Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases

Anna Minguzzi
LPMMC Université Grenoble Alpes and CNRS
Multicomponent 1D fermions with ultracold atoms: a new system for studying....

- Effects of strong interactions and correlations
- Universality
- Beyond-Luttinger-liquid phenomena
- Magnetic phases: analog of antiferromagnetism, itinerant ferromagnetism
Plan

1D multicomponent fermions with repulsive interactions
Exact solution at infinite interactions, DMRG results at arbitrary interactions

Symmetry characterization of the wavefunction
Density profiles

Momentum distribution
Tan’s contacts
1D two-component Fermi gases

with repulsive intercomponent interactions; like electrons with spin 1/2

Tuning the interactions: possibility to reach strongly correlated regime

Fermionizing the fermions:

strong repulsive interactions → effective Pauli principle between fermions belonging to different components → ‘Tonks-Girardeau regime’

at increasing interactions….

[Zurn et al, Phys Rev Lett 108, 070503 (2012)]
1D multi-component Fermi gases

173Yb Experiments with up to $r=6$ components

Tight confinement – 1D regime

Presence of a longitudinal harmonic confinement

Repulsive interactions : $g>0$

$$\mathcal{H} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + \frac{1}{2} m \omega^2 x_i^2 \right] + g \sum_{i<j} \delta(x_i - x_j)$$

[Pagano et al Nat Phys (2014)]

Generalization of Girardeau’s solutions for $g \rightarrow \infty$

In the limit of strongly repulsive interactions, fermionization onto a large Fermi sphere for $N=N_1+N_2+...N_r$ noninteracting fermions
Properties of the fermionized regime

For a r-component Fermi gas, large degeneracy of the ground state:

\[\frac{N!}{N_1! \ldots N_r!} \]

as for multicomponent BF mixtures [Girardeau, Minguzzi, PRL (2007)]

Mapping onto an ideal Fermi gas with \(N=N_1+N_2+\ldots+N_r \) fermions

– the ideal-Fermi gas wavefunction has the right nodes

– when exchanging two fermions belonging to the same component, the wavefunction takes a minus sign

– one needs to fix the phase of the wavefunction when exchanging two fermions belonging to different components: origin of the degeneracy

[Volosniev et al Nat Phys (2015)]
Exact wavefunction in the fermionized regime

Generalization of Girardeau’s wavefunction for impenetrable bosons [Volosniev et al]

\[\Psi(x_1, \ldots, x_N) = \sum_{P \in S_N} a_P \chi(x_{P(1)} < \cdots < x_{P(N)}) \Psi_A(x_1, \ldots, x_N) \]

The ground state wavefunction is the one which has the largest slope at decreasing interactions – related to the Tan’s contact

\[K = -(m^2/\hbar^4)(\partial E/\partial g^{-1}) \]

The coefficients \(a_P \) are determined by maximizing \(K \)
I - Symmetry
The Lieb and Mattis theorem

Theory of Ferromagnetism and the Ordering of Electronic Energy Levels

Elliott Lieb and Daniel Mattis

Thomas J. Watson Research Center, International Business Machines Corporation, Yorktown Heights, New York

(Received May 25, 1961; revised manuscript received September 11, 1961)

Consider a system of \(N \) electrons in one dimension subject to an arbitrary symmetric potential, \(V(x_1, \cdots, x_N) \), and let \(E(S) \) be the lowest energy belonging to the total spin value \(S \). We have proved the following theorem: \(E(S) < E(S') \) if \(S < S' \). Hence, the ground state is unmagnetized. The theorem also holds

Two component fermions (electrons) : the ground state has the smallest possible spin compatible with the fermion imbalance

Example with two fermions :

\[
0^0\Psi = \Phi_{S_y}(r_1, r_2)[(+-) - (-+)],
\]

The spin part has \(S=0 \) and is antisymmetric. The spatial part is symmetric. (→ The total wavefunction is antisymmetric)

Absence of ferromagnetism for any finite interactions

see also [Barth and Zerger Ann. Phys. 326, 2544, 2011]
Can one have ferromagnetism then?

The highest excited branch at infinite interactions has the largest spin.

Ferromagnetism in the lowest gas state of the super-Tonks regime.

QUESTION:
What happens for systems with more than two spin components?
– not an ensemble of spin $\frac{1}{2}$ particles,
– each component corresponds to a ‘color’
Symmetry characterization for multicomponent gases

The **Young tableaux** indicate the symmetry under exchange of particles belonging to each component.

