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Motivations

Out-of-equilibrium dynamics in many-body systems.
Surge of interest in long range: cold atomic clouds, light
harvesting complexes, exciton wires, ion traps, etc..
Cooperativity and Long Range interaction: Emergent
quantum properties, Macroscopic quantum tunnelling,
Cooperative propagation of information.
Long-range interacting systems: broken ergodicity, Long
Relaxation Times, long-lasting out-of-equilibrium regimes,
Abundance of Regular Orbits

F. Borgonovi QNEP2016



Many recent results

Spreading of perturbations, correlations, entanglement,
etc.. in many body systems.
Lieb-Robinson bounds: for short range, spreading within a
lightcone with exponential suppression outside.
Fast propagation of perturbations, Experiments, P. Richerme et al.,

Nature 511 (2014) 198, P. Jurcevic et al, Nature, 511 (2014) 202

Breakdown of Quasilocality in Long-Range Quantum
Lattice Models Theory, J.Eisert, M van den Worm, S.R.Manmana M.Kastner, PRL 111,

260401 (2013); J. Schachenmayer et al, PRX 3, 031015 (2013); K. R. A. Hazzard, S. R. Manmana, M.

Foss-Feig, and A. M. Rey, PRL 110, 075301 (2013), P. Hauke, L. Tagliacozzo PRL 111, 207202 (2013)

but also "suppression" of long-range effects D.-M. Storch , M. van den

Worm and M. Kastner, NJP 17 (2015) 063021
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Long Range Interactions

Statistical and Dynamical
properties (A. Campa, T. Dauxois, D. Fanelli, S.

Ruffo, "Physics of Long-Range Interacting Systems" ,

Oxford University Press, (2014)

Non-Extensivity, Non-Additivity

Ensemble inequivalence "Inequivalence

of Ensembles in a System with Long-Range Interactions"

Julien Barré, David Mukamel, and Stefano Ruffo Phys.

Rev. Lett. 87, 030601 (2001)

Broken Ergodicity (F.Borgonovi, G.L.Celardo,

M.Maianti and E.Pedersoli "Broken Ergodicity in

Classically Chaotic Spin Systems" Jour. of Stat. Phys.

116 , (2004) 235

long range
Vi,j = J

rαij
α < d

Abundance of Regular
orbits and suppression of
chaos R. Bachelard, C. Chandre, D.

Fanelli, X. Leoncini, and S. Ruffo Phys. Rev.

Lett. 101, 260603 (2008)

neous phase), while the bicluster QSS has a small residual
magnetization (homogeneous phase).

The monocluster QSS can be ideally mapped onto a
collection of weakly interacting pendula. As revealed by
our stroboscopic analysis, particles evolve on regular
tracks, which are approximately one dimensional, though
they do manifest a degree of local diffusion (thickness). For
the bicluster QSS, the Poincaré section shows a phase
portrait which closely resembles the one obtained for a
particle evolving in the potential of two contrapropagating
waves. These latter interact very weakly, as the associated
propagation velocities appear rather different.

In order to get a quantitative estimate of the thickness of
the tori as a function of the total number of particles, we
focus on the monocluster QSS. Figures 2(a)–2(c) display
the single particle phase space for increasing values of N.
A clear trend towards integrability is observed as quanti-
fied in Fig. 2(d), where the thickness is plotted versus N.

