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Integrable Models:
Quantum models which can be exactly solved by Bethe Ansatz

IM can be found in different areas, such as:

• Statistical Physics

• Quantum Field Theory

• ***Condensed Matter

• ***Ultracold Atoms

Present some integrable models in CM and UA,

focusing on some prominent examples
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1 - INTRODUCTION
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Importance of the study of integrable models:

• They serve as a test for computer analysis and analytic

methods for realistic systems, where only numerical

calculations and perturbative methods may be applied;

• They serve as a laboratory for investigations for the

situations (1) where the mean field treatment fails (quantum

fluctuations are large) or (2) which cannot be described via

perturbation theory (strong coupling);

• From the mathematical point of view, they provide explicit

realization of algebraic structures, such as Lie algebras and

quantum groups;
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Importance of the study of integrable models:

• From the experimental point of view, there are materials

which behave like (quasi) 1D systems, such as KCuF3,

Sr2CuO3, (C5D12N)2CuBr4, (5IAP2CuBr42H2O),

Cu2(C5H12N2)2Cl4, ...... which can be well described by

integrable spin chains and ladders;

• Some integrable systems have been realized in the lab in

the context of ultracold atoms.
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2 - Integrable models in Condensed
Matter
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Spin ladder systems

Importance:
Some compounds have been realized experimentally
with a ladder structure:

SrCu2O3

La1−xSrxCuO2, 5

Sr14−xCaxCu24O41

Cu2(C5H12N2)Cl4

CaV2O5

KCuCl3
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• Different experiments using these compounds do
report on the existence of a spin gap in the energy
spectrum: magnetic susceptibility, NMR techniq.

• In some of these even leg-ladder compounds
superconductivity has been detected upon hole
doping (chemical substitution)
detected in resistivity curves

• It has been observed that:
Even leg ladders exhibit a gap;
Odd leg ladders do not exhibit a gap.
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DEFINITION: Spin ladder

• • •

• • •

• • •

• • •

• • •

✟
✟

✟
✟
✟

rung

leg

• construction: put some 1D spin chains together, in such a

way that the no of legs (L) << no of rungs

• interpolates between 1 and 2 dimensions

• historically, the name came from the 2-legs, and it was extended after for n-legs
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A SIMPLE INTEGRABLE SPIN LADDER MODEL:

H =
J‖
γ

Hleg + J⊥

L
∑

j=1

~Sj ~Tj − µBgH
L
∑

j=1

(Szj + T zj ),

Hleg =
L
∑

j=1

(

~Sj ~Sj+1 + ~Tj ~Tj+1 + 4 ~Sj ~Sj+1
~Tj ~Tj+1

)

Yupeng Wang PRB60 (1999)

• Sj , Tj are Pauli matrices acting on site j of the left and right legs

• J‖ and J⊥ are the leg and and rung couplings and γ is a rescaling constant

• H is the magnetic field, L is the number of rungs and PBC are imposed

• It differs from the usual Heisenberg ladder by the presence of biquadratic interactions
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Properties:

• this model can be exactly solved by the BA:

the leg part is simply the permutation operator corresponding to the su(4) algebra and the

rung term becomes diagonal after a convenient change of basis;

• the gap and critical fields can be derived using the TBA;

• the thermal and magnetic properties can be obtained using

the Quantum Transfer Matrix (QTM) method:

the free energy is written in terms of the eigenvalue of the QTM and from it we derive the

thermodynamical properties by standard thermodynamics;

• this integrable ladder model can be used to describe the

physics of some strong coupling ladder compounds.
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Comparison with experimental curves:

We can use this integrable spin ladder model to fit experimental curves

• (5IAP2CuBr42H2O)

C. Landee, PRB63 (2001); M. Batchelor et al, PRL (2003)
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Comparison with experimental curves:

• (5IAP2CuBr42H2O)

C. Landee, PRB63 (2001); M. Batchelor et al, PRL (2003)
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Comparison with experimental curves:

• Cu2(C5H12N2)2Cl4

M. Hagiwara et al, PRB62 (2000); M. Batchelor et al, PRL (2003)
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Comparison with experimental curves:

