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Inhomogeneous quenches

Initial state is not translation invariant

Locally an eigenstate of the

Hamiltonian (far from GS!)

Examples : inhomogeneous density

ρ(x , 0) or energy profile h(x , 0)
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Motivations I

Most of the time, real systems are
inhomogeneous, like fermions in an
harmonic external potential

x

E

Tl Tr

J
Transport problem in
one-dimensional systems
(related to cold atom
experiments)

Are there universal features in the large time and space dynamics
(like a CFT description à la Calabrese and Cardy)
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Motivations II

Density profiles ρ(x , t) are related to

limiting shapes of statistical

mechanics model (see. Allegra, Dubail,
Stephan and V., 2016)

Quantum quench in imaginary time is
related to the phenomena of arctic
curves (Korepin, Izergin, Colomo,
Pronko, Reshetikin)
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Emergent hydrodynamical equations for the time evolution of the

density profile (Sasha Abanov, see also Victor and Maurizio talk)

∂tn(x , k ; t)− v(k)∂xn(x , k ; t) = 0 Free evolution of the modes

ρ(x , t) =
∫ k+(x/t)
k−(x/t) dk n(x , k , t) Modes occupied: v(k±) = x/t
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Universality of the energy current at low energy

Let us consider two spin chains
with different temperatures βl
and βr (say XXZ)

Current profile is a function

J (x/t) (Vasseur & Moore
2015; V., Stephan, Dubail and
Haque 2016]
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Figure: From Bertini et. al 2016;
∆ = cos γ.

Strictly speaking the stationary state is reached only in the limit

x/t → 0 , when all the particles have reached the point x . For

βl ,r →∞, the curve should have the same maximum (Bernard,
Doyon 2012)
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Universality of the current at low energy
For a gapless quantum system at low enough temperature [Bernard,
Doyon 2012]

J (0) = f (Tl)− f (Tr ) =
cπ

12
(T 2

l − T 2
r )

CFT REGION

Example: XXZ spin
chain. Figure from De
Luca, V., Mazza, Rossini
(2014). Similar
considerations in Karrash,
Ilan and Moore (2013).
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Remarks on thermalization
Remark 1. A ballistic component of the energy current is persistent.

Remark 2. Energy current might be protected by symmetries (like in
XXZ spin chain)

i [HXXZ , hi ] = ji+1 − ji (1)

[HXXZ , ji ] = κi+1 − κi ⇒ i [HXXZ ,

JAB︷ ︸︸ ︷
B∑

i=A

ji ] = κB − κA (2)

Effect of integrability on thermal transport have been studied a lot
(Mazur, Affleck, Pereira, Prosen, Sirker, Zotos,...)

Such conservation law forbids thermalization at any βl and βr when
coupling two XXZ spin chains, actually is implying (Vasseur, Karrash,
Moore 2015)

〈JAB〉 = t[〈κ〉βl − 〈κ〉βr ]
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Energy current breaking locally integrability (with. A.

Biella, A. De Luca, L. Mazza, D. Rossini and R. Fazio (PRB 2016))

A model that breaks
integrability locally

We consider two XXZ spin chains with different anisotropy
parameters (∆l/r ) and temperatures (βl/r )

H =
∑

i

∆i=θ(−i)∆l+θ(i+1)∆r︷ ︸︸ ︷
J(σxi σ

x
i+1 + σyi σ

y
i+1 −∆iσ

z
i σ

z
i+1) = Hl + Hr + V
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∆l 6= ∆r (model is
non-integrable)
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Low-energy analysis I

The ground state of the
non-homogeneous chain is at
half filling

We can bosonize the chain in a
standard way with kF (x) = π/2

• •
kF (x)−kF (x)

εx(k)

k

Left and right moving fermions will have different (renormalized)
Fermi velocities u(x) (back-scattering)

HLE =

Inhom. Luttinger Liquid︷ ︸︸ ︷
1

2

∫ ∞
−∞

dxu(x)

[
(∂xφ)2

K (x)
+ K (x)(∂xθ)2

]
+ λ

localized back scattering︷ ︸︸ ︷
(e i
√

4πφ(x=0) + h.c .)

