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Multicomponent 1D fermions with ultracold atoms:
a new system for studying....

✔ Effects of strong interactions and correlations

✔ Universality 

✔ Beyond-Luttinger-liquid phenomena

✔ Magnetic phases : analog of antiferromagnetism, itinerant 
ferromagnetism
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1D multicomponent fermions with repulsive interactions

Exact solution at infinite interactions, DMRG results at arbitrary 
interactions

Symmetry characterization of the wavefunction 

Density profiles

Momentum distribution 

Tan’s contacts



  

1D two-component Fermi gases

with repulsive intercomponent interactions ; 
like electrons with spin 1/2

Tuning the interactions : possibility to reach 
strongly correlated regime

Fermionizing the fermions: 

strong repulsive interactions →  effective Pauli 
principle between fermions belonging to different 
components → ‘Tonks-Girardeau regime’ 

[Zurn et al, Phys Rev Lett 108, 070503 
(2012)]

at increasing interactions….



  

1D multi-component Fermi gases

173Yb Experiments with up to r=6 components 

Tight confinement – 1D regime

Presence of a longitudinal harmonic 
confinement

Repulsive interactions : g>0

[Pagano et al Nat Phys (2014)]

In the limit of strongly repulsive interactions, 
fermionization onto a large Fermi sphere for 
N=N

1
+N

2
+...N

r 
 noninteracting fermions

Generalization of Girardeau’s solutions for g → infinity



  

Properties of the fermionized regime

For a r-component Fermi gas,  large 
degeneracy of the ground state : 

as for multicomponent BF mixtures [Girardeau, 
Minguzzi, PRL (2007)] 

Mapping onto an ideal Fermi gas with 
N=N

1
+N

2
+...N

r  
 fermions

– the ideal-Fermi gas wavefunction has the 
right nodes  

– when exchanging two fermions belonging to 
the same component, the wavefunction 
takes a minus sign 

– one needs to fix the phase of the 
wavefunction when exchanging two 
fermions belonging to different 
components : origin of the degeneracy 

[Volosniev et al Nat Phys (2015)]



  

Exact wavefunction in the fermionized regime

Generalization of Girardeau’s wavefunction for impenetrable bosons [Volosniev et al]

The ground state wavefunction is the one which has the largest slope at decreasing 
interactions – related to the Tan’s contact

The coefficients a
P
 are determined by maximizing K 

coefficients (to be 
determined)

indicator of a 
coordinate 
sector

ideal Fermi gas 
wavefunction



  

I - Symmetry 



  

The Lieb and Mattis theorem

Two component fermions (electrons) : the ground state has the smallest possible spin 
compatible with the fermion imbalance 

Example with two fermions :

The spin part has S=0 and is antisymmetric. The spatial part is symmetric. (→ The total 
wavefunction is antisymmetric)

Absence of ferromagnetism for any finite interactions

see also [Barth and Zerger Ann. Phys. 326, 2544, 2011]



  

Can one have ferromagnetism then ?

The highest excited branch at infinite interactions 
has the largest spin

Ferromagnetism in the lowest gas state of the 
super-Tonks regime

[Cui and Ho, PRA 89, 023611 (2014)]

QUESTION :
What happens for systems  with more than two spin 
components? 
 – not an ensemble of spin ½ particles, 
 – each component corresponds to a ‘color’



  

Symmetry characterization for multicomponent gases

The Young tableaux indicate the symmetry under exchange of particles 
belonging to each component 

Examples for 6 fermions :

Fully antisymmetric
spatial wavefunction 

Fully symmetric
spatial wavefunction 

Intermediate symmetry : antisymmetric 
wrt columns and symmetric wrt rows



  

How to associate Young tableaux to wavefunctions

Use the class-sum operators [Katriel, J. Phys. A, 26, 135 (1993] 

line of Young tableau

cyclic permutation 
of k elements

number of boxes 
in the Young tableau 

For the transposition class           its eigenvalue         allows to link to the 
Young tableau according to

[J. Decamp et al, NJP 18, 055011 (2016)]



  

Symmetry of the wavefunctions : results
Take total N=6 fermions, various combinations among the components 

The ground state spatial wavefunction has a single Young Tableau → a 
definite symmetry



  

symmetry

Symmetry of the wavefunctions : results

[J. Decamp et al, NJP 18, 055011 (2016)]

Take total N=6 fermions, various combinations among the components 

The ground state spatial wavefunction has a single Young Tableau → a 
definite symmetry

       is the Young tableau with eigenvalue of 
the transposition class-sum operator equal to  