• Cu2(C5H12N2)2Cl4

M. Hagiwara et al, PRB62 (2000); M.Batchelor, PRL (2003)

Excellent agreement is found between the theoretical results and

the experimental data for these ladder compounds
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Other integrable models in Condensed Matter

• Heisenberg chain

• Susy t-J model

• Hubbard model

• Kondo lattice and other impurity models

• . . .
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3 - Integrable models in Ultracold
Matter
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Bosonic quantum tunneling models:

• 2 wells: Two-site Bose Hubbard Hamiltonian

• 3 wells: Triple well Hamiltonian

• 4 wells: Four-well ring model

• .......

• Multi-well tunneling models
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Two-site Bose Hubbard Hamiltonian:

H =
K

8
(N1−N2)

2−∆µ

2
(N1−N2)−

EJ
2
(a†1a2+a

†
2a1)

• Ni = a†iai: number of atoms in well (i = 1, 2)

• K: atom-atom interaction term

• ∆µ: external potential

• EJ : tunneling strength
G. Milburn et al, Phys. Rev. A 55 (1997) 4318; A. Leggett, Rev. Mod. Phys. 73 (2001) 307

A. Tonel, J. Links, A. Foerster, JPA 38 (2005) 1235

The quantum dynamics of the model exhibits tunneling X

self-trapping - experiment of Albiez et al - 2005
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Quantum Dynamics:
Time evolution of the expectation value of the imbalance population (N1 −N2)/N for different

ratios of the coupling K/EJ and ∆µ = 0 and initial state |N, 0 >
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• the qualitative behaviour does not depend on the number of particles;

• collapse and revival behaviour, typical of the experiments;

• between K
EJ

= 1
N

and 1 the system tends to localize
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Quantum Dynamics:
Time evolution of the expectation value of the imbalance population (N1 −N2)/N for different

ratios of the coupling K/EJ and ∆µ = 0
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: Tunneling X Self-trapping
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Direct observation of tunneling and self-trapping:

Albiez, M. et al., Phys. Rev. Lett. 95 (2005) 010402

The two-site Bose Hubbard model describes qualitatively tunneling X self-trapping
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Integrability and exact solution:
• R-matrix:

R(u) =









1 0 0 0

0 b(u) c(u) 0

0 c(u) b(u) 0

0 0 0 1









,

b(u) =
u

u+ η
c(u) =

η

u+ η

• Yang-Baxter algebra:

R12(x−y)R13(x)R23(y) = R23(y)R13(x)R12(x−y)
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• Monodromy-matrix:

T (u) =

(

A(u) B(u)

C(u) D(u)

)

• Yang-Baxter algebra:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v)

• Realization of the monodromy matrix:

L(u) = π(T (u)) = La
1(u+ w)La

2(u− w)

La
i (u) =

(

u+ ηNi ai
a†i η−1

)

i = 1, 2
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• Transfer matrix:

τ(u) = π(Tr(T (u))) = π(A(u) +D(u))

• Integrability:

[τ(u), τ(v)] = 0 −→ [H, τ(v)] = 0
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• Hamiltonian and transfer matrix:

H = κ

(

τ(u)− 1

4
(τ ′(0))2 − uτ ′(0)− η−2 + w2 − u2

)

with the identification:

K

4
=
κη2

2
,

∆µ

2
= −κηw, EJ

2
= κ

H =
K

8
(N1−N2)

2−∆µ

2
(N1−N2)−

EJ
2
(a†1a2+a

†
2a1)
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Applying the algebraic Bethe ansatz method:

• Energy:

E = −κ(η−2

N
∏

i=1

(

1 +
η

vi − w

)

−η
2N 2

4
−wηN−η−2)

• Bethe Ansatz Equations:

η2(v2i − w2) =
N
∏

j 6=i

vi − vj − η

vi − vj + η
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INTEGRABLE GENERALISED MODELS:

Basic idea:

We can construct integrable generalised models
in this bosonic quantum tunneling context by
exploring different representations of some
algebra.

