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@ Out-of-equilibrium dynamics in many-body systems.

@ Surge of interest in long range: cold atomic clouds, light
harvesting complexes, exciton wires, ion traps, etc..

@ Cooperativity and Long Range interaction: Emergent
quantum properties, Macroscopic quantum tunnelling,
Cooperative propagation of information.

@ Long-range interacting systems: broken ergodicity, Long
Relaxation Times, long-lasting out-of-equilibrium regimes,
Abundance of Regular Orbits
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Many recent results

@ Spreading of perturbations, correlations, entanglement,
etc.. in many body systems.

@ Lieb-Robinson bounds: for short range, spreading within a
lightcone with exponential suppression outside.

@ Fast propagation of perturbations, Experiments, e richerme etal.,

Nature 511 (2014) 198, P. Jurcevic et al, Nature, 511 (2014) 202

@ Breakdown of Quasilocality in Long-Range Quantum
Lattice MOdeIS Theory, J.Eisert, M van den Worm, S.R.Manmana M.Kastner, PRL 111,
260401 (2013); J. Schachenmayer et al, PRX 3, 031015 (2013); K. R. A. Hazzard, S. R. Manmana, M.

Foss-Feig, and A. M. Rey, PRL 110, 075301 (2013), P. Hauke, L. Tagliacozzo PRL 111, 207202 (2013)

@ but also "suppression" of long-range effects p.-m. storch, M. van den

Worm and M. Kastner, NJP 17 (2015) 063021
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Long Range Interactions

@ long range
. . _J
@ Statistical and Dynamical Vij= wmoa< d
properties (A. Campa, T. Dauxois, D. Fanelli, S.

Ruffo, "Physics of Long-Range Interacting Systems" ,

@ Abundance of Regular
orbits and suppression of

chaos R. Bachelard, C. Chandre, D.
@ Non-Extensivity, Non-Additivity Fanelli, X. Leoncini, and S. Ruffo Phys. Rev.

Oxford University Press, (2014)

@ Ensemble inequivalence riequivalence Letl. 101, 260603 (2008)

of Ensembles in a System with Long-Range Interactions"

N=2*x10°

Julien Barré, David Mukamel, and Stefano Ruffo Phys. 1

Rev. Lett. 87, 030601 (2001)

@ Broken Ergodicity (Forgonovi, G.L Celardo, "
M.Maianti and E.Pedersoli "Broken Ergodicity in "" @
10
Classically Chaotic Spin Systems" Jour. of Stat. Phys. = o
116, (2004) 235 — g 3 T W @
0-¢ N
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Out-of-equilibrium dynamics in MBS: lon Traps

Many Body Hamiltonian:

XgX

H=BY oi+JY 7“7’_‘;!'&
k

i<j

Experimental observation of
spread of information and
violation of Lieb-Robinson light
cone.

lon Traps

P. Jurcevic et al, Nature, 511 (2014) 202 .
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Red lines, fits to the observed magnon arrival times; white lines,
light cone for averaged nearest-neighbour interactions; orange

dots, after renormalization by the algebraic tail.

Non local propagation of correlations



Slow growth of bipartite entanglement

PHYSICAL REVIEW X 3, 031015 (2013)

Entanglement Growth in Quench Dynamics with Variable Range Interactions

J. Schachenmayer,l B.P. Lanym’l‘2 C.F. Roos,” and A.J. Dale‘,),r1
1Depurtmem‘ of Physics and Astronomy, University of Pitisburgh, Pittsburgh, Pennsylvania 15260, USA
Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
and Institute for Experimental Physics, University of Innsbruck, Innsbruck, Austria
(Received 2 June 2013; revised manuscript received 5 August 2013; published 13 September 2013)

Studying entanglement growth in quantum dynamics provides both insight into the underlying micro-
scopic processes and information about the complexity of the quantum states, which is related to the
efficiency of si ions on classical puters. Recently, experiments with trapped ions, polar mole-
cules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range
interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems,
identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin inter-
actions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as
mutual information between distant spins, we identify linear growth of entanglement entropy corres-
ponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of
growth occurring when the Hamiltonian parameters match those for the quantum phase transition.
Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic
for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped
ions allow for the realization of this system with a tunable interaction range, and we show that the different
phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct
guide for the generation of large-scale entanglement in such experiments, towards a regime where the
entanglement growth can render existing classical simulations inefficient.