Summing up, we have assessed that the single particle
motion of a typical long-range interacting system becomes
progressively more regular as the number of particles is
increased. This is at variance with what happens for sys-
tems with short-range interactions and provides a different
interpretation of the abundance of regular motion in long-

range dynamics. In addition, we have seen that the features
of the single particle motion depend on the choice of the
initial condition. A natural question then arises: what is the
link between the macroscopic properties of the different
QSS with the change observed in the single particle dy-
namics? Anticipating the answer, we will see that this is
related to a bifurcation occurring in the effective
Hamiltonian.
In the thermodynamic limit, the evolution of the single

particle distribution function fð�; p; tÞ is governed by the
Vlasov equation [18]. This equation also describes the
mean-field limit of wave-particle interacting systems
[10]. It can be reasonably hypothesized that QSS are sta-
tionary stable solutions of the Vlasov equation [8].
Following these lines, a maximum entropy principle, pre-
viously developed in the astrophysical context by Lynden-
Bell [14], allowed one to predict [13,19], for the HMF
model, the occurrence of out-of-equilibrium phase transi-
tions, separating distinct macroscopic regimes (magne-
tized or demagnetized) by varying selected control
parameters which represent the initial condition.
The central idea of Lynden-Bell’s approach consists in

coarse graining the microscopic one-particle distribution
function fð�; p; tÞ by introducing a local average in phase
space. Starting from a waterbag initial profile, with a
uniform distribution f0, a fermionic entropy can be asso-
ciated with the coarse-grained profile �f, namely,

s½ �f�¼�
Z
dpd�

� �f

f0
ln

�f

f0
þ
�
1�

�f

f0

�
ln

�
1�

�f

f0

��
: (2)

The corresponding statistical equilibrium, which applies to
the relevant QSS regimes, is hence determined by max-
imizing such an entropy, while imposing the conservation
of the Vlasov dynamical invariants, namely, energy, mo-
mentum, and norm of the distribution. The analysis reveals
the existence of an out-of-equilibrium phase transition
from a magnetized to a demagnetized phase [13,19].
We here reinterpret the transition in a purely dynamical

framework, as a bifurcation from a monocluster QSS to a
bicluster QSS. Aiming at shedding light on this issue, we
proceed as follows: For fixed M0 and N, we gradually
increase the energy U and compute the Poincaré sections,
as discussed above. We then analyze the recorded sections
by identifying the number of resonances and measuring the
associated width and position (both calculated in the p
direction). Results forM0 ¼ 0:6 are displayed in the lower
panel of Fig. 3: the shaded region, bounded by the dashed
lines, quantifies the width of the resonances. As antici-
pated, one can recognize the typical signature of a bifur-
cation pattern. Repeating the above analysis for different
values of the initial magnetization M0 allows us to draw a
bifurcation line in the parameter space (M0; U). In the
upper panel of Fig. 3 we report both this bifurcation
(full) and the Lynden-Bell phase transition (dashed) lines
[13]. The two profiles resemble each other qualitatively,
and even quantitatively for small M0. The change of the
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FIG. 2 (color online). Poincaré sections of a few selected
particles of one trajectory of Hamiltonian (1), when the system
size is varied (for M0 ¼ 0:6 and U ¼ 0:54). The thickness of the
tori decreases as N is increased (see text). For large enough
values of N, the magnetization M is found numerically to
approximately scale asMðtÞ � �Mþ �MðtÞ cos!t, with j�Mj �
�M and j@t�Mj � !jMj. Ignoring the time dependence of �M
and using a reduced model of test particles in the external field
MðtÞ, one obtains stroboscopic sections which are qualitatively
and quantitatively similar to the ones reported in this figure, with
the unique difference that the thickness is zero [22]. Considering
a torus with action J � 1:9, we plot in (d) its variance �J
computed over a time interval �t ¼ 300 as a function of N.
The scaling 1=N (dotted line) looks accurate over a wide range
of N values.
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Out-of-equilibrium dynamics in MBS: Ion Traps

Many Body Hamiltonian:

H = B
∑

k

σz
k + J

∑
i<j

σx
i σ

x
j

|i − j |α

Experimental observation of
spread of information and
violation of Lieb-Robinson light
cone.
Ion Traps
P. Jurcevic et al, Nature, 511 (2014) 202 .

localized excitation refocuses are non-trivial even in the simpler case of
nearest-neighbour interactions13.