The ground-state configuration is the most symmetric one compatible with 
imbalance :    Generalization of the Lieb-Mattis theorem to multicomponent Fermi gases



  

II – Density profiles 



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states

[J. Decamp et al, NJP 18, 055011 (2016)]

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

The density profiles depend on the symmetry of the mixture

 noninteracting profiles

The higher excited states are less and less symmetric than the 
ground state : highest excited state – ‘ferromagnetic’



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states
 N=6 fermions, imbalanced mixtures  5+1

Repulsive interactions :   
hole in the majority distribution,
polaron

The excited state is fully antiymmetric : 
the density profile coincides with the one 
of a noninteracting Fermi gas with N=6



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states
 N=6 fermions, imbalanced mixtures  5+1, 4+2

Alternance of the two components: 
antiferromagnet



  

Density profiles and symmetry for a strongly 
correlated Fermi gas : ground and excited states

[J. Decamp et al, NJP 18, 055011 (2016)]

 N=6 fermions, imbalanced mixtures  5+1, 4+2, 3+2+1

Link between symmetry and spatial shape



  

How strong the interactions should be to see 
correlation effects?

[Decamp et al, in preparation]

Analysis at finite interactions, N= 4+2

Solid lines : DMRG

Dashes : exact solution

g=0

g=1

g=10

g=100

(g in harmonic oscillator units)



  

How strong the interactions should be to see 
correlation effects?

[Decamp et al, in preparation]

Analysis at finite interactions, N= 3+2+1

Solid lines : DMRG

Dashes : exact solution

g=0

g=1

g=10

g=100

(g in harmonic oscillator units)



  

How strong the interactions should be to see 
correlation effects?

[Decamp et al, in preparation]

Analysis at finite interactions, N= 3+2+1

Solid lines : DMRG

Dashes : exact solution

g=0

g=1

g=10

g=100

(g in harmonic oscillator units)



  

III – Momentum distributions 



  

Momentum distributions for multicomponent fermions

Accurately measured in experiments 

Effect of confinement ?

Effect of interactions ?

Effect of number of components ?

Effects of temperature ?

 

[Pagano et al Nat Phys (2014)]



  

Momentum distributions for multicomponent fermions

Definition 

Density in momentum space, Fourier transform of the one body density matrix

Momentum distribution for the fermionic component     :

where

and the first coordinate belongs to the component

Valid for arbitrary interactions and external confinement



  

Momentum distribution of a Fermi gas

Basic facts  – homogeneous system results

Noninteracting fermions, homogeneous 
system : a sharp Fermi edge at k=kF

Interacting 1D fermions, homogeneous 
system : 

– a power-law discontinuity at k=kF from 
Luttinger liquid / conformal field theory

– large momentum tails with universal power 
law (beyond Luttinger-liquid theory)

Tails : effect of interactions



  

Large-momentum tails of the momentum distribution

                            Power-law tails : due to the behaviour of 
the many-body wavefunction at short distances, fixed by 
the contact interactions

The weight of the tails (Tan’s contact) is 
related to the two-body correlation function 

Tan’s relations : also related to the interaction 
energy of the specie     with all the other species

Can be obtained from the ground state energy 
using the Hellmann-Feynman theorem  



  

Large-momentum tails for a homogeneous gas

                            The tails increase with interaction strength

Weight of the momentum distribution tails

Two-body correlation function

For a two-component Fermi gas, from the Bethe 
Ansatz equation of state : 

For a Bose gas, from 
Bethe Ansatz : 

[J.S. Caux, P. Calabrese, N.A. Slavnov, (2007)]

[M. Barth and W. Zwerger, (2011)]



  

Momentum distributions

Basic facts  – harmonic confinement

Noninteracting fermions, same as density 
profile due to the x – p duality of the 
harmonic oscillator Hamiltonian

Number of peaks = number of fermions

Oscillations in the density profiles :

  ~ Friedel oscillations

  ~ 1/N decay

n(
k)

/a
ho

k a
ho



  

Momentum distributions for a multicomponent Fermi gas
at infinitely strong interactions

From the exact solution

Number of peaks = number of fermions in 
each component [Deuretzbacher et al, 
arXiv:1602.0681 ]

Corresponding density profiles :

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

The case 1+1+1+1+1+1 has the same 
momentum distribution as a bosonic Tonks-
Girardeau gas with N

B
=6

A strong effect of interactions :

–  reduction of the width of the zero-momentum peak / 
opposite to broadening of the density profiles

–  large momentum tails

[J. Decamp et al, in preparation]



  