Examples for 6 fermions:

- Fully antisymmetric spatial wavefunction
- Fully symmetric spatial wavefunction

Intermediate symmetry: antisymmetric wrt columns and symmetric wrt rows
How to associate Young tableaux to wavefunctions

Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993)]

$$\Gamma^{(k)} = \sum_{i_1 < \ldots < i_k} (i_1 \ldots i_k)$$

cyclic permutation of k elements

For the transposition class $\Gamma^{(2)}$ its eigenvalue γ_2 allows to link to the Young tableau according to

$$\gamma_2 = \frac{1}{2} \sum_i \lambda_i (\lambda_i - 2i + 1)$$

line of Young tableau

number of boxes in the Young tableau

[J. Decamp et al, NJP 18, 055011 (2016)]
Symmetry of the wavefunctions : results

Take total N=6 fermions, various combinations among the components

The ground state spatial wavefunction has a single Young Tableau → a definite symmetry
Symmetry of the wavefunctions : results

Take total N=6 fermions, various combinations among the components.

The ground state spatial wavefunction has a single Young Tableau → a definite symmetry

<table>
<thead>
<tr>
<th>System</th>
<th>A_{max}</th>
<th>symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r = 2, N_1 = N_2 = 3$</td>
<td>Y_{-3}</td>
<td></td>
</tr>
<tr>
<td>$r = 3, N_1 = N_2 = N_3 = 2$</td>
<td>Y_3</td>
<td></td>
</tr>
<tr>
<td>$r = 6, N_1 = ... = N_6 = 1$</td>
<td>Y_{15}</td>
<td></td>
</tr>
<tr>
<td>$r = 2, N_1 = 5, N_2 = 1$</td>
<td>Y_{-9}</td>
<td></td>
</tr>
<tr>
<td>$r = 2, N_1 = 4, N_2 = 2$</td>
<td>Y_{-5}</td>
<td></td>
</tr>
<tr>
<td>$r = 3, N_1 = 3, N_2 = 2, N_3 = 1$</td>
<td>Y_0</td>
<td></td>
</tr>
</tbody>
</table>

Y_{γ} is the Young tableau with eigenvalue of the transposition class-sum operator equal to γ

The ground-state configuration is the most symmetric one compatible with imbalance : Generalization of the Lieb-Mattis theorem to multicomponent Fermi gases

[J. Decamp et al, NJP 18, 055011 (2016)]
II – Density profiles
Density profiles and symmetry for a strongly correlated Fermi gas: ground and excited states

N=6 fermions, symmetric mixtures $1+1+1+1+1+1$, $2+2+2$, $3+3$

The density profiles depend on the symmetry of the mixture.

The higher excited states are less and less symmetric than the ground state: highest excited state – ‘ferromagnetic’

[J. Decamp et al, NJP 18, 055011 (2016)]
Density profiles and symmetry for a strongly correlated Fermi gas: ground and excited states

N=6 fermions, imbalanced mixtures 5+1

Repulsive interactions: hole in the majority distribution, polaron

The excited state is fully antiymmetric: the density profile coincides with the one of a noninteracting Fermi gas with N=6
Density profiles and symmetry for a strongly correlated Fermi gas: ground and excited states

$N=6$ fermions, imbalanced mixtures $5+1$, $4+2$

Alternance of the two components:
antiferromagnet
Density profiles and symmetry for a strongly correlated Fermi gas: ground and excited states

N=6 fermions, imbalanced mixtures 5+1, 4+2, 3+2+1

Link between symmetry and spatial shape

[J. Decamp et al, NJP 18, 055011 (2016)]
How strong the interactions should be to see correlation effects?

Analysis at finite interactions, $N=4+2$

Solid lines: DMRG

Dashes: exact solution

$g=0$

$g=1$

$g=10$

$g=100$

(g in harmonic oscillator units)

[Decamp et al, in preparation]
How strong the interactions should be to see correlation effects?

Analysis at finite interactions, $N = 3+2+1$

Solid lines: DMRG

Dashes: exact solution

$g=0$

$g=1$

$g=10$

$g=100$

(\(g\) in harmonic oscillator units)

[Decamp et al, in preparation]
How strong the interactions should be to see correlation effects?

Analysis at finite interactions, $N = 3+2+1$

Solid lines: DMRG

Dashes: exact solution

$g = 0$

$g = 1$

$g = 10$

$g = 100$

(g in harmonic oscillator units)

[Decamp et al, in preparation]
III – Momentum distributions
Momentum distributions for multicomponent fermions

Accurately measured in experiments

Effect of confinement?
Effect of interactions?
Effect of number of components?
Effects of temperature?

