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Anderson Localization

Anderson localization (Anderson 1958 ): A particle moving in a
sufficiently strong random or quasi-random potential is localized.

Anderson Nobel lecture (1977): ” Localization [..], very few believed
it at the time, and even fewer saw its importance, among those who
failed to fully understand it at first was certainly its author. It has
yet to receive adequate mathematical treatment, and one has to
resort to [...] numerical simulations to settle even the simplest
questions about it ”

It was mathematically established (in any dimension) in the
Schroedinger equation with a random field in various regimes of
energy and disorder from Froehlich, Spencer (1983), M. Aizenman
and S. Molchanov (1994)....

In 1D typically any amount of disorder produces localization, while
in 3D the disorder has to be sufficiently strong and a metal to
insulator transition is expected varying the strength of the random
field. Still open problems in 2D and 3D.
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Many Body Localization

Many Body Localization. Evidence that localization persists in the
presence of weak inter-particle interactions on the basis of
perturbative analysis Basko, Aleiner, Altshuler (2006) or numerical
analysis Oganesyan, Huse (2007); MBL rigorous consequence in 1d
of an assumption of level attraction Imbrie (2014).

MBL has dramatic consequences for non equilibrium: Many-body
localized systems fail to thermally equilibrate.

A proof of MBL in generality is a challenging problem (single
particle description breaks down, full N-particle Schroedinger)
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Localization and MBL

Cold atoms as “quantum simulators”; Experimental evidence of
MBL with quasi-random disorder and local interaction Schreiber,
Hodgman, Bordia, Luschen, Fischer, Vosk, Altman, Schneider,
Bloch, (2015) by monitoring the time evolution of local observables
following a quench. No dependence on the sign of the interaction.

Anderson localization in the non interacting case was previously
observed in Roati, DErrico, Fallani, Fattori, Fort, Zaccanti,
Modugno, Modugno, Inguscio (2008).

Realization of the Interacting Aubry-Andre’ model. (numerical
evidence of MBL Iyer, Oganesyan, Refael, Huse (2013))

With no interaction very good theoretical understanding based on
advanced mathematical tools; quest for understanding the role of
interaction.
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The interacting Aubry-Andre’ model

If a+x , a
−
x , x ∈ Z ≡ Λ are spinless creation or annihilation operators

on the Fock space verifying {a+x , a−y } = δx,y ,
{a+x , a+y } = {a−x , a−y } = 0. The Fock space Hamiltonian is

H = −ε(
∑
x∈Λ

(a+x+1ax + a+x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx + θ))a+x a
−
x + U

∑
x,y

v(x − y)a+x a
−
x a

+
y a

−
y

with v(x − y) = δy−x,1 + δx−y ,1.

ω irrational. Equivalent to XXZ chain with quasi-random disorder.

Spinless version of the model realized in Schreiber et al (2015) (here
non local interaction).

Early studies of the extended phase in Mastropietro (1999) and
Giamarchi, Mohunna,Vidal (1999)
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The Aubry-Andre’ model

In the non interacting case the states are obtained by the
antisymmetrization (fermions) of the eigenfunctions of almost
Mathieu equation

−εψ(x + 1)− εψ(x − 1) + u cos(2π(ωx + θ)ψ(x) = Eψ(x)

Deeply studied in mathematics (KAM methods, ten martini).
Dinaburg-Sinai (1975); Froehlich, Spencer, Wittwer (1990);
Jitomirskaya (1999); Avila, Jitomirskaya (2006).

the spectrum is a Cantor set for all irrational ω. For almost every
ω, θ the almost Mathieu operator has
a)for ε/u < 1

2 exponentially decaying eigenfunctions (Anderson
localization);
b)for ε/u > 1

2 purely absolutely continuous spectrum (extended
quasi-Bloch waves)

Metal insulator transition (with no interaction) seen experimentally
by Roati et al (2008)
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The KAM theorem

Such remarkable properties are related to a deep connection between
the non interacting Aubry-Andre model and the
Kolmogorov-Arnold-Moser (KAM) theorem of classical mechanics.

KAM ensures the existence of quasi-periodic solutions of
Hamiltonian systems close to integrable one, that is the stability of
invariant tori. Applications to the stability of solar system.