A. Foerster and E. Ragoucy, Nuclear Phys. B777 (2007) 373

A. Tonel, L. Ymai, A. Foerster and J. Links, J. Phys. A48 (2015)

L. Ymai, A. Tonel, A. Foerster and J. Links, arXiv:1606.00816 (2016)
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Triple well Hamiltonian:

H = U(N1 +N3 −N2)
2 + µ(N1 +N3 −N2)

+ t12(a
†
1a2 + a1a

†
2) + t23(a

†
2a3 + a2a

†
3) (1)

• Ni = a†iai: number of bosons in well i, (i = 1, 2, 3),

N = N1 +N2 +N3 is constant, H is invariant by changing the indices 1 and 3

• U : controls on-site and inter-well interac. bet. bosons

• µ: external potential, tij: tunneling strength:

A. Foerster, J. Links, K. Wilsmann, A. Tonel and L. Ymai, in preparation (2016)
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Four-well ring with anisotropic tunneling:

H = U(N1 +N3 −N2 −N4)
2 + µ(N1 +N3 −N2 −N4)(2)

+ t12(a1a
†
2 + a†1a2) + t14(a1a

†
4 + a†1a4)

+ t23(a3a
†
2 + a†3a2) + t34(a3a

†
4 + a†3a4)

tij are not independent: t12t34 = t23t14 but still admits sufficient freedom to investigate a range

of anisotropic tunneling regimes

1

2

3

4

t14

t23

t12

t34

A. Tonel, L. Ymai, A. Foerster and J. Links, J. Phys. A48 (2015)
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Yang-Baxter equation: key ingredient in this construction

R12(x− y)R13(x)R23(y) = R23(y)R13(x)R12(x− y)

• sufficient condition for integrability, proposed independently in different contexts by:

• C. N. Yang (China): Nobel Prize 1957

• R. Baxter (ANU, Australia): Boltzman Medal 1980, Lars

Onsager Prize 2006, Royal Medal 2013
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Experimental realization of the YBE using NMR:

talk by Fatima Anvari

NMR-Group: coordinated by Ivan Oliveira, CBPF
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Ultracold Fermi gases
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1D 2-component attractive Fermi gas with polarization:

• Hamiltonian

H = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+ g1D

∑

1≤i<j≤N
δ(xi − xj)−

H

2
(N↑ −N↓)

• N spin 1/2 fermions of mass m

• constrained by PBC to a line of length L

• H: external field

• g1D = ~
2c
m

: 1D interaction strength:

attractive for g1D < 0 and repulsive for g1D > 0

• Here: attractive regime
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Properties:

• this model can be exactly solved by the BA

C.N. Yang, PRL 19(1967)1312; M. Gaudin, Phys. Lett. 24 (1967) 55

• using the TBA we can derive thermodynamical properties

and also obtain the phase diagram for strong and weak

coupling.

• using the TBA, we can also obtain the Wilson ratio RW , an

universal quantity defined as the ratio of the magnetic

susceptibility χ to specific heat cv divided by T ( in the

strong attractive and low T regime)

RW ∝ χ

cv/T
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Phase diagram (T = 0) and schematic rep. (strong coupling)

He, Foerster, Guan, Batchelor, NJP2009
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• For low T: Theoretical predictions from low-T TBA + LDA

(solid lines) in the strong coupling regime are in

quantitative agreement with experimental measurements

(circles) of density profiles of a 2-spin mixture of ultracold
6Li atoms in 1D tubes

Liao et al. Nature 2010; the black (blue) circles are the density of fermions in the state |1 >

(|2 >) and the red squares the difference between these two states; the solid lines are the

predictions from TBA+LDA; the polarizations are 0.015, 0.055, 0.10 and 0.33.Integrable Models in Physics – p. 38/87



Contour Plot of the Wilson Ratio:
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Contour plot of RW for |γ| = 10 as a function of the temperature and magnetic field using the

TBA. In the region below the dashed lines, RW is temperature independent. RW = 0 for the

paired (PP) and ferromagnetic (F) phases. Near the critical points, the ratio reveals anomalous

enhancement. The inset shows the enhancement at the lower critical point.
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Wilson Ratio:
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RW vs polarization for |γ| = 10 at T = 0.00001ǫb. The ratio exhibits anomalous enhancement

near the two critical points due to the sudden change of the density of states. The values

RW = 5.53 and RW = 1.52 agree with the values obtained from the analytic expression.

