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Motivation

de Sitter (dS) space solves

R𝛼𝛽 − 1

2
R g𝛼𝛽 = Λ g𝛼𝛽 + ⟨T𝛼𝛽⟩, (1)

Is ⟨T𝛼𝛽⟩ is relevant or not? Common wisdom is that it is not!

I will try to convince you that this is a wrong intuition even for

massive �elds.

There is UV divergence in ⟨T𝛼𝛽⟩. The same as in �at space

⟨T𝛼𝛽⟩ ∝ g𝛼𝛽 . Leads to the renormalization of Λ.

On top of that there also can be non�trivial �uxes in ⟨T𝛼𝛽⟩,
because dS metric is time dependent � the situation is

non�stationary.
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Motivation

dS has SO(D, 1) isometry. Similar to the Poincare invariance

in Minkowski space.

If dS isometry is respected, then all contributions to

⟨T𝛼𝛽⟩ ∝ g𝛼𝛽 � no �uxes. No particle production?!

Is the dS isometry always respected (on tree�level or in the

loops)? For all initial states? If there is such a ground state

that always respects dS isometry, is this state stable under

non�symmetric perturbations?

We restrict our attention to massive �elds � the most

comfortable situation for those who believe in eternal dS. We

will see that even in this case the situation is not so obvious.
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Motivation

In any interacting, non�conformal QFT (even massive) on dS

there are secular IR e�ects.

Secular growth of loop corrections is practically inevitable in

non�stationary situations (Landau and Lifshitz, X-th volume).

This growth is the IR e�ect. No modi�cations of UV physics.

IR e�ects are non�local. Hence, there is a dependence on

coordinate systems, if no correct match between initial and

boundary conditions is made.

The IR e�ects that we are discussing below do not cover all

interesting large scale e�ects in dS space. For massless

non�conformal �elds there are additional IR e�ects.
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Motivation

We consider IR e�ects in the following situations:

dS space interacting massive scalar QFT (review

arXiv:1309.2557). See also A.Polyakov et al. and E.Mottola et

al.

QED on strong electric �eld background beyond the

background �eld approximation (arXiv:1405.5225). See also

E.Mottola et al.

Loop correction to Hawking radiation (arXiv:1509. ...). See

the talk of F.Popov.

5 / 31



Adiabatic catastrophe

Suppose one would like to �nd:

⟨𝒪⟩t0 (t) =
⟨

Ψ
⃒⃒⃒
T e

i
∫︀ t
t0
dt′H(t′)𝒪T e

−i
∫︀ t
t0
dt′H(t′)

⃒⃒⃒
Ψ
⟩
, (2)

e.g. ⟨T𝜇𝜈⟩ or ⟨J𝜇⟩.

Here H(t) = H0(t) + V (t).

T � time�ordering, T � anti�time�ordering.

t0 � initial moment of time, |Ψ⟩ � initial state, ⟨Ψ |𝒪|Ψ⟩ (t0)
is supposed to be given.
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Adiabatic catastrophe

Transferring to the interaction picture:

⟨𝒪⟩t0 (t) =
⟨︀
Ψ
⃒⃒
S+(+∞, t0)T [𝒪0(t) S(+∞, t0)]

⃒⃒
Ψ
⟩︀
. (3)

Here S(t2, t1) = T e
−i

∫︀ t2
t1

dt′V0(t′); 𝒪0(t) and V0(t) are the

above de�ned operators in the interaction picture.

Slightly changing the problem:

⟨𝒪⟩t0 (t) =
⟨︀
Ψ
⃒⃒
S+
t0

(+∞,−∞)T [𝒪0(t) St0(+∞,−∞)]
⃒⃒

Ψ
⟩︀
. (4)

Here t0 is the time moment after which the interactions,

V (t), are adiabatically turned on.
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Adiabatic catastrophe

When does the dependence on t0 disappear? Otherwise we

have adiabatic catastrophe and breaking of various symmetries:

E.g. correlation functions stop to depend only on |t1 − t2|.

The dependence on t0 disappears when the situation is or

becomes stationary.
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Adiabatic catastrophe

The seminal example of the stationary situation is when the

free Hamiltonian H0 is time independent and has a spectrum

bounded from below: H0 |vac⟩ = 0 and |𝜓⟩ = |vac⟩.

In fact, in the latter case by adiabatic turning on and then

switching o� V (t) we do not disturb the ground state:⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
excited state

⟩︀
= 0,

while ⃒⃒⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
vac

⟩︀⃒⃒
= 1.

It does not matter when one adiabatically turns on

interactions. The dependence on t0 disappeared!
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Adiabatic catastrophe

Furthermore, in the latter case we obtain:

⟨𝒪⟩ (t) =∑︁
sta

⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
sta

⟩︀
⟨sta |T [𝒪0(t) S(+∞,−∞)]| vac⟩ =

=
⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
vac

⟩︀
⟨vac |T [𝒪0(t) S(+∞,−∞)]| vac⟩ =

=
⟨vac |T [𝒪0(t) S(+∞,−∞)]| vac⟩

⟨vac |S(+∞,−∞)| vac⟩
.