Flipping several spins at both ends of the chain creates counter-prop-
agating wavefronts, opening the prospect of studying quasiparticle colli-
sions (Fig. 2c). Extended Data Fig. 1 shows close agreement with theory
in all cases. Initializing all N spins in ;j iz :j i realizes a global quench. In
this case, the many-body state is in a superposition containing 0 through
to N excitations, in which interactions between single-excitation quasi-
particle modes can no longer be neglected. In this case, the resulting
distribution of information can be observed through two-point correla-
tion functions9,26, as seen in Fig. 2d and Extended Data Fig. 2.

To reveal the distribution of quantum correlations after a local quench,
we tomographically measure the evolution of the full quantum state of
pairs of spins (see Fig. 3 and Extended Data Fig. 3). Figure 3a exemplifies
the results for an interaction range a<1:75, for which a clear wavefront
is apparent. The results show that magnon wave-packets emerging from
either side of the initial excitation distribute entanglement across the
spin chain (Fig. 3b, c); the wavefront first entangles spins neighbouring
the quench site, then the next-nearest neighbours, and so on until the
boundaries are reached.

Finally, we investigate how the spin–spin interaction range affects the
way in which information is transported around the system. For this, we
measure the magnetization dynamics following a local quench in a chain
of 15 spins, for three values of a roughly equally spaced around a~1. In
the shortest-range case (Fig. 4a, a~1:41), an approximate light cone can
be seen. There is a clear leading wavefront of spin-excitation that moves
away from the quench site at a well defined velocity, and outside which
the signal decays rapidly (Fig. 4a, d). These are the features of a well-
defined speed limit for quantum dynamics that one would expect for
finite-range interactions, and that has previously been observed in sys-
tems of neutral atoms with nearest-neighbour interactions9,10. Indeed,
the information transport observed in our shortest-range experiment
is largely captured by a Lieb–Robinson bound that considers only the
nearest-neighbour interactions in the system (Fig. 4a, d, e).
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Figure 2 | Measured quantum dynamics in a seven-ion system following
local and global quenches. a–c, Time evolution of the magnetization sz

i tð Þ
� �

(colour coded) following a local quench at: a, the central spin (ion), for a < 1.36;
b, the leftmost spin, for a < 1.36; and c, both ends of the chain, for a < 1.75.
Values of 61 correspond to the fully polarized states. The colour scales in b and
c also refer to a. d, Time evolution of the averaged two-spin correlation function
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following a global quench, for a < 1.75. The timescales (in units of 1/J, where
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P

i
Ji,iz1= N{1ð Þ so that the time evolution can be compared with different

values of a) are for a–d, respectively: Tmax 5 8.36, 6.72, 5.44, 3.12.
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Figure 3 | Entanglement distribution following a local quench. Shown are
the dynamics for a < 1.75 up to T 5 30 ms (2.99 J21). a, Measured single-spin
magnetization (colour coded). b, Single-spin von Neumann entropy
2Tr(rlog(r))/log(2) (colour coded) derived from measured density matrices.
High-entropy states are due to correlations with other spins. c, Evolution of
entanglement (concurrence, see Methods) between pairs of spins distributed
symmetrically around the central spin, revealing the propagation of entangled
quasiparticles from the centre to the boundaries of the system. Blue, spins 3 and
5; red, spins 2 and 6; black, spins 1 and 7. Dashed lines show theoretical
predictions. Error bars, 1s calculated via Monte Carlo simulation of quantum
projection noise30.
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Figure 1 | Quantum dynamics in a one-dimensional spin chain following a
local quench. a, A steady state is locally perturbed by flipping one spin.
Quasiparticle wave-packets propagate left and right from the quench site and
entangle spin pairs across the system. The underlying spin–spin interaction
defines possible direct hopping paths (examples shown as arrows) and the
quasiparticle dispersion relation. b, Example of a long-range spin–spin
interaction matrix Jij, directly measured in our system for N 5 7 spins (see
Methods), with colours matched to the interactions pictured in a.
c, Quasiparticle dispersion relation (shifted by energy B), derived from
b (circles) and predicted using experimental parameters (crosses). The line
is the fitted dispersion relation for power-law interactions, with best-fit
exponent a 5 1.36. The maximum group velocity vmax

g is inferred from the
curve’s steepest slope (we set the lattice spacing to unity). a.u., arbitrary units.
Error bars (1s) are smaller than symbols used.
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Light Cones: Lieb-Robinson bounds