Guan, Yin, Foerster, Batchelor, Lee, Lin, PRL 2013
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Other integrable models in Ultracold Matter

Advanced experimental techniques in trapping and cooling atoms in 1D have provided the

realization of integrable models in the lab. Some examples:

• the Lieb-Liniger Bose gas
T. Kinoshita et al Science 2004, PRL 2005, Nature 2006; A. van Amerongen et al

PRL2008; T. Kitagawa et al PRL 2010; J. Armijo et al PRL 2010, H. Naegerl et al, 2015

• the super Tonks-Girardeau gas
E. Haller et al Science 2009

• the two-component spinor Bose gas
J. van Druten et al arXiv:1010.4545

• McGuire impurity model in 1D Fermi gas
S. Jochim et al, Science 2011, PRL 2012, Science 2013.
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• Even if a system is not integrable
we can get inspiration from these methods;

• We can see this, for instance in the case of few
particles systems, which are attracting great
interest due to recent experiments in cold atoms.
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Few particles
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Few Particles System:
• Very recent experiments: Jochim et al prepared and controlled with high precision a

system of few 6Li atoms (N) in a 1D harmonic trap - Science 2012

Microtrap + tilting the potential

Combining the Bethe ansatz + variational principle we discuss few particles system
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Few-particles system in a 1D harmonic trap:

MOTIVATION: Recent experiments on a system of few atoms in a 1D harmonic trap stimulated

the search for new theoretical methods to deal with few-particles systems.

H = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+ c

∑

1≤i<j≤N
δ(xi − xj) +

1

2

N
∑

i=1

mω2xi
2

• Few bosons N interacting via a delta-function in an axially

symmetric harmonic trap with angular frequency w;

• c is the interaction strength, attractive for c < 0 and

repulsive for c > 0

• The harmonic potential term prevents the exact solvability

of H. If we consider just the interaction Hamiltonian

(ω = 0) it is exactly solvable by the Bethe ansatz
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H = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+ g1D

∑

1≤i<j≤N
δ(xi − xj) +

1

2

N
∑

i=1

mω2xi
2

• N = 2 :

exact analytical solution - Th. Busch et al, Found.Phys. 1998

• N ≥ 3 :

no exact solution is available; BA + LDA is not possible!

• Our approach: by combining the Bethe ansatz with the

variational principle, we calculate the GS-energy of the

system with good agreement with the analytical result for

N = 2 and numerical results for N = 3.

The central part of the trial function is the BA-wavefunction for the integrable model.
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Ground state energies:

N=2
Geometric

Analytic

N=3
Geometric

Numeric

-5 0 5 10 15 20
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

c

Ε

Ground state energies ǫ = En
N~ω

− 1
2

as a function of the interaction strength c. The case N = 2

matches the analytic result well in all regimes and the N = 3 case matches numerical results.

D. Rubeni, A. Foerster and I. Roditi, PRA 2012

B.Wilson, A. Foerster, C. Kuhn, I. Roditi, D. Rubeni, PLA 2014
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Probability density for N = 2:
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Probability density |Ψ|2 of the relative motion of two bosons in the GS for different values of the

coupling: (a) c = −1, (b) c = −0.5, (c) c = −0.1, (d) c = 0.1, (e) c = 1 and (f) c = 20. In the

attractive case it exhibits a peak at r1 = 0 which increases and gets thinner for higher |c| values,

while for the repulsive case a cusp emerges at r1 = 0 which goes to zero by increasing c
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Probability density for N = 3:
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Probability density |Ψ|2 in Jacobi coordinates r1 and r2 for different values of the coupling:

(a) c = −1, (b) c = −0.5, (c) c = −0.1, (d) c = 0.1, (e) c = 1 and (f) c = 20.

