Loschmidt echoes in Nuclear Magnetic Resonance: multiple quantum coherence excitations and decoherence

Claudia M. Sánchez,

L. Buljubasich, H. M. Pastawski, A. K. Chattah

FAMAF-UNC and IFEG-CONICET (ARGENTINA)

e-mail: claudia@famaf.unc.edu.ar

June, 2016

MOTIVATION

- To understand the relationship between the system dynamics and decoherence.
- Echoes in NMR: time reversal is unavoidably degraded by uncontrolled, internal or environmental, degrees of freedom.
- Central Hypothesis of Irreversibility: decoherence is tied to T₂ (dipolar interactions).
- Complex many-body dynamics could rule an emergent mechanism of decoherence and irreversibility in the thermodynamic limit.

IMPLEMENTATIONS

Decoherence \leftarrow Irreversibility \leftarrow Many-body quantum dynamics.

• Nuclear Magnetic Resonance.

Loschmidt Echo: Signal attenuation after time reversal

 $M(t) = |\langle \Psi_0| \exp \{i(\mathcal{H}_0 + \Sigma)t\} \exp \{-i\mathcal{H}_0t\} |\Psi_0\rangle|^2$

REVERTING THE EVOLUTION

- In general, the elements ρ_{ij} are not detectable. It is only possible to detect magnetization.
- A series of signals is measured for different phases. The Fourier Transform separates different coherence orders:

$$S_{\phi}(\tau) = \sum_{n} e^{in\phi} S_{n}(\tau)$$

DENSITY MATRIX ELEMENTS

- Diagonal initial state, elements represent the populations of each state
- Evolution generates off diagonal elements

	$ +++\rangle$	$ ++-\rangle$	$ +-+\rangle$	$ -++\rangle$	$ +\rangle$	$ -+-\rangle$	$ +\rangle$	angle
$\langle + + + $	$ ho_{11}$	$ ho_{12}$	$ ho_{13}$	$ ho_{14}$	$ ho_{15}$	$ ho_{16}$	$ ho_{17}$	$ ho_{18}$
$\langle + + - $	$ ho_{21}$	$ ho_{22}$	$ ho_{23}$	$ ho_{24}$	$ ho_{25}$	$ ho_{26}$	$ ho_{27}$	$ ho_{28}$
$\langle + - + $	$ ho_{31}$	$ ho_{32}$	$ ho_{33}$	$ ho_{34}$	$ ho_{35}$	$ ho_{36}$	$ ho_{37}$	$ ho_{38}$
$\langle -++ $	$ ho_{41}$	$ ho_{42}$	$ ho_{43}$	$ ho_{44}$	$ ho_{45}$	$ ho_{46}$	$ ho_{47}$	$ ho_{48}$
$\langle + $	$ ho_{51}$	$ ho_{52}$	$ ho_{53}$	$ ho_{54}$	$ ho_{55}$	$ ho_{56}$	$ ho_{57}$	$ ho_{58}$
$\langle -+- $	$ ho_{61}$	$ ho_{62}$	$ ho_{63}$	$ ho_{64}$	$ ho_{65}$	$ ho_{66}$	$ ho_{67}$	$ ho_{68}$
$\langle+ $	$ ho_{71}$	$ ho_{72}$	$ ho_{73}$	$ ho_{74}$	$ ho_{75}$	$ ho_{76}$	$ ho_{77}$	$ ho_{78}$
$\langle $	ρ_{81}	$ ho_{82}$	$ ho_{83}$	$ ho_{84}$	$ ho_{85}$	$ ho_{86}$	$ ho_{87}$	$ ho_{88}$

SPIN INTERACTIONS

• Protons (¹H, I = 1/2) in the presence of a strong magnetic field.

• Hamiltonian: $\mathcal{H} = \mathcal{H}^{\text{Zeeman}} + \mathcal{H}^{\text{Dipolar}}$

$$\mathcal{H} = \omega_{z} \sum_{i} I_{i}^{z} + \sum_{i < j} d_{ij} \left[3I_{i}^{z} I_{j}^{z} - \mathbf{l}_{i} \cdot \mathbf{l}_{j} \right]$$
$$= \omega_{z} \sum_{i} I_{i}^{z} + \sum_{i < j} d_{ij} \left[2I_{i}^{z} I_{j}^{z} - \frac{1}{2} \left(I_{i}^{+} I_{j}^{-} + I_{i}^{-} I_{j}^{+} \right) \right]$$

where $I_i^u = \sigma_u/2$ and $I_i^{\pm} = I_i^x \pm I_i^y$.

