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Multicomponent 1D fermions with ultracold atoms:
a new system for studying....

<

Effects of strong interactions and correlations

AN

Universality

<

Beyond-Luttinger-liquid phenomena

<

Magnetic phases : analog of antiferromagnetism, itinerant
ferromagnetism
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1D multicomponent fermions with repulsive interactions

Exact solution at infinite interactions, DMRG results at arbitrary
interactions

Symmetry characterization of the wavefunction -

Density profiles

Momentum distribution n(k)

Tan’s contacts
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1D two-component Fermi gases

with repulsive intercomponent interactions ;
like electrons with spin 1/2

Tuning the interactions : possibility to reach

strongly correlated regime 1.5 —————— ——
. . . | i Super-Tonks
Fermionizing the fermions: _ | regime _
' []
strong repulsive interactions — effective Pauli ] Fermionization '
principle between fermions belonging to different 3; 1
components — “Tonks-Girardeau regime’ 10 e ]
d a
at increasing interactions.... o i
regime i
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[Zurn et al, Phys Rev Lett 108, 070503
(2012)]



1D multi-component Fermi gases

'%Yb Experiments with up to r=6 components
Tight confinement — 1D regime

Presence of a longitudinal harmonic
confinement

Repulsive interactions : g>0

2m dsf:

i=1 1< j

2 o2
H = Z [ R~ 0 1 + gz &(z; — [Pagano et al Nat Phys (2014)]

Generalization of Girardeau’s solutions for g — infinity

In the limit of strongly repulsive interactions,
fermionization onto a large Fermi sphere for
N=N *N_+...N_noninteracting fermions




Properties of the fermionized regime

For a r-component Fermi gas, large
degeneracy of the ground state :

N!
Nq!...N,!
as for multicomponent BF mixtures [Girardeau,
Minguzzi, PRL (2007)]

Mapping onto an ideal Fermi gas with
N=N_+N_+..N_fermions

— the ideal-Fermi gas wavefunction has the
right nodes

— when exchanging two fermions belonging to
the same component, the wavefunction
takes a minus sign

— one needs to fix the phase of the
wavefunction when exchanging two
fermions belonging to different
components : origin of the degeneracy

A

Excited state manifold -—-——___a%

Ground state manifold \)
E,

> -
Repulsive = Attractive

[Volosniev et al Nat Phys (2015)]




Exact wavefunction in the fermionized regime

Generalization of Girardeau’s wavefunction for impenetrable bosons [Volosniev et al]

Pesn \ indicator of a ideal Fermi gas
coefficients (to be ~ coordinate wavefunction
determined) sector

The ground state wavefunction is the one which has the largest slope at decreasing
interactions — related to the Tan’s contact

K = —(m*/0*)(0E/0g~")

The coefficients a_ are determined by maximizing K \— > —
O /
N— —4

—
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The Lieb and Mattis theorem

PHYSICAL REVIEW VOLUME 125, NUMBER 1 JANUARY 1, 1962

Theory of Ferromagnetism and the Ordering of Electronic Energy Levels

Erviorr L1EB AND DANIEL MATTIS
Thomas J. Watson Research Center, International Business Machines Corporalion, Yorkiown Heighls, New Vork

(Received May 25, 1961 ; revised manuscript received September 11, 1961)

Consider a system of NV electrons in one dimension subject to an arbitrary symmetric potential,
V(x1,- - -, xx), and let E(S) be the lowest energy belonging to the total spin value .S. We have proved the
following theorem: E(S) <E(S") if S <.S5’. Hence, the ground state is unmagnetized, The theorem also holds

Two component fermions (electrons) : the ground state has the smallest possible spin
compatible with the fermion imbalance

Example with two fermions :
o =®g, (r,r)[ (+—)— (—+)],

The spin part has S=0 and is antisymmetric. The spatial part is symmetric. (— The total
wavefunction is antisymmetric)

Absence of ferromagnetism for any finite interactions

see also [Barth and Zerger Ann. Phys. 326, 2544, 2011]



Can one have ferromagnetism then ?