The colors range from purple to red indicating respectively lower values and higher values of

|Ψ|2. In the attractive case a more localized peak is observed by increasing |c|. In the repulsive

case |Ψ|2 reduces along the mirror planes (the points where xi − xj = 0 when c increases.
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Pair correlations:
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Pair correlation function ρ2(x1, x2) for N = 2 (upper line) for different values of the coupling:

(a) c = −5, (b) c = 0.1, (c) c = 20 and for N = 3 (bottom line) for: (d) c = −5, (e) c = 0.1

and (f) c = 20. In the repulsive case, the tendency of the particles to stay away from each other by

increasing c; in the attractive case the tendency of the particles to stay together by increasing |c|.

The BA+variational approach can be extended to higher N .
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4- BREAKING THE
INTEGRABILITY

Integrable Models in Physics – p. 51/87



Breakdown of the integrability: Heisenberg chain

• The transport behavior in the integrable system contrasts

with the non-integrable or chaotic chain, suggesting

ballistic transport (integrable case) X diffusive transport

(chaotic case).

• See also related work:

M. Haque, D. Luitz, S. Mukerjee, H. Pastawski, R. Pereira,

A. Polkovnikov, F. Pollmann, T. Prosen, J. Sirker
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Breakdown of the integrability: Bose gas

H = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+

∑

i<j≤N

gijδ(xi − xj)

• N bosonic atoms of mass m in 1D;

• The interaction between each pair gij may differ.

• Here: repulsive case

• Jastrow-type Ansatz: Ψij is the two-body exact solution

Ψv
J = C

P
∏

i<j

(Ψij)
v

Study the effect in static properties
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Simplest case: N = 3:

• g12 = g13 = g, g23 = g′ (1: impurity, 2, 3: majority)

• Integrable case: g = g′.

Schematics for representative cases: (a) strongly repulsive integrable case, where separation

between atoms is maximum (b) Interaction between majority pair is strong, impurity-majority

interaction weak, so impurity appears delocalised across the ring (c) Impurity strongly repels

majority pair but majority-majority interaction is weak, so these atoms tend to bunch together
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Two-body density:

Two-body density for the majority pair for (c) integrable case and (d) non integrable case, where

pronounced additional minima appear. The light (dark) color indicates high (low) density.

I. Brouzos and A. Foerster, PRA 2014
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Breakdown of the integrability: Triple well

H = H0 + b(N2 −N3)

H0 = U(N1 +N3 −N2)
2 + µ(N1 +N3 −N2)

+ t1(a
†
1a2 + a1a

†
2) + t3(a

†
2a3 + a2a

†
3) (3)

• Integrable case: b = 0
The model has 3 modes, so 3 independent conserved quantities are expected:

[H0, N ] = [H0, Q] = [N,Q] = 0

N = N1 +N2 +N3 Q =
1

t21 + t23
[t21N3 + t23N1 − t1t3(a

†
3a1 + a†1a3)]

• Non-integrable case: b 6= 0

[H,N ] = 0, [H,Q] 6= 0, [N,Q] 6= 0
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Level space distribution: Integrable case b = 0

Energy level spacing distribution as a function of the spacing "s".

N = 100, µ = 0, U = 1/100, t1 = t3 = 1/
√
2. The distribution has universal behaviour

independent of the choice of coupling parameters and follows the Poisson distribution

P (s) = exp(−s) (red curve)
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Level space distribution: Non-integrable case b 6= 0

Energy level spacing distribution as a function of the spacing "s".

N = 100, µ = 0, U = 1/100, t1 = t3 = 1/
√
2, b = 1. The distribution follows the Brody

distribution (red curve), very close to the Wigner-Dyson distribution (green curve).

PW (s) = πs
2

exp(−πs2

4
); PB(s) = α(q + 1)sq exp(−αsq+1); α =

[

Γ
(

q+2
q+1

)]q+1
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5- CONCLUDING REMARKS
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Concluding remarks:
• We have presented some examples in which integrable

models are relevant. This list should be considered

remarkable, not necessarily because of the examples given,

but arguably also because of what has been omitted.

• There are a wealth of integrable models which are yet to

find their way into experiments.