Cone-light features for long-
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Abstract

‘We study the spreading of correlations and other physical quantities in quantum lattice models with
interactions or hopping decaying like r— with the distance r. Our focus is on exponents abetween 0
and 6, where the interplay of long- and short-range features gives rise to a complex phenomenology
and interesting physical effects, and which is also the relevant range for experimental realizations with
cold atoms, ions, or molecules. We present analytical and numerical results, providing a
comprehensive picture of spatio-temporal propagation. Lieb-Robinson-type bounds are extended to
strongly long-range interactions where @ is smaller than the lattice dimension, and we report
particularly sharp bounds that are capable of reproducing regimes with soundcone as well as
supersanic dynamics. Complementary lower bounds prove that faster-than-soundcone propagation
occursfor @ < 2 inany spatial dimension, although cone-like features are shown to also occur in that
regime. Our results provide guidance for optimizing experimental efforts to harness long-range
interactions in a variety of quantum information and signaling tasks.




Cooperative Shielding

We will show that such apparently contradictory behavior is
caused by a general property of long-range interacting systems
(Cooperative Shielding). It refers to shielded subspaces inside
of which the evolution is unaffected by long-range interactions
for a long time. As a result, the dynamics strongly depends on
the initial state: if it belongs to a shielded subspace, the
spreading of perturbation satisfies the Lieb-Robinson bound
and may even be suppressed, while for initial states with
components in different subspaces, the propagation may be
quasi-instantaneous.
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The Shielding effect

@ Let us consider a system:

H=Ho+V, with [Ho,V]=0

with V highly degenerate V|vk) = v|vk), k=1,..,g.
® |vo) = -7 Clvi)

V contribute to the dynamics only with a global phase

W)(t» _ efiH[/h‘/l/}0> _ efivt/hefiHot/h,|wo>

We have shielding from V!

@ H, describes completely the dynamics (within a constant phase)
we may call it, emerging Hamiltonian

F. Borgonovi QNEP2016



Many open questions for non trivial cases:

@ What if [Hp, V] # 07?

@ What if the spectrum of V is not degenerate?

@ What’s the connection with long-range interacting systems
?

@ |s this a cooperative effects ? (how it scales with the
number of particles?)

@ What is and how to find, if any, the emergent Hamiltonian?

F. Borgonovi QNEP2016



Cooperative Shielding in many-body systems

Experimentally accessible spin 1/2 1—d Hamiltonian:

H=Hy,+V,
L L—1
Ho =Y (B+hn)ot+ Y Joi0% 4,
n=1 n=1
V= Z |n_Jm|aaﬁan.
n<m

@ transverse field: h, € [-W/2, W/2].
@ a < 1:longrange. « > 1: short range. Fora =0:

M2 JL
V:Jza;a;:‘jzx—% where M, =Y o}
n

n<m

has a degenerate spectrum, and its eigenvalues are given by,
Vo =J(L/2 - b)2/2 - JL/2, where b=0,1,...L/2
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al magnetic field
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Initially : All spins up along x, but the central spin (-x);
a) short range — light-cone;

b) infinite range — localization without disorder;

c) long range — localization without disorder;

d) infinite range & nearest neighbor —, light cone (effective short range)
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Effective couplings (o = 0)
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Leaking Probability 1

In each band there is a g-degeneracy k =1, .., g.

V|Vibk) = V| Viok) ’

Taking a random superposition of degenerate eigenstates inside one
band b one may ask for the leaking probability to go outside that band
due to Hy,

[(0)) = ZCk|ka> — (1))
k

Po(1) = ; (Vikl ()P Peeak = lim 1~ Py(t)
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Leaking Probability experiments: L =10, 1
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Leaking Probability, pert. theory

Estimation for P« = 1 — Pp: Given a state coupled with amplitude e
to another state separated by an energy A, the probability to find the
system in the second state is ~ (¢/A)? for ¢/A < 1.