The highest excited branch at infinite interactions
has the largest spin

Ferromagnetism in the lowest gas state of the S=N/2
super-Tonks regime

Super — Tonks gas
§=0

QUESTION :

What happens for systems with more than two spin
components?

— not an ensemble of spin ¥z particles,

— each component corresponds to a ‘color’

-7§=0

[Cui and Ho, PRA 89, 023611 (2014)]

—0-



Symmetry characterization for multicomponent gases

The Young tableaux indicate the symmetry under exchange of particles
belonging to each component

Examples for 6 fermions :

Fully antisymmetric T Fully symmetric
spatial wavefunction spatial wavefunction

Intermediate symmetry : antisymmetric
wrt columns and symmetric wrt rows




How to associate Young tableaux to wavefunctions

Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993]

I = D iy iy (11 1k)

cyclic permutation
of k elements

For the transposition class F(Q) its eigenvalue “/2 allows to link to the
Young tableau according to

1 .
Yo = § Z ?i()\i — 21+ 1)

line of Young tableau

num‘ber of boxes
In the Young tableau

[J. Decamp et al, NJP 18, 0565011 (2016)]



Symmetry of the wavefunctions : results

Take total N=6 fermions, various combinations among the components

The ground state spatial wavefunction has a single Young Tableau — a
definite symmetry



Symmetry of the wavefunctions : results

Take total N=6 fermions, various combinations among the components

The ground state spatial wavefunction has a single Young Tableau — a

definite symmetry symmetry
System An{ax Y, —
r=2, Ny =Ny =3 Y_3
?“Z?),Nl:NQ:Ng:Q ng Yis =
r=6, Ny=..=Ng=1 Yis
r=2 Ny=5, Ny=1 Yoo | oy Vs =
r=2 N, =4, Ny =2 Y s
r=3 N, =3 N,=2 Na=11 Y, Yo =

Y. is the Young tableau with eigenvalue of
the transposition class-sum operator equal to 7Y

The ground-state configuration is the most symmetric one compatible with

imbalance :

Generalization of the Lieb-Mattis theorem to multicomponent Fermi gases

[J. Decamp et al, NJP 18, 0565011 (2016)]



Il — Density profiles



Density profiles and symmetry for a strongly
correlated Fermi gas : ground and excited states

N=6 fermions, symmetric mixtures 1+1+1+1+1+1, 2+2+2, 3+3

noninteracting profiles

y

12 T T T s T I “G -
11 :~ i
; N
S []k | i} | “—1 : 1
0 N6t iy 5 <l
T4} T 02 —
A
0.2t pe 1111
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oo o\ oz 5 N\
] ) 0 3 1 4 ) 0 2 1
Ia."'l Ao xr ,-'I Lho

The density profiles depend on the symmetry of the mixture

The higher excited states are less and less symmetric than the
ground state : highest excited state — ‘ferromagnetic’
[J. Decamp et al, NJP 18, 065011 (2016)]



Density profiles and symmetry for a strongly
correlated Fermi gas : ground and excited states

N=6 fermions, imbalanced mixtures 5+1

' 1
]
: /\ | 08}
—= _*.__.5:_::!0 ! 2 0.6 L

H
)
|

nlx)ay
nlx)ay

r ,-’f Aho

The excited state is fully antiymmetric :

Repulsive interactions : the density profile coincides with the one
hole in the majority distribution, of a noninteracting Fermi gas with N=6

polaron



Density profiles and symmetry for a strongly
correlated Fermi gas : ground and excited states

N=6 fermions, imbalanced mixtures 5+1, 4+2

1
I 1
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Alternance of the two components:
antiferromagnet



Density profiles and symmetry for a strongly
correlated Fermi gas : ground and excited states

N=6 fermions, imbalanced mixtures 5+1, 4+2, 3+2+1
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Link between symmetry and spatial shape
[J. Decamp et al, NJP 18, 055011 (2016)]



How strong the interactions should be to see
correlation effects?