• It is clear that integrable models will continue to offer

valuable insights into the description of physical properties

and experimental results for decades to come.
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Integrability: Formal definition

It is generally accepted that an integrable system is one which is

derived from a set of commuting transfer matrices.

This definition applies to many-body systems.

Transfer matrix τ(u): is a generating function of conserved quantities

• The condition:

[τ(u), τ(v)] = 0

• represents (an infinite set of) conservation laws:

[cn, cm] = 0

• where the series expansion was taken:

τ =
∑

n

cnv
n
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Integrability: In practice

Means that we can solve the eigenvalue problem of the transfer

matrix and consequently the hamiltonian derived from it.

Method: Bethe ansatz

• Problem: Find the spectrum of τ :

τΨ = EΨ (1)

• Ansatz:

Ψ = B(v1)B(v2) . . . B(vN)Φ (2)

• Substituting (2) in (1): τΨ = EΨ+ u.t.({vi})
• The condition of the cancelation of the unwanted terms

implies in a set of conditions for the vi, called BAE.

• This will ensure that Ψ will be the eigenvector of τ with

energy E.
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Integrability:

• Classical Mechanics

If a system with n degrees of freedom possesses n independent first integrals of motion in

involution (i.e. Poisson-commuting), then the system is integrable (Liouville)

• Quantum Mechanics: Common definitions

• 1) A system is quantum integrable if it possesses a maximal set of independent

commuting quantum operators Qα, α = 1, . . . dim(H).

• 2) A system is quantum integrable if it is exactly solvable, in other words if we can

construct its full set of eigenstates explicitly.

• 3) A system is quantum integrable if it can be mapped to harmonic oscillators.

• 4) A system is quantum integrable if the scattering it supports is nondiffractive.

• 5) A system is quantum integrable if its energy level statistics is Poissonian.

• 6) A system is quantum integrable if it shows level crossings (i.e. does not show

level repulsion).
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Two-body density or pair correlations:

ρ2(x1, x2) =

∫

+∞

−∞
. . .

∫

+∞

−∞
|Ψ|2dx3 . . . dxN

It gives the probability of finding 2 particles at 2 given positions

at the same time.

• The two-body density of the majority pair of atoms:

ρ(xm1
, xm2

) =

∫

|ψ|2dxi
∫

|ψ|2dxidxm1
dxm2

• Jacobi coordinates:

ξ =
2

3

(

xi −
xm1

+ xm2

2

)

, r = xm1
− xm2

The ξ Jacobi coordinate represents the position of the impurity, depending on the position

of the center of mass of the majority atoms.
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Static structure factor:

Static structure factor S as a function of momentum p for different values of interactions in the

integrable and non-integrable cases. For high p, S converges to 1. For low p, S of the majority

atoms exhibits a peak for strong majority-impurity repulsion, attributed to an effective attraction.

R. Barfknecht, I. Brouzos and A. Foerster, PRA 2015
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Fermi gas: Bethe ansatz method

C.N. Yang, PRL 19(1967)1312; M. Gaudin, Phys. Lett. 24 (1967) 55

• Energy:

E =
~
2

2m

N
∑

j=1

k2j ,

• BAE:

exp(ikjL) =
M
∏

ℓ=1

kj − Λℓ + i c/2

kj − Λℓ − i c/2

N
∏

ℓ=1

Λα − kℓ + i c/2

Λα − kℓ − i c/2
= −

M
∏

β=1

Λα − Λβ + i c

Λα − Λβ − i c

{kj , j = 1, . . . , N} are the quasimomenta for the fermions;

{Λα, α = 1, . . . ,M} are the rapidities for the internal spin degrees of freedom

The solutions to the BAE give the GS properties and provide a clear pairing signature
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Thermodynamical Bethe Ansatz - TBA

• elegant method to study thermodynamical properties

• thermodynamic limit: L→ ∞, N → ∞ with N/L finite:

• consider a distribution function for the BA-roots;

• the equilibrium state is determined by the condition of

minimizing the Gibbs free energy:

G = E −HM z − µN − TS

• the TBA equations are a set of coupled nonlinear equations

from which we can obtain the phase diagram at T = 0 for

strong and weak coupling.
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TBA - equations:

set of coupled nonlinear integral equations

ǫb(k) = 2(k2 − µ− 1

4
c2) + Ta2 ∗ ln(1 + e−ǫb(k)/T )

+Ta1 ∗ ln(1 + e−ǫu(k)/T )

ǫu(k) = k2 − µ− 1

2
H + Ta1 ∗ ln(1 + e−ǫb(k)/T )

−T
∞
∑

n=1

an ∗ ln(1 + η−1
n (k))

ln ηn(λ) =
nH

T
+ an ∗ ln(1 + e−ǫu(λ)/T )

+

∞
∑

n=1

Tnm ∗ ln(1 + η−1
m (λ))

in terms of the dressed energies: ǫb(k) and ǫu(k) for paired and unpaired fermions and the

function ηn(λ). The Gibbs free energy per unit length is:

G = −T
π

∫ ∞

−∞
dk ln(1 + e−ǫb(k)/T )− T

2π

∫ ∞

−∞
dk ln(1 + e−ǫu(k)/T )
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Limit T → 0: dressed energy equations

ǫb(Λ) = 2(Λ2 − µ− c2

4
)−

∫ B

−B
a2(Λ− Λ′)ǫb(Λ′)dΛ′

−
∫ Q

−Q
a1(Λ− k)ǫu(k)dk

ǫu(k) = (k2 − µ− H

2
)−

∫ B

−B
a1(k − Λ)ǫb(Λ)dΛ

am(x) =
1

2π

m|c|
(mc/2)2 + x2

, ǫb(±B) = ǫu(±Q) = 0

The Gibbs free energy per unit length at zero temperature is given by

G(µ,H) =
1

π

∫ B

−B
ǫb(Λ)dΛ +

1

2π

∫ Q

−Q

ǫu(k)dk

From the Gibbs free energy per unit length we have the relations

−∂G(µ,H)/∂µ = n, −∂G(µ,H)/∂H = mz = nP/2
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Strong attraction

H =
~
2n2

2m

{

γ2

2
+ 2P 2π2

(

1 +
4(1− P )

|γ| − 4P

3|γ|

)

−π
2(1− P )2

8

(

1 +
4P

|γ|

)}

.

CRITICAL FIELDS:

Hc1 =
~
2n2

2m

(

γ2

2
− π2

8

)

Hc2 =
~
2n2

2m

[

γ2

2
+ 2π2

(

1− 4

3|γ|

)]

Integrable Models in Physics – p. 72/87



Direct verification of the YBE using NMR:

based on a proposal by Mo-Lin Ge et al, PRA 2008
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Direct verification of the YBE through an NMR setup
• Our experiment is performed on a liquid state Iodotrifluoroethylene (C2F3I) sample

which contains molecules with three qubits.

F1, F2 and F3 are denoted as qubit 1, qubit 2 and qubit 3, respectively.

Quantum circuit diagram for implementation of the YBE.

• LHS and RHS of the YBE are applied on qubits 1 and 3, respectively. The YBE can be

reduced to a sequence of single spin rotations, which is the sequence implemented in the

experiment. The qubits 1 and 3 are left in the output states Φ1 and Φ3, respectively. To

verify the YBE we need to measure the overlap , if this quantity is equal to 1, then the

YBE is satisfied, otherwise the YBE is not satisfied.
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Direct verification of the YBE using quantum optics:
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SPIN LADDER: Schematic Representation:

L=2: SrCu2O3 L = 3 : Sr2Cu3O5

Azuma et al, PRL 94

• Cooper: represented by points, Oxigens: located at the corners

• Intra-ladder coupling is weak
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2-leg ladder: Susceptibility X T

Shows an exponential decay: (from which we get the gap)

χ = C
e−

∆
T

√
T
; T → 0

Troyer et al, PRL54 (1996); Azuma et al, PRL73 (1994)
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3-leg ladder: Susceptibility X T

There is NO exponential decay: (There is no gap)