• Initial state: $ho_0 \propto I^z = \sum_j I_j^z$

EXPERIMENTAL MEASUREMENTS OF THE LE

- Perfect reversion $\iff LE = 1$
- Degradation of the signal produces a decay in LE
- Magic Echo sequence for the evolution and its reversal

$$\mathcal{H}_{xx} = \sum_{i < j} d_{ij} \left(3I_i^x I_j^x - \mathbf{I_i} \cdot \mathbf{I_j} \right)$$

MULTIPLE-SPIN CORRELATIONS

Correlations development

$$\rho(\tau + \delta \tau) = e^{-i\delta\tau\mathcal{H}}\rho(\tau)e^{i\delta\tau\mathcal{H}} \sim \rho(\tau) - i\delta\tau[\mathcal{H},\rho]$$

Multi-spin operators of the form: $I_u^l \dots I_v^o I_w^p(u, v, w = x, y, z)$ describes modes in which K spins are interconected.

Figure from Baum, Munowitz, Garroway, Pines, J. Chem. Phys. 83 (5) 1985.

A WALK THROUGH LIOUVILLE SPACE

Routes in the Liouville space allowed for coherences

SPIN SYSTEMS: GEOMETRIES AND DIMENSIONALITIES

Adamantane (C₁₀H₁₆)

- FCC structure.
- Average out of intramolecular interactions.
- Each point with 16 spins.
- Intermolecular interactions.
- Infinite System.

Liquid crystal (5CB)

- Liquid crystals in nematic mesophase
- Intramolecular interactions in finite systems
- Less than 20 spins.

SPIN SYSTEMS: GEOMETRIES AND DIMENSIONALITIES

Ferrocene: (C₅H₅)₂Fe

- Two cyclopentadienyl rings separated by an Fe nucleus.
- Intra and intermolecular interactions.
- Infinite System.

HAp: $Ca_5(PO_4)_3OH$

 It can be considered as 1-dimensional spin chain with near-neighbor couplings.

OTHER PULSE SEQUENCES

Evolution with

$$\mathcal{H}_{DQ} = -\frac{1}{2} \sum_{i < j} d_{ij} \left(I_i^+ I_j^+ + I_i^- I_j^- \right)$$

$$\Delta K = \pm 1, \ \Delta n = \pm 2$$

In the pulse sequence with \mathcal{H}_{DQ} evolution, the reversion is produced by changing the phases of the pulses.

EXPERIMENTS IN FERROCENE

- Clusters and Decoherence.
- Data acquired with the Magic Echo pulse sequence

Sánchez CM, Acosta RH, Levstein PR, Pastawski HM, Chattah AK., Phys. Rev. A 90 2014.

EXPERIMENTS IN FERROCENE

• Loschmidt Echo and Multiple Quantum Coherence curves

EXPERIMENTS IN A LIQUID CRYSTAL

OUR NEW PULSE SEQUENCE: "PRL echo"

Scaling factor k: from -1/2 to 1

Hamiltonian

$$\mathcal{H} = -\gamma B_e I^{\mathcal{Z}} + \lambda_0(\theta) \sum_{i < j} d_{ij} (3I_i^{\mathcal{Z}} I_j^{\mathcal{Z}} - \mathbf{I}_i \cdot \mathbf{I}_j)$$

Buljubasich L, Sánchez CM, Dente AD, Levstein PR, Chattah AK, Pastawski HM, J. Chem. Phys., 143, 2015.

EXPERIMENTS IN ADAMANTANE

• The same initial decay rate for all scaling factors.

• For $\tau > 450 \,\mu$ s, the curves are ordered according $|\mathbf{k}|$.

Buljubasich L, Sánchez CM, Dente AD, Levstein PR, Chattah AK, Pastawski HM, J. Chem. Phys., 143, 2015.

CONCLUSIONS

- Study of the connectivity of the system through MQC evolution.
- Q Cluster size extracted by means of Gaussian curves fittings.
- It was possible to observe correlations between the growth of the system and decoherence.
- The difference in the coupling constants values separates the time evolution of the system by allowing a temporary stagnation in clusters size evidencing correspondence with decoherence.
- There is a decoherence mechanism residing in the growth rate of the state of the system. It is beyond the size, or complexity of the state.

CONCLUSIONS

- Study of the connectivity of the system through MQC evolution.
- Q Cluster size extracted by means of Gaussian curves fittings.
- It was possible to observe correlations between the growth of the system and decoherence.
- The difference in the coupling constants values separates the time evolution of the system by allowing a temporary stagnation in clusters size evidencing correspondence with decoherence.
- There is a decoherence mechanism residing in the growth rate of the state of the system. It is beyond the size, or complexity of the state.