)2

Analysis at finite interactions, N= 4+2

nx)éa

Solid lines : DMRG

Dashes : exact solution

N(x)8ng
12+

[Decamp et al, in preparation]

g=100

(g in harmonic oscillator units)



How strong the interactions should be to see
correlation effects?

Analysis at finite interactions, N= 3+2+1

LEIE

Solid lines : DMRG

A} &

)8y

Dashes : exact solution

g=100

[Decamp et al, in preparation] (g in harmonic oscillator units)



How strong the interactions should be to see

correlation effects?

Analysis at finite interactions, N= 3+2+1

LEIE

A} &

Solid lines : DMRG

)8y

[Decamp et al, in preparation]

shes : exact solution

A

g:

100

(g in harmonic oscillator units)



Il — Momentum distributions



Momentum distributions for multicomponent fermions

Normalized n(k) (um)

Accurately measured in experiments

oo T

0.08F

0.06F

0.04F

0.02F

0.00

a o2} b - meanfield, T=0
--- ideal gas, T=0
0a0F & =, T=0
= ‘:'._ — Y=, T=0

0.08

ZTZz==Zz=z =2
wowononomu
O n bW R =

[Pagano et al Nat Phys (2014)]

O @) O
Effect of confinement ?
Effect of interactions ?
Effect of number of components ?

Effects of temperature ?



Momentum distributions for multicomponent fermions
Definition

Density in momentum space, Fourier transform of the one body density matrix

pu(r1.27) = N, /d;f_fg Ay (X)X

where X = (;{fl_....,;.i.'N) X' = (;{."1,_;{:25.,.,;,(:;\;)

and the first coordinate belongs to the component v

Momentum distribution for the fermionic component v :
nu(i‘ﬂ) = // dwdypy(df, y)e—ik(:c—y)

Valid for arbitrary interactions and external confinement



Momentum distribution of a Fermi gas

Basic facts — homogeneous system results

Tails :

n(k)A
KF  k

Il(k)A
e

kE

effect of interactions

Noninteracting fermions, homogeneous
system : a sharp Fermi edge at k=kF

Interacting 1D fermions, homogeneous
system :

— a power-law discontinuity at k=kF from
Luttinger liquid / conformal field theory

ny (k) ~ |k — kp|®

— large momentum tails with universal power
law (beyond Luttinger-liquid theory)

ny (k) ~ C k=



Large-momentum tails of the momentum distribution

ny (k) ~ C,k~* Power-law tails : due to the behaviour of
the many-body wavefunction at short distances, fixed by
the contact interactions

DU (0F) — 9, W(07) = (2mg /%)W (0)

The weight of the tails (Tan’s contact) is
related to the two-body correlation function

2
n®r—1 (9
clens — ¢\2(0,0
tot Wa;l) , J12( ; )

Tan’s relations : also related to the interaction
energy of the specie v with all the other species

g (Hflnt,u> = 271—61/

Can be obtained from the ground state energy
using the Hellmann-Feynman theorem



Large-momentum tails for a homogeneous gas

n, (k) ~ C,k~* The tails increase with interaction strength

For a Bose gas, from 1?: S e
Bethe Ansatz : il T TR :
— 001g B
0_0001;—5 . |4|...'|..3..|:|F_-5|
0.125 025 05 1
k

[J.S. Caux, P. Calabrese, N.A. Slavnov, (2007)]

For a two-component Fermi gas, from the Bethe
Ansatz equation of state :

N “*~Two-body correlation function
[M. Barth and W. Zwerger, (2011)]



Momentum distributions

Basic facts — harmonic confinement

Noninteracting fermions, same as density
profile due to the x — p duality of the
harmonic oscillator Hamiltonian

Number of peaks = number of fermions

Oscillations in the density profiles :
~ Friedel oscillations

~ 1/N decay



Momentum distributions for a multicomponent Fermi gas

at infinitely strong interactions

N=6 fermions, symmetric mixtures 1+1+1+1+1+1, 2+2+2, 3+3

0.6 F

”[\L] /(a'hu—"?\’r]

