element is i.i.d. Gaussian variable (up to symmetry)
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(Hj) =0, (Hi) =1, (Hizj=45, 1<ii<N

@ Rule of thumb for the different regimes

N N
SN = 1S (M. SN = 1 S (A,
ij=1 f,j=1

o If limy_o S1(N) < co = eigenvectors are localised and the

spectral statistics is Poissonian
o If limy_ oo S2(N) = co = eigenvectors are fully delocalised and

the spectral statistics is GOE
@ v > 2 = localisation

@ v < 1= standard GOE



Intermediate region: 1 < v < 2 (Kravtsov et al, 2015)

Moments of eigenvectors (g > 1/2)

lg = (Z |W;[29) e CqN~(a 10
J

where D, is the fractal dimension

@ Localised regime (y > 2): Dy =0

@ Ergodic regime (y < 1): Dy =1

@ Intermediate regime (1 <y <2): Dg =2 — v
Recent rigorous proofs (von Soosten & Warzel, 2017)

In this talk: distribution of eigenvectors when 1 < v < 2 based on
@ Breit-Wigner distribution of the variances (|W;(E)|?)
@ Local Gaussian distribution for W;(E)

Follows from rigorous results (Benigni, 2017)



Breit-Wigner distribution of eigenvector variances
r(E)
Y2E) = (v
HEV= I~ EN[(E — g2 + To(E)
Average is over off-diagonal elements, diagonal elements e; = Hj; are fixed.

Q

@ The spreading width '(E) is given by the Fermi golden rule

762

rE) = WP(E)

@ The normalised level density p(E) is given by

p(E) = \/1276)('0 (—I::)

the density of diagonal elements for N — oo and v > 1.
@ Standard normalisation is assumed

Z|w, J2=1 or Z\w, =



Derivation of the Breit-Wigner formula

Recursive relation for the Green function G = (E —in — H)~'

1
Gi(E —in) = ( — Hij — Z H,]le —in Hk/)
J k#i

where G(E)() is the Green function after removing the row and column i
from H. (Schur complement formula, also Feshbach’s projection method)

For large N
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The variance (|W;(E)|?) follows from

Im Gij(E —in) ~— ([ Wi(E)[?)p(E)



Full eigenvector distribution

The second ingredient is a local Gaussian distribution of W;(E) (for fixed e))
1 \Vi(E)?
P(V,(E)) = exp [ -2
/ 2r¥2(E) 2y 2(E)

Integrating over the diagonal element g; gives [x = V;(E)]

X2
de;
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Result for the distribution in a small window around E =0
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Distribution in the bulk and in the tail

In the bulk, x has values of the order of v/a. It is convenient to scale
y = N2 Wy(E)

As N — oo .

Poui(y) ~ 7021 @)

In the tail (small 4, finite ¢) it is convenient to rescale
z=N'"/?
Then

2v2b? R
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Poil(2) = >3




Distribution of eigenvector components in the bulk

P(y)
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Distribution of y = N7/2 W;(E) for the RP model with v = 1.5 and e = % for
N = 4096, 2048, 1024.



Distribution in logarithmic scale

In(P(y))

Distribution of y = N7/2 W;(E) for the RP model with v = 1.5 and ¢ = % for
N = 4096 (red), N = 2048 (blue) and N = 1024 (black).



Rescaled distribution of eigenvector components in the tail

In( Py)N?)
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Distribution of z = N'=7/2 w,(E) for the RP model with v = 1.5 and ¢ = % for
N = 4096 (red), N = 2048 (blue) and N = 1024 (black).



Moments of the eigenvectors
Results for the centre of the spectrum

q-1/259 2
)= ZN’/ )29y — 2 ar(q7+1/2)w(1 3 _6)
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where V(a, 5; z) = is the Tricomi confluent hypergeometric function
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In the limitd — 0
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Corrective factor for g < 1/2
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Eigenvector moments for N = 512, 1024, 2048, 4096

C,(N)

15—

R

| I | I |
1 1000 2000 3000

N

Eigenvector moments for g = § (red), g = 2 (blue) and g = } (black).

Here Cy = 1.19 with ¢, = (1 — .44/N"/*), and C, = 1.19.
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Summary of first part

@ The statistical distribution for eigenvectors of the Rosenzweig-Porter
model has been obtained in the regime 1 < v < 2.