A crucial assumption of KAM and of the analysis of almost mathieu
is that the frequency verify a number theoretical condition called
Diophantine condition to deal with small divisors. It says that a
number is a “good irrational” and is full mesaure.
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Diphantine conditions

We impose a Diophantine condition on the frequency

||ωx || ≥ C0|x |−τ ∀x ∈ Z/{0} (∗)

||.|| is the norm on the one dimensional torus of period 1.

The continued fraction representation of a number ω

ω = a0 +
1

a1 +
1

a2+
1

a3+...

The golden ratio ω =
√
5+1
2 has representation 1; 1, ..1, .. and it

verifies the Diophantine condition with τ = 1 and C0 =
3+

√
5

2 .



Diphantine conditions

We impose a Diophantine condition on the frequency

||ωx || ≥ C0|x |−τ ∀x ∈ Z/{0} (∗)

||.|| is the norm on the one dimensional torus of period 1.

The continued fraction representation of a number ω

ω = a0 +
1

a1 +
1

a2+
1

a3+...

The golden ratio ω =
√
5+1
2 has representation 1; 1, ..1, .. and it

verifies the Diophantine condition with τ = 1 and C0 =
3+

√
5

2 .



Localization and interaction

The construction of all the eigenvectors of the N-body Schroedinger
equation with almost-Mathieu potential and interaction seems at the
moment out of reach, especially for infinite N.

More modest goal. Information on the localization of the interacting
ground state can be obtained by the zero temperature
grand-canonical truncated correlations of local operators, whose
exponential decay with the distance is a sign of localization. This
allow to use exact RG methods combined with KAM (Lindstedt
series).

For ω θ verifying Diophantine conditions, for small εu ,
U
u the

fermionic zero temperature grand canonical infinite volume
truncated correlations of local operators decays exponentially for
large distances.
Comm Math Phys 342, 1, 217(2016); Phys. Rev. Lett. 115, 180401
(2015) , arxiv 1604.08264

Renormalized expansion around the anti-integrable limit
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Main resut

H = −ε(
∑
x∈Λ

(a+x+1ax + a+x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx + θ))a+x a
−
x + U

∑
x,y

v(x − y)a+x a
−
x a

+
y a

−
y

with v(x − y) = δy−x,1 + δx−y ,1.

If a±x = e(H−µN)x0a±x e
−(H−µN)x0 , x = (x , x0), N =

∑
x a

+
x a

−
x and µ

the chemical potential, the Grand-Canonical imaginary time 2-point
correlation is

< Ta−x a
+
y >=

Tre−β(H−µN)T{a−x a+y }
Tre−β(H−µN)

where T is the time-order product and µ is the chemical potential.
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Localized regime

It is convenient to write the chemical potential as a function of the
interaction so that the density has the same value in the free or
interacting case. We introduce a counterterm ν so that the
interacting chemical potential is u cos 2π(ωx̂ + θ).

We impose a Diophatine condition on the frequency (*)

A condition on the phase is also imposed

||ωx ± 2θ|| ≥ C0|x |−τ ∀x ∈ Z/{0} (∗∗)



Localized regime

It is convenient to write the chemical potential as a function of the
interaction so that the density has the same value in the free or
interacting case. We introduce a counterterm ν so that the
interacting chemical potential is u cos 2π(ωx̂ + θ).

We impose a Diophatine condition on the frequency (*)

A condition on the phase is also imposed

||ωx ± 2θ|| ≥ C0|x |−τ ∀x ∈ Z/{0} (∗∗)



Localized regime

It is convenient to write the chemical potential as a function of the
interaction so that the density has the same value in the free or
interacting case. We introduce a counterterm ν so that the
interacting chemical potential is u cos 2π(ωx̂ + θ).

We impose a Diophatine condition on the frequency (*)

A condition on the phase is also imposed

||ωx ± 2θ|| ≥ C0|x |−τ ∀x ∈ Z/{0} (∗∗)



Localized regime

Theorem

Under conditions (*) and (**), u = 1 µ = cos 2π(ωx̂ + θ) + ν there
exists an ε0 such that, for |ε|, |U| ≤ ε0,it is possible to choose ν so that
the limit β → ∞

| < Ta−x a
+
y > | ≤ Ce−ξ|x−y | log(1+min(|x ||y |))τ 1

1 + (∆|x0 − y0)|)N
(∗∗∗)

with ∆ = (1 + min(|x |, |y |))−τ , ξ = | log(max(|ε|, |U|))|.