[Pagano et al Nat Phys (2014)]
Momentum distributions for multicomponent fermions

Definition

Density in momentum space, Fourier transform of the one body density matrix

\[\rho_\nu(x_1, x'_1) = N_\nu \int d x_2 \ldots d x_N \Psi(X) \Psi(X') \]

where \(X = (x_1, \ldots, x_N) \quad X' = (x'_1, x_2, \ldots, x_N) \)

and the first coordinate belongs to the component \(\nu \)

Momentum distribution for the fermionic component \(\nu \):

\[n_\nu(k) = \int \int dx dy \rho_\nu(x, y) e^{-ik(x-y)} \]

Valid for arbitrary interactions and external confinement
Momentum distribution of a Fermi gas

Basic facts – homogeneous system results

Noninteracting fermions, homogeneous system: a sharp Fermi edge at \(k = k_F \)

Interacting 1D fermions, homogeneous system:
- a power-law discontinuity at \(k = k_F \) from Luttinger liquid / conformal field theory
- large momentum tails with universal power law (beyond Luttinger-liquid theory)

\[
\begin{align*}
 n_\nu(k) &\sim |k - k_F|^\alpha \\
 n_\nu(k) &\sim C_\nu k^{-4}
\end{align*}
\]
Large-momentum tails of the momentum distribution

\[n_\nu(k) \sim C_\nu k^{-4} \]

Power-law tails: due to the behaviour of the many-body wavefunction at short distances, fixed by the contact interactions

\[\partial_x \Psi(0^+) - \partial_x \Psi(0^-) = (2mg/h^2)\Psi(0) \]

The weight of the tails (Tan's contact) is related to the two-body correlation function

\[C_{\text{tot}}^{\text{dens}} = \frac{n^2}{\pi a_1^2} \frac{r - 1}{r} g^{(2)}(0,0) \]

\[a_1 = -\frac{1}{m_r g} \]

Tan's relations: also related to the interaction energy of the specie \(\nu \) with all the other species

\[\langle H_{\text{int},\nu} \rangle = 2\pi C_\nu \]

Can be obtained from the ground state energy using the Hellmann-Feynman theorem
Large-momentum tails for a homogeneous gas

\[n_\nu(k) \sim C_\nu k^{-4} \] The tails increase with interaction strength

For a Bose gas, from Bethe Ansatz:

For a two-component Fermi gas, from the Bethe Ansatz equation of state:

Weight of the momentum distribution tails
Two-body correlation function

[J.S. Caux, P. Calabrese, N.A. Slavnov, (2007)]
[M. Barth and W. Zwerger, (2011)]
Momentum distributions

Basic facts – harmonic confinement

Noninteracting fermions, same as density profile due to the $x - p$ duality of the harmonic oscillator Hamiltonian

Number of peaks = number of fermions

Oscillations in the density profiles:

~ Friedel oscillations

~ $1/N$ decay
Momentum distributions for a multicomponent Fermi gas at infinitely strong interactions

N=6 fermions, symmetric mixtures $1+1+1+1+1+1$, $2+2+2$, $3+3$

From the exact solution

Number of peaks = number of fermions in each component [Deuretzbacher et al, arXiv:1602.0681]

The case $1+1+1+1+1+1$ has the same momentum distribution as a bosonic Tonks-Girardeau gas with $N_B=6$

A strong effect of interactions:
- reduction of the width of the zero-momentum peak / opposite to broadening of the density profiles
- large momentum tails

[J. Decamp et al, in preparation]
High-momentum tails for a multicomponent Fermi gas at infinitely strong interactions

N=6 fermions, symmetric mixtures 1+1+1+1+1+1, 2+2+2, 3+3

From the exact solution for $n(k)$ (solid lines)

Asymptotic behaviour from the $1/g$ corrections to the energy (dashed lines)

The most symmetric wavefunction has the largest tails in $n(k)$

[J. Decamp et al, in preparation]
High-momentum tails for a multicomponent Fermi gas at infinitely strong interactions

N=6 fermions, symmetric mixtures $1+1+1+1+1+1$, $2+2+2$, $3+3$

From the exact solution for $n(k)$ (solid lines)

Asymptotic behaviour from the $1/g$ expansion of the energy (dashed lines)

The most symmetric wavefunction has the largest tails in $n(k)$

Symmetry of the mixture from the tails of the momentum distribution!

A way to probe (generalized) antiferromagnetism

[J. Decamp et al, in preparation]
High-momentum tails for a multicomponent Fermi gas at infinitely strong interactions

Dependence on the number of fermionic components r

The tails increase with increasing number of components

– also in the Florence experiment !!