χ(T ) tends to a finite number as T → 0

Troyer et al, PRL54 (1996); Azuma et al, PRL73 (1994)
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SPIN LADDER: QTM and HTE:
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SPIN LADDER: QTM and HTE:
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SPIN LADDER: THERMODYNAMICAL PROPERTIES

• The thermal and magnetic properties can be obtained by exact diagonalization or by

analytical methods: the free energy is written in terms of the eigenvalue of the Quantum

Transfer Matrix (QTM) (the QTM eigenvalue satisfies a set on nonlinear eqs. The free

energy can be expanded in powers of J‖/(γT ) up to fifth order, using the High

Temperature Expansion - HTE), and from it we derive the thermodynamical properties by

standard thermodynamics:

• Magnetization

Mz = − ∂

∂H
f(T,H)

• Magnetic susceptibility

χ = − ∂2

∂H2
f(T,H)

• Specific heat

c = −T ∂2

∂T 2
f(T,H)
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LL-Bose gas: the exact solution:
• BA- wavefunction:

ψχ (x1, x2, . . . , xN) =
∑

P

A(P ) exp(i(kP1x1+· · ·+kPNxN))

A(P ) = Cǫ(P )
∏

j<l

(kPj − kPl + ic)

• Energy eigenvalues:

E =
~
2

2m

N
∑

j=1

k2j ,

• BA-equations:

exp(ikjL) = −
M
∏

ℓ=1

kj − kℓ + i c

kj − kℓ − i c
j = 1 . . . N
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Geometric Ansatz: the basic idea

• Change to Jacobi coordinates, which allows to remove the

CM-coordinate;

• Change of coordinates to hyperspherical coordinates: radial

component λ and the angular part ~θ = {θ1, θ2, ...θN−2}.

• The relative Hamiltonian now takes the form:

Ĥrel = − ~
2

2µ
∇2 +

1

2
µω2λ2 + c

∑

j

δ
(

dj(~θ)
)

.

For small λ, Ĥrel is approximately the one solved by the

Bethe ansatz. For large λ the behaviour is dominated by

that of a harmonic oscillator.
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Variational principle: EGS ≤ 〈ψ|Hrel|ψ〉
〈ψ|ψ〉 ,

Geometric Ansatz for the trial wavefunction:

Ψ(λ, ~θ) =







ψB

(

~κ, λ, ~θ
)

λ < Λ

A(~θ) exp
(

−α(~θ)(λ2 − Λ2)
)

λ > Λ
.

-4 -2 0 2 4

-4

-2

0

2

4

r1

r 2

Inside

Outside

Λ=L

Schematic representation of |Ψ|2 for N = 3. Λ determines the boundary between 2 regions:

inside (Bethe ansatz) and outside (asymptotic harmonic oscillator). The colors range from purple

to red indicating respectively lower values and higher values of |Ψ|2. Integrable Models in Physics – p. 84/87



Density Profiles
The equation of state can be reformulated within the local density

approximation (LDA) by a replacement µ(x) = µ(0)− 1
2
mω2

xx
2

in which x is the position and ωx is the trapping frequency, the

total particle number and the polarization are given by:

N

a2xc
2

=

∫ ∞

−∞
ñ(x̃)dx̃,

P =

∫ ∞

−∞
ñ1(x̃)dx̃/(N/(a

2

xc
2)).
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Universal Ratios
In condensed matter, dimensionless ratios of
quantities that take universal values can provide
deep physical insights. Some examples include:

• Wiedemann-Franz ratio

• Sommerfeld-ratio

• Kadowaki-Woods ratio

• Korringa ratio

Why universal ratios are important?

• show that the same particles are responsible for

the two different quantities that form the ratio;

• provide significant constraints on theories;

• demonstrate universality.
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Wilson Ratio
• Dimensionless ratios of quantities that take universal values

can provide deep physical insights.

• The Wilson ratio is defined as the ratio of the magnetic

susceptibility χ to specific heat cv divided by temperature.

• The Wilson ratio has recently been measured in a spin

1/2-ladder compound (C7H10N)2CuBr2.

• Procedure: The main ingredients χ and cv are obtained

from the TBA-equations.
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