Anderson localization persists in presence of interaction, at least in
the ground state, for small ε/u,U/u.
Persistence of localization does not depend from the sign of U at
weak coupling as in Schreiber et al (2015).
(**) excludes values around integer values of 2θ

ω integer,
corresponding to one of the infinitely many gaps in the single
particle spectrum. For 2θ

ω integer (***) is also true with ∆ replaced
by the gap size.
(**) could be replaced by a condition on the density
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Anderson localization persists in presence of interaction, at least in
the ground state, for small ε/u,U/u.
Persistence of localization does not depend from the sign of U at
weak coupling as in Schreiber et al (2015).
(**) excludes values around integer values of 2θ

ω integer,
corresponding to one of the infinitely many gaps in the single
particle spectrum. For 2θ

ω integer (***) is also true with ∆ replaced
by the gap size.
(**) could be replaced by a condition on the density



Extended regime

Different behavior is found close to the integrable limit. Fix
ε = 1,θ = 0, U, u small, µ = cos pF , ||2πωn||2π ≥ C |n|−τ , n 6= 0,
then (M, arxiv 1604.08264, PRB 2016) :

1)If ||2pF + 2πnω||2π ≥ C |n|−τ a decay of the two point function
O(|x − y |−1−η), η = aU2 + O(U3) (metallic Luttinger liquid
behavior).

2) If pF = nωπ a faster than any power decay with rate

∆n,U ∼ [u2n(an + F )]Xn

with F = O(|U|+ |λ|), an non vanishing and
Xn = Xn(U) = 1+ bU +O(U2); the decay rate is of the order of the
interacting gap. Dense set of gaps.

All gaps are renormalized via a critical exponent
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Extended regime

In the non interacting case there are infinitely many gaps in
correspondence of quasi-momenta 2nπω mod. 2π, forming a dense
set, and their size is decreasing exponentially with n.

The gaps are are strongly decreased or increased depending on the
attractive or repulsive nature of the interaction, but even the
smallest gaps remain open.

In the case of a Fibonacci quasi-periodic potential there is evidence
that the interaction closes the smallest gaps, Giamarchi (1999),
causing an insulating to metal transition.

In the case of Aubry-Andre’ potential all gaps persists instead; no
quantum phase transition at small coupling.
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Integrable limit

When U = u = 0, ε = 1 one has the free fermion limit.
H =

∑
k(− cos k + µ)a+k a

−
k .

S0(x, y) =
1

βL

∑
k0,k

e ik(x−y)

−ik0 + cos k − µ

µ = cos pF . ±pF Fermi momenta. GS occupation number
χ(cos k − µ ≤ 0).

Close to the singularity

cos(k ′ ± pF )− µ ∼ ± sin pFk
′ + O(k ′2)

linear dispersion relation.
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Anti-integrable limit

ε = U = 0 molecular limit. H =
∑

x(cos 2π(ωx + θ)− µ)a+x a
−
x

The 2-point function is

< Ta−x a
+
y > |0 = δx,y ḡ(x , x0 − y0)

ḡ(x , x0 − y0) =
1

β

∑
k0

e−ik0(x0−y0)

−ik0 + cos 2π(ωx + θ)− cos 2π(ωx̂ + θ)

GS occupation number χ(cos 2π(ωx + θ) ≤ µ).
Let us introduce

x̄+ = x̂ x̄− = −x̂ − 2θ/ω

x± Fermi coordinates.
If we set x = x ′ + x̄ρ, ρ = ±, for small (ωx ′)mod.1

ĝ(x ′ + x̄ρ, k0) ∼
1

−ik0 ± v0(ωx ′)mod.1

The denominator can be arbitrarily large; for x 6= ρx̂ by (*),(**)
,||ωx ′|| = ||ω(x − ρx̂) + 2δρ,−1θ|| ≥ C |x − ρx̂ |−τ . (ωx ′)mod.1 can be
very small for large x (infrared-ultraviolet mixing)
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ḡ(x , x0 − y0) =
1

β

∑
k0

e−ik0(x0−y0)

−ik0 + cos 2π(ωx + θ)− cos 2π(ωx̂ + θ)

GS occupation number χ(cos 2π(ωx + θ) ≤ µ).
Let us introduce

x̄+ = x̂ x̄− = −x̂ − 2θ/ω

x± Fermi coordinates.