ﬁ"' (ho

A strong effect of interactions :

— reduction of the width of the zero-momentum peak /
opposite to broadening of the density profiles

— large momentum tails

[J. Decamp et al, in preparation]

From the exact solution

Number of peaks = number of fermions in

each Component [Deuretzbacher et al,
arXiv:1602.0681 ]

The case 1+1+1+1+1+1 has the same
momentum distribution as a bosonic Tonks-
Girardeau gas with N_=6

Corresponding density profiles :

1.2

1L
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High-momentum tails for a multicomponent Fermi gas

at infinitely strong interactions

N=6 fermions, symmetric mixtures 1+1+1+1+1+1, 2+2+2, 3+3

n(k)k'aj /N

3

(]
n

(R
T

|

From the exact solution for n(k) (solid lines)

Asymptotic behaviour from the 1/g
corrections to the energy (dashed lines)

The most symmetric wavefunction has the
largest tails in n(k)

[J. Decamp et al, in preparation]



High-momentum tails for a multicomponent Fermi gas
at infinitely strong interactions

N=6 fermions, symmetric mixtures 1+1+1+1+1+1, 2+2+2, 3+3

n(k)k'aj /N

3

‘ From the exact solution for n(k) (solid lines)

(]
n

TTTT1 1711 Asymptotic behaviour from the 1/g
expansion of the energy (dashed lines)

(R
T

The most symmetric wavefunction has the
1.5} ] largest tails in n(k)

Symmetry of the mixture from the tails of the momentum distribution !

A way to probe (generalized) antiferromagnetism

[J. Decamp et al, in preparation]



High-momentum tails for a multicomponent Fermi gas
at infinitely strong interactions

Dependence on the number of fermionic components r

s Exact calculations in the trap N =1,2,3

5 ®
§4— . __ . ~~~"LDA on Bethe-Ansatz equation of state
= o ‘ -==- [X.W. Guan et al PRA 2012]
<} )
Q 3 ] )
z - o 12&/;21( r)N5/2
i “ s 7 By
< : -
S . ,’, |
ob—s *;-"?' !

number of components

0.08

The tails increase with increasing number of
components

0.061

0.04F

Normalized nik) (um)

— also in the Florence experiment !!

0.02f




High-momentum tails for a multicomponent Fermi gas
at finite interactions, in harmonic trap

N=6 fermions, mixtures 3+3, 2+4, 3+2+1 g=10

from DMRG

In the imbalanced case, there is a different contact for each
component

Rl
[ ]
Mifahe
0009
1
10
0. 10
10 s,
*’-N\.\H 0.
oy
107 w:‘-q:
} L PR N T R | L PR TR T A 1 " -'r-l:ah\__ ¢m1

[J. Decamp et al, in preparation]




Contact vs interactions : DMRG results

N=6 fermionic mixture in harmonic trap 3+3, 2+2+2

- _ .o".d exact values for
Q S —— e g=infinity
g I » - ?
O | i£e
Q.- L 2
il .
F L .:::;:.:..
%’1 .I|.| e | ) T EE ||1|0 i T 100

interaction strengt

Strong correlations = = large tails of the momentum distribution

[J. Decamp et al, in preparation]



High-momentum tails at finite (high) temperature

Generalization of the Tan’s theorem at finite temperature :

dAQ), B W_figc
daip #‘T_ m

0 =00 4 1 Z AQ, grand-thermodynamic potential, obtained by summing
24 over all the components

High-temperature regime : we use a virial approach
2
— virial expansion for the grand-thermodynamic potential : A€, = —2kpT (Qz — %1) Zy Z =
Ie2%

- _ 9(Q2/Q1)
with c2 = _3(&192/1\:5)

— solution for the two-body problem in harmonic trap [Th. Busch et al, Found. Phys. 28, 549 (1998)]