@ The derivation is based on two physical assumptions (which are exact
for the considered model).

@ The first states that the mean square modulus of eigenvectors is given
by a Breit-Wigner formula with a spreading width in agreement with the
Fermi golden rule.

@ The second states that the eigenvectors have a local Gaussian
distribution with variance given by the above formula.

@ This approach leads to explicit formulas that agree extremely well with
numerical calculations.



Power-law random banded matrices and ultrametric matrices

Each matrix element is i.i.d. Gaussian variable (up to symmetry)

Power-law random banded matrices (Mirlin et al, 1996)
a(r) with r = |i — j| decreases as a power of the distance a(r) — er—*

r—o00
A translation-invariant choice to avoid boundary effects is
N . 7ro2] %2
a(r) = e {1 + (;sm(ﬁ)) }

Ultrametric random matrices (Fyodorov et al, 2009)
2" x 2" matrices with a(i, j) = ¢ 2~ S4s()

o

1 23 45 67 8

dist(/, j) is the ultrametric distance on a binary tree.
For example, dist(1,2) = 1, dist(1,3) = 2 and dist(1,5) = 3.



Intermediate region } < s < 1

The rule of thumb for the two moments S;(N) and S,(N) predicts for both
ensembles

@ s> 1 = eigenvectors are localised and the spectral statistics is
Poissonian

@ s< % = eigenvectors are fully delocalised and the spectral statistics is
GOE

Intermediate region
1

= 1
5 <8<

Due to the absence of a small or large parameter standard analytical
approaches to random matrices are not applicable.

= Numerical investigation of the two ensembles



Main numerical results

@ No indication of non-trivial fractal dimensions when % <s< 1.
Distribution of x = v/NW; becomes quickly independent of N

@ Eigenvector distribution is extremely well approximated by the
generalised hyperbolic distribution (GHD)(symmetric case)

\/a 2 2\(A—-1/2)/2
Pon(X) = ——Y& (@ 4 2)0D2 K, (/X + 6
GHD( ) \/275)\}(/\(0(5) ( ) A 1/2(Oé )

GHD is a variance mixture of the normal distribution with variance distributed
according to the generalised inverse Gaussian distribution (GIG)
(normal variance-mean mixture)

ef)(?/zy
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Pcup(x) = /000 Paic(y)
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Parameters and moments

GHD and GIG depend on three parameters a, 6 and .

The moments are known analytically

Cq= <X2q>GHD = Cooe(9)(x%)cia

~291(q + 3)

Coor(q) = é)qM

g <Xq>GIG:(a Ky (ad)

The variance of the GHD is fixed to one by the normalisation. We set

€K (8) S _
o = T(g), (S—E, 5—0/6

With this choice the distributions depend on two parameters: A and &.



Eigenvector distribution for PLBM with s = 0.7 and ¢ = 1

In( P(x))

Distribution of x = v/NWV; for N = 8192 (black), N = 4096 (red), N = 2048
(blue), N = 1024 (green) and N = 512 (magenta).
Compared to GHD with o = 2.6154, A = 3.3615, § = 0.2903 (red line)



Eigenvector distribution for UMM with s = 0.7 and ¢ = 1

In( P(x))
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Distribution of x = v/NWV; for N = 8192 (black), N = 4096 (red), N = 2048
(blue), N = 1024 (green) and N = 512 (magenta).

Compared to GHD with o = 1.1673, A = 0.3880, § = 0.4409 (red line)



Eigenvector distribution for PLBM with s = 0.3 and ¢ = 1 (GOE)

In(P(x) )
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Distribution of x = v/NWV; for N = 8192 (black), N = 4096 (red), N = 2048
(blue), N = 1024 (green) and N = 512 (magenta).