If we set x = x ′ + x̄ρ, ρ = ±, for small (ωx ′)mod.1
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y > |0 = δx,y ḡ(x , x0 − y0)
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Anti-integrable limit; proof of localization

The 2-point function is given by ∂2

∂φ+
x ∂φ

−
y
W |0

eW (φ) =

∫
P(dψ)e−V (ψ)−B(ψ,φ)

with P(dψ) a gaussian Grassmann integral with propagator
δx,y ḡ(x , x0 − y0)

V (ψ) = U

∫
dx

∑
α=±

ψ+
x ψ

−
x ψ

+
x+αe1ψ

−
x+αe1

+ε

∫
dx(ψ+

x+e1ψ
−
x + ψ+

x−e1ψ
−
x ) + ν

∫
dxψ+

x ψ
−
x

where
∫
dx =

∑
x∈Λ

∫ β
2

− β
2

dx0, Finally B =
∫
dx(φ+x ψ

−
x + ψ+

x φ
−
x )



Small divisors

In absence of many body interaction there are only chain graphs,
αi = ±

εn
∑
x1

∫
dx0,1...dx0,nḡ(x1, x0 − x0,1)ḡ(x1 +

∑
i≤n

αi , (x0,n − y0))

n∏
i=1

ḡ(x1 +
∑
k≤i

αk , x0,i+1 − x0,i )

Propagators g(k0, x) can be arbitrarily large (small divisors)

|ĝ(x ′ ± x̄ , k0)| ≤ C0|x ′|τ

Chain graphs are apparently O(n!τ ); as in classical KAM theory,
small divisors which can destroy the validity of a perturbative
approach.
When U 6= 0 there also loops producing additional divergences,
absent in classically.
To establish localization in presence of interaction one has to prove
that such small divisors are harmless. Sort of quantum KAM.
Constructive RG approach.
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Some idea of the proof

We perform an RG analysis decomposing the propagator as sum of
propagators living at scale |φx − φx̂ | ∼ γh, h = 0,−1,−2...,
φx = cos 2π(ωx + θ) ; this correspond to two regions, around x̄+
and x̄−.

This implies that the single scale propagator has the form∑
ρ=± g

(h)
ρ with |g (h)

ρ (x)| ≤ CN

1+(γh(x0−y0))N
; the corresponding

Grasmann variable is ψ
(h)
x,ρ.

Very similar to what is done in the integrable limit u/ε small (Aubry
duality).

We integrate the fields with decreasing scale; for instance W (0) (the
partition function) can be written as∫

P(dψ)eV =

∫
P(dψ≤−1)

∫
P(dψ)eV =

∫
P(dψ≤−1)eV

−1

...

The effective potential V h, sum of monomials of any order in ψ±
ρ .
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Some idea of the proof

According to power counting, the theory is non renormalizable; all
effective interactions have positive dimension, and usually this makes
a perturbative approach impossible.

One has to distinguish among the monomials
∏

i ψx′
i ,x0,i ,ρi

in the
effective potential between resonant and non resonant terms.
Resonant terms; x ′i = x ′. Non Resonant terms x ′i 6= x ′j for some i , j .
(In the non interacting case only two external lines are present).

It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

Roughly speaking, the idea is that if two propagators have similar
(not equal) small size (non resonant subgraphs) , then the difference
of their coordinates is large and this produces a ”gain” as passing
from x to x + n one needs n vertices. That is if
(ωx ′1)mod1 ∼ (ωx ′2)mod1 ∼ Λ−1 then by the Diophantine condition

2Λ−1 ≥ ||ω(x ′1 − x ′2)|| ≥ C0|x ′1 − x ′2|−τ

that is |x ′1 − x ′2| ≥ C̄Λτ
−1
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Some idea of the proof

As usual in renormalization theory, one needs to introduce clusters v
with scale hv ; the propagators in v have divisors smaller than γhv

(necessary to avoid overlapping divergences). Zimmermann forests
or Gallavotti-Nicolo’ trees. v ′ is the cluster containing v .