$C_{\nu} = \frac{128\sqrt{2}Z_1(r)N^{5/2}}{45r\pi^3}$

[J. Decamp et al, in preparation]
High-momentum tails for a multicomponent Fermi gas at finite interactions, in harmonic trap

N=6 fermions, mixtures 3+3, 2+4, 3+2+1 g=10

from DMRG

In the imbalanced case, there is a different contact for each component

[J. Decamp et al, in preparation]
Contact vs interactions : DMRG results

N=6 fermionic mixture in harmonic trap 3+3, 2+2+2

Strong correlations \Rightarrow large tails of the momentum distribution

exact values for $g=\infty$

[J. Decamp et al, in preparation]
High-momentum tails at finite (high) temperature

Generalization of the Tan’s theorem at finite temperature:

\[
\left(\frac{d\Delta \Omega_{\nu}}{d\alpha_{1D}} \right)_{\mu,T} = \frac{\pi \hbar^2}{m} C_{\nu}
\]

\[
\Omega = \Omega^{(1)} + \frac{1}{2} \sum_{\nu} \Delta \Omega_{\nu}
\]

grand-thermodynamic potential, obtained by summing over all the components

High-temperature regime: we use a virial approach

– virial expansion for the grand-thermodynamic potential:

\[
\Delta \Omega_{\nu} = -2k_B T \left(Q_2 - \frac{Q_1^2}{2} \right) z_{\nu} \sum_{\mu \neq \nu} z_{\mu}
\]

\[
C_{\nu} = \frac{4 Q_1}{\hbar^3} c_2 z_{\nu} \sum_{\mu \neq \nu} z_{\mu}
\]

with \(c_2 = -\frac{\partial (Q_2/Q_1)}{\partial (a_{1D}/\hbar^3)} \)

\[
Q_2 = Q_1 \sum_{\kappa} e^{-\epsilon_{\kappa}^{rel}/k_B T}
\]

\[
\epsilon_{\kappa}^{rel} = \hbar \omega (\kappa + 1/2)
\]

\[
\frac{\Gamma(-\kappa/2)}{\Gamma(-\kappa/2 + 1/2)} = \sqrt{2a_{1D}} / a_{HO}
\]
High-momentum tails at finite (high) temperature

High-temperature regime, infinite interactions \(a_{1D} \rightarrow 0 \)

– **Universality**: no energy or length scale associated to interactions

the virial coefficient for the contact is a number – does not depend on interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]

\[c_2 = \frac{1}{\sqrt{2}} \]
High-momentum tails at finite (high) temperature

High-temperature regime, infinite interactions \(a_{1D} \to 0 \)

- **Universality**: no energy or length scale associated to interactions

the virial coefficient for the contact is a number – does not depend on interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]

\[
c_2 = \frac{1}{\sqrt{2}}
\]

- High-temperature contact coefficients:

\[
c_{\nu} = \frac{1}{(\sqrt{\pi}a_{HO})^3} \sqrt{\frac{k_B T}{\hbar \omega}} N_{\nu} \sum_{\mu \neq \nu} N_{\mu}
\]

The tails of the momentum distribution increase with temperature

[J. Decamp et al, in preparation]

N=6 fermions, symmetric mixtures 1+1+1+1+1+1, 2+2+2, 3+3
Conclusions

1D multicomponent fermions with strong repulsive interactions
- Exact solution at infinite interactions,
- DMRG results at arbitrary interactions

The ground state has the most symmetric wavefunction

Density profiles for different symmetry are different

Momentum distribution tails increase with interaction strength, number of components, and temperature

Imbalanced case: different Tan’s contacts for each component
Outlook

1D multicomponent fermions with strong repulsive interactions:
– Larger N
– Luttinger liquid theory & beyond
– Dynamical properties

Other multicomponent mixtures: Bose-Fermi...

Mixtures on a ring, persistent currents,...
A big thanks to...

Pacome Armagnat (CEA, Grenoble)
Mathias Albert (INLN, Nice)
Jean Decamp (INLN, Nice)
Patrizia Vignolo (INLN, Nice)
Bess Fang (SYRTE, Paris)
Johannes Juenemann (JGU, Mainz)
Matteo Rizzi (JGU, Mainz)

In memory of Marvin Girardeau
Other Grenoble results...

Dynamic structure factor and drag force of a strongly interacting 1D Bose gas at finite temperature

- Close to the backscattering point
- Exact vs Luttinger liquid approach
- Temperature-dependent Luttinger parameters

G. Lang, F.W.J. Hekking and AM
Other Grenoble results...

- Dynamical depinning of a Tonks-Girardeau gas from an optical lattice – a study of the exact time evolution for a finite system
- Link to GGE, time power-law approach to steady state

F. Cartarius, E. Kawasaki, AM, PRA (2015)
Other Grenoble results...

- Exciton polaritons in semiconductors: out-of-equilibrium quantum fluids

Laser cooling of a solid – polariton excitation absorbs phonons