High-momentum tails for a multicomponent Fermi gas
at  infinitely strong interactions

From the exact solution for n(k) (solid lines)

Asymptotic behaviour from the 1/g 
corrections to the energy (dashed lines)

The most symmetric wavefunction has the 
largest tails in n(k)

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

[J. Decamp et al, in preparation]



  

High-momentum tails for a multicomponent Fermi gas
at  infinitely strong interactions

From the exact solution for n(k) (solid lines)

Asymptotic behaviour from the 1/g 
expansion of the energy (dashed lines)

The most symmetric wavefunction has the 
largest tails in n(k)

 N=6 fermions, symmetric mixtures  1+1+1+1+1+1, 2+2+2, 3+3

[J. Decamp et al, in preparation]

 Symmetry of the mixture  from the tails of the momentum distribution !  

A way to probe (generalized) antiferromagnetism



  

High-momentum tails for a multicomponent Fermi gas
at  infinitely strong interactions

Exact calculations in the trap N
ν
=1,2,3

LDA on Bethe-Ansatz equation of state 
[X.W. Guan et al PRA 2012]

 Dependence on the number of fermionic components r

The tails increase with increasing number of 
components 

– also in the Florence experiment !!

[J. Decamp et al, in preparation]



  

from DMRG

High-momentum tails for a multicomponent Fermi gas
at finite  interactions, in harmonic trap

 N=6 fermions, mixtures 3+3, 2+4, 3+2+1  g=10

[J. Decamp et al, in preparation]

In the imbalanced case, there is a different contact for each 
component



  

Contact vs interactions : DMRG results

 N=6 fermionic mixture in harmonic trap 3+3, 2+2+2 

[J. Decamp et al, in preparation]

Strong correlations = = large tails of the momentum distribution

exact values for 
g=infinity



  

High-momentum tails at finite (high) temperature

Generalization of the Tan’s theorem at finite temperature :

grand-thermodynamic potential, obtained by summing 
over all the components  

– virial expansion for the grand-thermodynamic potential :

with

– solution for the two-body problem in harmonic trap [Th. Busch et al, Found. Phys. 28, 549 (1998)]

 High-temperature regime : we use a virial approach



  

High-momentum tails at finite (high) temperature

 High-temperature regime, infinite interactions 

– Universality :  no energy or length scale associated to interactions 

the virial coefficient for the contact is a number – does not depend on 
interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]



  

High-momentum tails at finite (high) temperature

 High-temperature regime, infinite interactions 

– Universality :  no energy or length scale associated to interactions 

the virial coefficient for the contact is a number – does not depend on 
interaction or temperature [P. Vignolo, A. Minguzzi, PRL 2013]

– High-temperature contact coefficients :

The tails of the momentum distribution 
increase with temperature

 N=6 fermions, symmetric mixtures  
1+1+1+1+1+1, 2+2+2, 3+3

[J. Decamp et al, in preparation]



  

Conclusions

1D multicomponent fermions with strong  repulsive interactions

– Exact solution at infinite interactions, 

– DMRG results at arbitrary interactions

The ground state has the most symmetric wavefunction 

Density profiles for different symmetry are different

Momentum distribution tails increase with interaction strength, 
number of components, and temperature

Imbalanced case : different Tan’s contacts for each component



  

Outlook

1D multicomponent fermions with strong  repulsive interactions :

– Larger N

– Luttinger liquid theory & beyond

– Dynamical properties 

Other multicomponent mixtures : Bose-Fermi...

Mixtures on a ring, persistent currents,...
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Other Grenoble results...

Dynamic structure factor and drag force of a strongly interacting 1D Bose 
gas at finite temperature  

● Close to the backscattering point 
● Exact vs Luttinger liquid approach
● Temperature-dependent Luttinger 

parameters

G. Lang, F.W.J. Hekking and AM 
Phys. Rev. A, 91 063619 (2015)



  

Other Grenoble results...

● Dynamical depinning of a Tonks-Girardeau 
gas from an optical lattice – a study of the 
exact time evolution for a finite system

●  Link to GGE, time power-law approach to 
steady state 

time
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F. Cartarius, E. Kawasaki, AM, 
PRA (2015)

Equilibrium, no lattice : 
– power law

Quench dynamics following a 
lattice turn off :  
– exponential



  

Other Grenoble results...
● Exciton polaritons in semiconductors : out-of-equilibrium quantum fluids
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● Laser cooling of a solid – polariton 
excitation absorbs phonons

S. Klembt et al, Phys Rev. Lett. 114, 
186403 (2015)
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