With K (x) = 1
2

[
1− 1

π arccos ∆(x)
]−1

, the Luttinger parameter and
u(x) the renormalized Fermi velocity; ∆(x) = θ(−x)∆l + θ(x)∆r .
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Low energy analysis II: CFT
The RG flow produced by the back scattering operator is very similar
to the Fisher-Kane problem (K is the harmonic mean between Kl

and Kr )

K < 1

K > 1

Inhomogeneous Insulating

The backscattering coupling constant is proportional to the

difference of renormalized Fermi velocities (Sedlmayr et al. 2014)

λ ∼ (ul − ur )

Can be tuned to zero, sitting at the Inh. fixed point! Energy
current at this point can be characterized by CFT
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Analytical and numerical results at low-energy
At the Inh. fixed point, two free bosons with different
compactification radius (Bacas et. al; Bernard, Doyon and V. 2014)
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Relaxing the Fermi velocities matching
Relaxing the Fermi velocity matching condition we can explore
(numerically) the full RG flow
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Figure: Current is decreasing very slowly from its CFT value in the times
explored by numerics: this seems a prethermalization plateau



Higher energies prethermalization and
thermalization: conjecture

Equation of motion for the integrated
current

〈∂tJAB〉 = 〈κ〉A − 〈κ〉B + 〈Θ〉t

In the time explored by numerics we observe
mild deviations from linear growing of the
integrated current (prethermalization)
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At larger times, system
has to thermalize (is
not integrable) J → 0
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Conclusions/Summary I

1. Mild breaking of integrability leads to a stable energy current in a
non homogeneous XXZ spin chain (different ∆’s) for the times
explored by the numerics

2. Energy current can be computed at the inh. fixed point using CFT

3. For times larger than the ones explored by the numerics, the systems
is expected to thermalize



Preliminary: Domain wall quench and entanglement
(with J. Dubail, JM Stephan and P. Calabrese)

Consider free fermions in a DW initial state (see N. Andrei and V.
Eisler talks)
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Density profile can be obtained
from semiclassics (or
stationary phase argument)
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2π = arccos(x/t)

x

k

•
k+s

•
k−s

π

−π

ρ(x, t) = arccos
(
x
t

)ε′(k)t



Preliminary: Domain wall quench and entanglement
(with J. Dubail, JM Stephan and P. Calabrese)

Consider free fermions in a DW initial state (see N. Andrei and V.
Eisler talks)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

Density profile can be obtained
from semiclassics (or
stationary phase argument)

ε′(ks) =
x

t
, ε(k) = − cos k

ρ(x , t) =
∫ k+

s

k−
s

dk
2π = arccos(x/t)

FRONT

NESS



Imaginary time version of the quench
DW initial state acts as a boundary condition

〈ρ〉 = 0

〈ρ〉 = 0〈ρ〉 = 1

〈ρ〉 = 1

|DW 〉

〈DW |

Imaginary
time

e−2R H

y
+R

−R

0

0

Fermionic propagator obtained as

〈c†(x , y)c(x ′, y , )〉 =
〈DW |e−H(R−y)c†(x)c(x ′)e−H(R+y)|DW 〉

〈DW |e−2HR |DW 〉

Real time results from the analytic continuation R → 0 and y = it
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Stationary phase and CFT
Correlators are obtained by stationary phase approximation around
(and −z∗(x , y))

z(x , y) = arccos x√
R2−y2

+ iarcth y
R

The stationary phase equation maps the inhomogeneous region in a
strip where the fermionic correlation functions are conformally
invariant!

•
(x , y) •z(x , y)

The conformal invariant action on the strip has a non-trivial metric

S = 1
2π

∫
strip d

2z eσ[ψ†L
↔
∂z ψL + ψ†R

↔
∂z̄ ψR ]
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S = 1
2π

∫
strip d

2z eσ[ψ†L
↔
∂z ψL + ψ†R

↔
∂z̄ ψR ]



Application: entanglement entropy
We can conformally map the strip into the upper half plane with

g(z) = e iz

and compute the Reny entanglement entropies using the
Calabrese-Cardy formula

Sn = n+1
12n log

 cut.off︷ ︸︸ ︷
sin[ρ(x , y)/π]

conf. distance︷ ︸︸ ︷
d(x , y)

 , d(x , y) = eσ
∣∣∣∣dgdz

∣∣∣∣−1

Img(z)

Analytically continuing back in real
time

Sn(x , t) ∼ n+1
12 n ln

[
t(1− (x/t)2)3/2

]
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Conclusion/Summary II

1. A new field theoretical (CFT) approach to inhomogeneous quenches

2. Curvature of the dispersion gives non-trivial metric of the CFT

3. Example: Entanglement entropy in the DW quench (hard to
compute from lattice model)

4. Generalizable to many other protocols

Obrigado!