As the interaction range is increased (Fig. 4b, c), the arrival times of
the first maxima in magnetization are seen to appear earlier and earlier,
reflecting the ejection of faster and faster quasiparticles from the quench
site. Furthermore, the signal decay outside these maxima is very slow:
there is an almost instant increase in the magnetization even at large dis-
tances (Fig. 4d, top). Clearly we are able to tune our system into a regime
where the light-cone picture does not apply and significant amounts of
information can propagate directly to distant neighbours. This is con-
sistent with generalized Lieb–Robinson bounds for power laws, which
for av1 are trivial, placing no restriction on the speed of information
propagation6–8.

A quantitative analysis is provided by extracting the maximum qua-
siparticle group velocity vmax

g from the data (see Methods and Extended
Data Fig. 4). For the shortest-range case, the observed vmax

g fits well with
the nearest-neighbour case (Fig. 4d). As the interaction range is increased,
the results are consistent with a divergence of vmax

g , as recently predicted12.
Ultimately, the information propagation speed in our system is limited by
the propagation of acoustic waves across the ion chain21. Note that, despite
the faster-moving components in the longer-range data (Fig. 4c), the
initial perturbation remains more localized. This is consistent with the
predicted flattening of the dispersion relation away from the divergence.
For a comparison of data with theory, see Extended Data Fig. 4.

Differences between the observed and ideal quantum dynamics fol-
lowing local quenches largely correspond to imperfect conservation of
excitation number. This could be caused by electric field noise leading to
heating of the ion’s motional state or by unwanted spin–motion entan-
glement. For global quench dynamics, laser-frequency and magnetic-
field fluctuations give rise to dephasing.

We have presented a new platform for investigating quantum
phenomena—a many-body quantum system in which the states and
properties of its quasiparticle excitations can be precisely initialized,
controlled and measured. This opens many new paths for experimental

investigations, the subjects of which can be broadly split into the follow-
ing: (1) quantum transport phenomena, concerning how quantum states
and entanglement13, or excitations14,27, propagate across quantum many-
body systems; (2) how quantum systems reach equilibrium, including
the question of when thermalization15,28 and localization occur16; (3) en-
tanglement growth and simulation complexity17 (the interaction range
parameter a is known to play a critical role in the growth rate of entan-
glement and the possibility of simulating the dynamics with conventional
computers); and (4) quasiparticle behaviour near phase transitions1.
For many of these research lines it would be useful, and feasible, to add
localized spin excitation absorbers or reflective boundaries, and static or
stochastically fluctuating disorder, to our system.

During the final stage of this work, we became aware of complementary
recent work investigating global quenches of trapped-ion spin chains26.

METHODS SUMMARY
Ions are held in a linear Paul trap, each encoding a spin-1/2 particle in the electronic
states S1=2,m~z1=2i:

�� ��;i and D5=2,m~z5=2i:
�� ��:i. Spins are manipulated

with a narrow-linewidth laser at 729 nm (ref. 29). Ions are coherently manipulated
with two laser beams intersecting the ion string perpendicularly from opposite
directions. The first beam interacts with all the ions with nearly equal strength and
is used for carrying out collective spin rotations, as well as implementing effective
spin–spin interactions by means of electronic-state-dependent forces3. These forces
off-resonantly drive the transverse motional modes of the ion string. The inter-
action range að Þ is controlled by how far off-resonant the driving is and the axial
trapping confinement. The second beam is strongly focused, steerable, and is used
for single-spin rotations. Spatially resolved fluorescence measurements in conjunc-
tion with prior single-spin rotations allow us to take single-shot measurements of
arbitrary spin correlations.