L
hn _ .
HYY —Zhnan—Z— X pon™), with (R = W2/12 (1)
n=1

N
VM) b2 o
Mw/m” P =L (€A =WL

- \HHT

Yy by b=0

Pieak oc (W /J)? /L for random field and no NN interaction.
Pieak o< (J-/J)?/L for NN interaction only (and no random field).
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The emergent Hamiltonian

Consider the total Hamiltonian H = Hy + V. can be written in the
basis of VLH = Zb Vb Z/ ‘ Vbj><vbj|,

H= ZZ‘VIJ] Vbj|H0|Vb’k Vb/k|+ZVbZ|Vb] Vb] J

bbb’ jk

taking the mean field approximation one gets

The Zeno Hamiltonian

Hz = (Vi + (Vij| Ho| Vo)) Vi) V]
bj
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Analogy with Quantum Zeno Effect

Consider the total Hamiltonian H = Hs + KHpeas, Which one may
interpret as a quantum system described by H; that is contin- uously
observed by an "apparatus" characterized by KHpeas - In the limit of
strong coupling, K — oo, a superselection rule is induced that splits
the Hilbert space into the eigensubspaces of KHeas. Each one of
these invariant quantum Zeno sub- spaces is specified by an
eigenvalue and is formed by the corresponding set of degenerate
eigenstates of KH,02s - The dynamics becomes confined to these P
subspaces and dictated by the Zeno Hamiltonian

P. Facchi and S. Pascazio: Phys. Rev. Lett. 89 (2002)

H; = PoHoPs + VoPy = diag(Ho) + Y _ VoPs
b b

where P are the projectors on the eigensubspace of V
corresponding to V.
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Dynamics inside one specific band

@ Specifically we should consider the diagonal matrix elements of
Ho = (Vi|Hol Vi)

@ Hy is a sum of magnetic field B # 0 and a nearest neighbor (NN)
coupling J; #0

@ In absence of NN coupling, (J; = 0) one has (V};|Ho| Vi) = 0 i.e.
freezing!

@ on the other hand for B = 0 and J, # 0 one has

L—
H, = VbZWb/ (V| + ZZZ N0+ R opy)
j :

and one has an effective NN interaction
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Zeno Fidelity

To substantiate that the dynamics becomes indeed controlled by the
Zeno Hamiltonian as L increases, we consider an initial random state
inside one V-band

(W(0)) = ck| Vik) I
P

and the overlap of its evolution under both the total Hamiltonian H
and H; (fidelity)

F(t) = |(w(0)| e/ "e=H/m y(0)) 2. ’

It is clear that if in some limit H — H, then F(t) — 1. A perturbative
argument suggests that

Tijo o< JVL/W? ’
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Numerical Experiments

Upper : fidelity

black L=10

red L=12
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Lower : shielding
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Spreading of perturbation

Starting with an initial state inside one specific band the
dynamics is dictated by the Zeno Hamiltonian up to 75 ». In
other words we will have a spreading of perturbation freezed or
effectively short-ranged despite the presence of long range
interaction.

This is not a peculiarity of o = 0. J
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Shielding : independence of J coupling
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Conclusions and Perspectives

1 Shielding is a novel cooperative effect : since it preserves
invariant coherent subspaces, and its robustness
increases with the system size, it might be essential in
building efficient quantum devices able to work at room
temperature.

2 Shielding allows to control quantum dynamics since the
spreading of correlations strongly depends on the initial
state.

3 Transport properties are strongly affected from shielding
(arXiv:1604.07868)

4 s it possible to have Classical Shielding? in preparation
with L. Celardo, L. F. Santos & R. Bachelard
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Old stuff

II. MODEL

We consider a system of N particles of spin [/, described
by the Hamiltonian

N
A= %’Z PG ;—E z 88, (1)

i=l j#i i=1 j#

where —1 < =1 is the anisotropy constant. We define
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Magnetic reversal time
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Shielding in tight binding models

1d Anderson model with long range hopping

H = Hy + Vir J
Ho = Anderson Model J
Shielding with Disorder?
Ho =Y eli(il-Q ) |i)(i+1]+h.c. | Wer 1 o
i i -

VLR:_’YZ%

i
Q
5

Cooperative Shielding
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Induced gap and fidelity

Fidelity: (Loschmidt echo)
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Classical Shielding : a full integrable model

Let us consider the Hamiltonian (e« = 0, J > 0, Jy > 0) with
Kac’s renormalization factor,

Hir + Hsp = — 5 Z > SKSK - Uy Z SkSk (@)

k 1 j#k
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Classical Shielding

N=2413 dS (0/dS, (0) s M_preserved N=2415 S (6/dS (0) ; M_ NOT preserved
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