Q2 = Q1) . e~ /knT erel = hw(k + 1/2) [(=#/2) — V2a1p
[(=r/2+1/2)  apo




High-momentum tails at finite (high) temperature

High-temperature regime, infinite interactions aip — 0
— Universality : no energy or length scale associated to interactions

the virial coefficient for the contact is a number — does not depend on
interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]

o= 1/V/2



High-momentum tails at finite (high) temperature

High-temperature regime, infinite interactions aip — 0
— Universality : no energy or length scale associated to interactions

the virial coefficient for the contact is a number — does not depend on
interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]

o= 1/V/2

N=6 fermions, symmetric mixtures
1+1+1+1+1+1, 24242, 3+3

<)

— High-temperature contact coefficients :

1 kgT
C, = VN YN
mo )3V hw a 4t
(Vmamo) =
. L 33
The tails of the momentum distribution *g
increase with temperature ,
[J. Decamp et al, in preparation] l 0 5 1 6 g 10

kT /hw



Conclusions

_§
1D multicomponent fermions with strong repulsive interactions 2
— Exact solution at infinite interactions,
— DMRG results at arbitrary interactions
The ground state has the most symmetric wavefunction os) i ﬁ \ ,_:
Density profiles for different symmetry are different - 2: a=a|
0 — ) ngh ) T
Momentum distribution tails increase with interaction strength,
number of components, and temperature : :
Imbalanced case : different Tan’s contacts for each component g '
> 25} E" :/—/’:’X’/,A’/

2} number of components

n(k)k‘a




Outlook

1D multicomponent fermions with strong repulsive interactions :

— Larger N
— Luttinger liquid theory & beyond
— Dynamical properties

Other multicomponent mixtures : Bose-Fermi...

Mixtures on a ring, persistent currents,...



A big thanks to...

Pacome Armagnat (CEA, Grenoble)

Mathias Albert (INLN, Nice)
Jean Decamp (INLN, Nice)
Patrizia Vignolo (INLN, Nice)

Bess Fang (SYRTE, Paris)

In memory of Marvin Girardeau



Other Grenoble results...

Dynamic structure factor and drag force of a strongly interacting 1D Bose
gas at finite temperature

1

[a—

Close to the backscattering point

= =y
;i 3 » Exact vs Luttinger liquid approach
3 3 * Temperature-dependent Luttinger
0. 0l parameters
i > 31 2 . 3
. q/kr q/kr
i
Vs [VUF o
gioe Mol s/ "
< L "
éc I:-:l "RE, T j
G. Lang, F.W.J. Hekking and AM i__:f E 1.0 R L :
Phys. Rev. A, 91 063619 (2015) R Ty
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Other Grenoble results...

™M 6
T 128 « Dynamical depinning of a Tonks-Girardeau
*:é 122 | | | | | gas from an optical lattice — a study of the
P iﬁéﬂ Y\~ | ! _ | | exact time evolution for a finite system
° ' ' ‘ | | « Link to GGE, time power-law approach to
S SIMJ — ' ' ' steady state
b 50 'I" | V‘ | | |
2 105 | | T N | T
8 oof | ‘ \ + Ly
0 0.2 0.4 0.6 0.8 | ime] 2
R
8 9 ] Quench dynamicsjfollowing a
> ; _ lattice turn off :
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© — power law ] ; h
> ] A
©
@)
?).01 1 0.01}
5 1 ' F. Cartarius, E. Kawasaki, AM,
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Other Grenoble results...

* Exciton polaritons in semiconductors : out-of-equilibrium quantum fluids

2814
2812

» Laser cooling of a solid — polariton 2810

excitation absorbs phonons 2808

2806
2804
2802

2800

2798
2796

2794

: 9{ Wavevector

005 A Ik||I (um™)
)

0 % VA
5 +

0.05 O -
o))
ke

w5 Klembt et al, Phys Rev. Lett. 114,

186403 (2015)

Temberature (K)
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