If our system had only nearest-neighbour interactions, the signal propagation after
a local perturbation using sx

‘ would be bounded by hy tð Þ Oj jy tð Þi{hy0 Oj jy0ij j
ƒ2 Oj jj jId 4 tj jmaxi Ji,iz1ð Þð Þ, where O may be any local operator with norm Oj jj j
and distance d to the quench site ‘. As Fig. 4d shows forO~sz

i , this bound is only a
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Figure 4 | Measured quantum dynamics for increasing spin–spin
interaction ranges. a–c, Measured magnetization sz

i tð Þ
� �

(colour coded)
following a local quench. From a to c, the interaction ranges are a < 1.41, 1.07,
0.75. In a, an effective light cone is evident and the dynamics are approximately
described by nearest-neighbour interactions only. Red lines, fits to the observed
magnon arrival times (examples in d); white lines, light cone for averaged
nearest-neighbour interactions; orange dots, after renormalization by the
algebraic tail (see Methods). As the interaction range is increased (b, c) the light
cone disappears and nearest-neighbour models fail to capture the dynamics.
d, Magnetization of spins (ions) 6 and 13, from a (top) and c (bottom). Solid

lines, Gaussian fits to measured magnon arrival. Top: for a 5 1.41, a nearest-
neighbour Lieb–Robinson bound captures most of the signal (shaded region,
Methods). Bottom: for a 5 0.75, it does not. e, Maximum group velocity. With
increasing a, the measured magnon arrival velocities (red circles) approach the
group velocity of the non-renormalized nearest-neighbour model (grey dash-
dotted line). If renormalized by the algebraic tail, the nearest-neighbour group
velocity increases at small a (orange dots), but much less than the increase of the
observed magnon velocity. For small a, the measured arrival times are
consistent with the divergent behaviour predicted for full power-law
interactions (black line).
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Red lines, fits to the observed magnon arrival times; white lines,

light cone for averaged nearest-neighbour interactions; orange

dots, after renormalization by the algebraic tail.

Non local propagation of correlations
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Slow growth of bipartite entanglement

F. Borgonovi QNEP2016



Cone-light features for long-range
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Cooperative Shielding

We will show that such apparently contradictory behavior is
caused by a general property of long-range interacting systems
(Cooperative Shielding). It refers to shielded subspaces inside
of which the evolution is unaffected by long-range interactions
for a long time. As a result, the dynamics strongly depends on
the initial state: if it belongs to a shielded subspace, the
spreading of perturbation satisfies the Lieb-Robinson bound
and may even be suppressed, while for initial states with
components in different subspaces, the propagation may be
quasi-instantaneous.
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The Shielding effect

Let us consider a system:

H = H0 + V , with [H0,V ] = 0

with V highly degenerate V |vk 〉 = v |vk 〉, k = 1, ..,g.

|ψ0〉 =
∑g

k=1 ck |vk 〉

V contribute to the dynamics only with a global phase

|ψ(t)〉 = e−iHt/~|ψ0〉 = e−ivt/~e−iH0t/~|ψ0〉

We have shielding from V !!

H0 describes completely the dynamics (within a constant phase)
we may call it, emerging Hamiltonian

F. Borgonovi QNEP2016



Many open questions for non trivial cases:

What if [H0,V ] 6= 0?
What if the spectrum of V is not degenerate?
What’s the connection with long-range interacting systems
?
Is this a cooperative effects ? (how it scales with the
number of particles?)
What is and how to find, if any, the emergent Hamiltonian?