Naive bound for each tree
∏

v γ
−hv (Sv−1), v vertex, Sv number of

clusters in v . How we can improve?

Consider two vertices w1,w2 such that x ′w1
and x ′w2

are coordinates
of the external fields, and let be cw1,w2 the path (vertices and lines)
in T̄v connecting w1 with w2; we call |cw1,w2 | the number of vertices
in cw1,w2 . The following relation holds, if δiw = ±1 it corresponds to
an ε end-point and δiw = (0,±1) is a U end-point

x ′w1
− x ′w2

= x̄ρw2 − x̄ρw1 +
∑

w∈cw1,w2

δiww

As xi − xj = M ∈ Z and x ′i = x ′j then (x̄ρi − x̄ρj ) +M = 0, so that
ρi = ρj as x̄+ = x̂ and x̄− = −x̂ − 2θ/ω and x̂ ∈ Z.
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FIG. 1: A tree T̄v with attached wiggly lines representing the external lines Pv; the lines represent

propagators with scale ≥ hv connecting w1, wa, wb, wc, w2, representing the end-points following v

in τ .
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Some idea of the proof

By the Diophantine condition a) ρw1 = ρw2 the (*); b)if ρw1 = −ρw2

by (**)

2cv−1
0 γhv̄′ ≥

||(ωx ′w1
)||1 + ||(ωx ′w2

)||1 ≥ ||ω(x ′w1
− x ′w2

)||1 ≥ C0(|cw2,w1 |)−τ

so that |cw1,w2 | ≥ Aγ
−hv̄′

τ . If two external propagators are small but
not exactly equal, you need a lot of hopping or interactions to
produce them



Ideas of proof

If ε̄ = max(|ε|, |U|)) from the ε̄n factor we can then extract

ε̄
n
4 ≤

∏
v∈L

εNv2
hv′

where Nv is the number of points in v ; as Nv ≥ |cw1,w2 | ≥ Aγ
−h

v′
τ

then

ε̄
n
4 ≤

∏
v∈L

ε̄Aγ
−h

v′
τ 2hv′

where L are the non resonant vertices. If γ
1
τ /2 > 1 then

≤ C n
∏

v∈L γ
3hvS

L
v where SL

v is the number of non resonant clusters
in v .



Ideas of proof

We localize the resonant terms x = x0,i , x with all x ′i equal

Lψε1x1,ρ1 ...ψ
εn
xn,ρn = ψε1x1,ρ1 ...ψ

εn
x1,ρn

Note that one has to renormalize monomial of all orders, a
potentially very dangerous situation (this is like in KAM).

We write V h = LV h +RV h. The RV h term is the usual
renormalized term in QFT; the bound has an extra γhv′−hv ; then
there is an γhv′ for each renormalized vertex v .

In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity (spinless
fermions).

There remain the local terms with 2 field which is relevant and
produces a renormalization of the chemical potential. If 2θ/ω is
integer there is also a mass term ψ+

ρ ψ
−
−ρ producing gaps.

With spin quartic terms are marginal not irrelevant.

The result can be rephrased fixing θ and changing the chemical
potential.
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Extended regime

In the extended regime the scaling dimension is different; the theory
is renormalizable but dimensionally there are an infinite number of
coupling constants.

Combined effect of Umklapp and the incommensurability of
potential has the effect that a large momentum exchange can
connect points arbitrarily close to the Fermi points.

m∑
i=1

εiρik
′
i = −

m∑
i=1

εiρipF + 2nπω + 2lπ

The scaling dimension of non resonant terms can be improved by
the diophantine condition, and they are all irrelevant.

Only resonances are marginal, only a small number running coupling
constants.

This is true for quasi-periodic functions with fast decaying Fourier
transform; With other quasi-random noise, is believed instead that
there are infinitely many rcc.
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Conclusions

System of fermions with quasi-random Aubry-Andre’ noise and
interaction.

Localization in the ground state in presence of weak interaction for
large disorder.

Anomalous exponents in the extended regime.

Small divisor problem similar to the one in KAM Lindstdedt series in
the non interacting case; graphs with no loops.

The many body interaction produces loops (sort of Quantum KAM)

Number theoretical conditions essential.

Spin? Coupled chains? other eigenstates? 2 or 3 dimension?
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