Compared to Gaussian with zero mean and unit variance (red line)



PLBM with s = 0.7 and different ¢ (N=2048)
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e = 0.3 (black circles), e = 0.5 (blue squares) and ¢ = 1.5 (red diamond)
GHD for e = 0.3: « = 0.6506, A = —0.1067, 6 = 0.2805

GHD for e = 0.5: a = 1.2754, A = 0.5862, § = 0.3945

GHD for e = 1.5: o = 2.9341, A = 3.6392, 6 = 1.0377



PLBM with s = 0.7 and different ¢ in logarithmic scale (N = 2048)

In(PX))

Xo-

e = 0.3 (black circles), e = 0.5 (blue squares) and ¢ = 1.5 (red diamond)



Local eigenvector variance

@ Choose interval I = [E — 0E /2, E 4+ 0E /2] with M, consecutive levels
@ Calculate local variance
1
X=qr > N(EL)P
E.€l

@ Calculate the distribution P(x) of x for the ensemble
@ If W;(E,) are independent (GOE) then P(x) is x2-distribution with v = M,

Y Xz//2—1

sz(X, V) = We

_VX/Z., <X>X2:1 .

@ Asymptotic formula for M; — oo (central limit theorem)

M[ ~Mi(x— 2
p [ M —mix-1y/a
(X)GOE M:}oo 4-7'('e

@ Deviation from this distribution — W;(E,,) are not independent



Local eigenvector variance for PLBM with s = 0.3 (GOE)
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Results for e = 1, N = 4096, different M;:
Staircase lines: M, = 200 (blue), M, = 100 (red), M, = 50 (black)

Solid lines: y?-distribution with v = M, and their asymptotic form (dotted)



Local eigenvector variance for PLBM with s = 0.7

Red staircase: e = 0.5, N = 4096, M, = 100

Other staircases: ¢ = 1, N = 4096, different M,

(blue: M; = 50, black: M, = 100, green: M, = 200)

compared to GIG distribution with previous parameters (solid lines)
Insert: e =1, M, = 100 with N = 1024,2048, 4096, 8192



Local eigenvector variance for UMM with s = 0.7

P(x)
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Staircases: e = 1, N = 4096, different M,

(blue: M, = 50, black: M, = 100, green: M, = 200)

compared to GIG distribution with previous parameters (solid red line)
Insert: ¢ = 0.5, M, = 100, N = 4096



Comparison with experimental results

@ Experimental results for neutron widths were fitted with a x2-distribution
Vl//2 Xu/271 N
_ —vXx/2 ) —
Pelxv) = 22T (vf2)" Whe =1
@ 92pt: 1y = 0.57 £ 0.16, "%*Pt: v = 0.47 £ 0.19, "%Pt: » = 0.60 + 0.28
@ The normalised GHD depends on 2 parameters A and &

@ We fixed £ = 0.02, 0.2, 2 (black, red, blue) and fitted v for different A




Eigenvector distribution for complex PLBM with s = 0.7 and ¢ = 0.3

o  DalaGUEs=07eps03 N=2048
——  Fit GHD alpha=1.585 lambda=0.388 delta= 0.261

Distribution of x = v/NW; for N = 2048 (red dots).
Compared to GHD with o = 1.585, A = 0.388, 6 = 0.261 (black line).



Eigenvector distribution for complex PLBM with s = 0.7 and ¢ = 0.5

o DalaGUES07eps=5 N=2048
—— GHD it : dlpha=2.963 lambda=2.148 delta=0.165

Distribution of x = v/NW; for N = 2048 (red dots).
Compared to GHD with o = 2.963, A = 2.148, 6 = 0.165 (black line).



Eigenvector distribution for complex UMM with s = 0.7 and ¢ = 0.5

e Hierarchical model, =0.7, eps=0.5, N=2048
5l ——  Fit GHD: alpha=1.264, lambda=0.125, delta=0.236
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Distribution of x = v/NW; for N = 2048 (red dots).
Compared to GHD with o = 1.264, A = 0.125, 6 = 0.236 (black line).



Summary of second part

Power-law banded and ultrametric matrices are representatives of
random matrix ensembles with varying strength of interaction

We numerically investigated the intermediate region % < § < 1 between
the fully delocalised regime (s < 1/2) and the localised regime (s > 1)

No non-trivial fractal dimensions were observed. After rescaling by /N
the eigenvector distributions become N-independent

Main result: the eigenvector distributions can be extremely accurately
fitted by the generalised hyperbolic distribution

The investigation of the PLBM and UMM in the intermediate regime is of
importance as they constitute a new class of random matrices potentially
important for different applications

One possible application is the explanation of deviations of recent
experimental data of neutron widths from the Porter-Thomas distribution