F. Borgonovi QNEP2016



Cooperative Shielding in many-body systems
Experimentally accessible spin 1/2 1–d Hamiltonian:

H = H0 + V ,

H0 =
L∑

n=1

(B + hn)σz
n +

L−1∑
n=1

Jzσ
z
nσ

z
n+1,

V =
∑
n<m

J
|n −m|α

σx
nσ

x
m.

transverse field: hn ∈ [−W/2,W/2].

α < 1: long range. α > 1: short range. For α = 0 :

V = J
∑
n<m

σx
nσ

x
m =

JM2
x

2
− JL

2
where Mx =

∑
n

σx
n

has a degenerate spectrum, and its eigenvalues are given by,
Vb = J(L/2− b)2/2− JL/2, where b = 0,1, . . .L/2
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Light-cones , constant transversal magnetic field
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Initially : All spins up along x, but the central spin (-x);
a) short range → light-cone;
b) infinite range → localization without disorder;
c) long range → localization without disorder;

d) infinite range & nearest neighbor →, light cone (effective short range)
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Effective couplings (α = 0)

H=H
ext Field 

+ H
NN 

 + V

∆=J[(L/2-b)-1]/2

b=0

b=1

external Field: σ
+
+ σ

−
NN: σ

+
 σ

−
 +σ

−
σ

+

V

+σ
+
σ

+
 +σ

−
σ

−
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Leaking Probability 1

In each band there is a g-degeneracy k = 1, ..,g.

V |Vbk 〉 = Vb|Vbk 〉

Taking a random superposition of degenerate eigenstates inside one
band b one may ask for the leaking probability to go outside that band
due to H0,

|ψ(0)〉 =
∑

k

ck |Vbk 〉 → |ψ(t)〉

Pb(t) =
∑

k

|〈Vbk |ψ(t)〉|2 Pleak = lim
t→∞

1− Pb(t)
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Leaking Probability experiments: L = 10,12,14
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Leaking Probability, pert. theory

Estimation for Pleak = 1− Pb: Given a state coupled with amplitude ε
to another state separated by an energy ∆, the probability to find the
system in the second state is ≈ (ε/∆)2 for ε/∆� 1.

HW
0 =

L∑
n=1

hnσ
z
n =

L∑
n=1

hn

2
(σ+,x

n + σ−,xn ), with 〈h2
n〉 = W 2/12 (1)

b=1
b=2

b=0L=5

P
leak

= L (ε/∆)
2
 = W

2
/J

2
L

Pleak ∝ (W/J)2/L for random field and no NN interaction.
Pleak ∝ (Jz/J)2/L for NN interaction only (and no random field).
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The emergent Hamiltonian

Consider the total Hamiltonian H = H0 + VLR can be written in the
basis of VLR =

∑
b Vb

∑
j |Vbj〉〈Vbj |,

H =
∑
b,b′

∑
j,k

|Vbj〉〈Vbj |H0|Vb′k 〉〈Vb′k |+
∑

b

Vb

∑
j

|Vbj〉〈Vbj |

taking the mean field approximation one gets

The Zeno Hamiltonian

Hz =
∑

bj

(Vb + 〈Vbj |H0|Vbj〉)|Vbj〉〈Vbj |
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Analogy with Quantum Zeno Effect

Consider the total Hamiltonian H = Hs + KHmeas, which one may
interpret as a quantum system described by Hs that is contin- uously
observed by an "apparatus" characterized by KHmeas . In the limit of
strong coupling, K →∞, a superselection rule is induced that splits
the Hilbert space into the eigensubspaces of KHmeas. Each one of
these invariant quantum Zeno sub- spaces is specified by an
eigenvalue and is formed by the corresponding set of degenerate
eigenstates of KHmeas . The dynamics becomes confined to these P
subspaces and dictated by the Zeno Hamiltonian

P. Facchi and S. Pascazio: Phys. Rev. Lett. 89 (2002)

Hz =
∑

b

PbH0Pb + VbPb = diag(H0) +
∑

b

VbPb

where Pb are the projectors on the eigensubspace of V
corresponding to Vb.
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Dynamics inside one specific band

Specifically we should consider the diagonal matrix elements of
H0 : 〈Vbj |H0|Vbj〉

H0 is a sum of magnetic field B 6= 0 and a nearest neighbor (NN)
coupling Jz 6= 0

In absence of NN coupling, (Jz = 0) one has 〈Vbj |H0|Vbj〉 = 0 i.e.
freezing!

on the other hand for B = 0 and Jz 6= 0 one has

Hz = Vb

∑
j

|Vbj〉〈Vbj |+
Jz

4

L−1∑
n=1

(
σ+

n σ
−
n+1 + σ−n σ

+
n+1

)
and one has an effective NN interaction
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Zeno Fidelity
To substantiate that the dynamics becomes indeed controlled by the
Zeno Hamiltonian as L increases, we consider an initial random state
inside one V-band

|Ψ(0)〉 =
∑

k

ck |Vbk 〉

and the overlap of its evolution under both the total Hamiltonian H
and Hz (fidelity)

F (t) = |〈Ψ(0)|eiHz t/~e−iHt/~|Ψ(0)〉|2.

It is clear that if in some limit H → Hz then F (t)→ 1. A perturbative
argument suggests that

T1/2 ∝ J
√

L/W 2
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Numerical Experiments

Upper : fidelity
black L=10
red L=12
green L=14
left Jz = 0, W = 2
right Jz = 1, W = 0
.........
Lower : shielding
time
left T1/2 vs W
right T1/2 vs L
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Spreading of perturbation

Starting with an initial state inside one specific band the
dynamics is dictated by the Zeno Hamiltonian up to T1/2. In
other words we will have a spreading of perturbation freezed or
effectively short-ranged despite the presence of long range
interaction.

This is not a peculiarity of α = 0.
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Light-cones , constant transversal magnetic field

(a)                 Jz=0 α=3
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(b)                 Jz=0 α=0
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(c)                Jz=0 α=0.5
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(d)               Jz=0.5 α=0
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Initially : All spins up along x, but the central spin (-x);
a) short range → light-cone;
b) infinite range → localization without disorder;
c) long range → localization without disorder;

d) infinite range & nearest neighbor →, light cone (effective short range)
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Shielding : independence of J coupling

(a) J=0.5 α=0
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(g) J=2 α=0
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Conclusions and Perspectives

1 Shielding is a novel cooperative effect : since it preserves
invariant coherent subspaces, and its robustness
increases with the system size, it might be essential in
building efficient quantum devices able to work at room
temperature.

2 Shielding allows to control quantum dynamics since the
spreading of correlations strongly depends on the initial
state.

3 Transport properties are strongly affected from shielding
(arXiv:1604.07868)

4 Is it possible to have Classical Shielding? in preparation
with L. Celardo, L. F. Santos & R. Bachelard
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Old stuff
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Magnetic reversal time
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Shielding in tight binding models

1d Anderson model with long range hopping

H = H0 + VLR

H0 =
∑

i

ε0i |i〉〈i |−Ω
∑

i

|i〉〈i+1|+h.c.

VLR = −γ
∑
i 6=j

|i〉〈j |
rαi,j

Ω

γ

H0 = Anderson Model

Shielding with Disorder?
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Induced gap and fidelity
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Fidelity: (Loschmidt echo)

F (t) = |〈ψ0|eiH0t/~e−iHt/~|ψ0〉|2

|ψ0〉: random superposition of excited
states.
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Classical Shielding : a full integrable model

Let us consider the Hamiltonian (α = 0, J > 0, Jx > 0) with
Kac’s renormalization factor,

HLR + HSR = − J
2N

N∑
k=1

∑
j 6=k

Sx
k Sx

j − Jx

N−1∑
k=1

Sx
k Sx

k+1 (2)
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Classical Shielding
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