This way we arrive at having only the T�ordered expressions

and then can use Feynman technique.

Other situation when the dependence on t0 disappears if there

is a stationary state (e.g. thermal density matrix in �at

space�time).
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Adiabatic catastrophe

Is there a stationary state if a background �eld is never

switched o�? What is that state, if it is present? What if

there is no stationary state?

How does the dependence on t0 reveals itself? t0 does not

appear in UV renormalization! In UV limit one always can use

the Feynman technique, because high frequency modes are not

sensitive to background �elds.

To answer the above questions one has to calculate directly:

⟨𝒪⟩t0 (t) =
⟨︀
Ψ
⃒⃒
S+
t0

(+∞,−∞)T [𝒪0(t) St0(+∞,−∞)]
⃒⃒

Ψ
⟩︀

(5)

for various choices of 𝒪.
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Adiabatic catastrophe

Schwinger notations: S � �+� vertexes, S+ � �−� vertexes:

D++(1, 2) =
⟨

Ψ
⃒⃒⃒
T
(︁
𝜑(1) 𝜑(2)

)︁⃒⃒⃒
Ψ
⟩
,

D−−(1, 2) =
⟨

Ψ
⃒⃒⃒
T
(︁
𝜑(1) 𝜑(2)

)︁⃒⃒⃒
Ψ
⟩
,

D+−(1, 2) = ⟨Ψ |𝜑(1)𝜑(2)|Ψ⟩ ,
D−+(1, 2) = ⟨Ψ |𝜑(2)𝜑(1)|Ψ⟩ . (6)

Every �eld is characterized by a matrix of propagators.
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Adiabatic catastrophe

After Keldysh's rotation of 𝜑+ and 𝜑−, we obtain:

DR,A(1, 2) = 𝜃 (±∆t1,2)
(︁
D+−(1, 2) − D−+(1, 2)

)︁
=

= 𝜃 (±∆t1,2)
[︁
𝜑(1) , 𝜑(2)

]︁
(7)

� state independent Retarded and Advanced propagators.

They characterize only the spectrum of excitations.

The Keldysh propagator:

DK (1, 2) =
1

2

(︁
D+−(1, 2) + D−+(1, 2)

)︁
=

=
1

2

⟨
Ψ
⃒⃒⃒{︁
𝜑(1) , 𝜑(2)

}︁⃒⃒⃒
Ψ
⟩
. (8)
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Adiabatic catastrophe

If we have spatially homogeneous non�stationary state:

𝜑(t, x⃗) =
∫︀
dD−1p⃗

(︀
ap⃗ e

i p⃗ x⃗ gp(t) + h.c .
)︀
, for the case of real

scalar �eld, then

∫︁
dD−1p⃗ e−i p⃗ (x⃗1−x⃗2)DK (t1, t2, |⃗x1 − x⃗2|) ≡ DK

p (t1, t2) =

=

(︂
1

2
+

⟨
a+
p⃗
ap⃗

⟩)︂
gp(t1) g*

p (t2) +
⟨︀
ap⃗ a−p⃗

⟩︀
gp(t1) gp(t2) + c.c.

� carries information about background state!

In QED, global de Sitter and black hole collapse case the

formulas are a bit di�erent, but the situation is conceptually

the same.
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Adiabatic catastrophe

In a free theory
⟨
a+
p⃗
ap⃗

⟩
= const,

⟨︀
ap⃗ a−p⃗

⟩︀
= const. All

time dependence is gone into harmonic functions � gp(t).

If the initial state is the ground one: |Ψ⟩ = |ground⟩ and
ap |ground⟩ = 0, we obviously have that⟨
a+
p⃗
ap⃗

⟩
=

⟨︀
ap⃗ a−p⃗

⟩︀
= 0.

However, if one turns on interactions, then
⟨
a+
p⃗
ap⃗

⟩
and⟨︀

ap⃗ a−p⃗

⟩︀
start to depend on time.

All quasi�classical results (non�interacting �elds, background

�eld approximation) follow from the tree�level propagator:

DK
p (t1, t2) =

1

2

(︁
gp(t1) g*

p (t2) + g*
p (t1) gp(t2)

)︁
. (9)

E.g. ⟨T𝜇𝜈⟩0 in de Sitter space and black hole collapse, and

⟨J𝜇⟩0 in QED.
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Secular growth of loop corrections

Say for 𝜆𝜑3 (or 𝜆𝜑4) theory at loop level, as

t = t1+t2
2

→ +∞, we obtain that

DK
p (t1, t2) =

(︂
1

2
+ np(t)

)︂
gp(t1) g*

p (t2) + 𝜅p(t) gp(t1) gp(t2) + c.c ..

At one loop level 𝜆𝜑3

np(t) ∝ 𝜆2
∫︁

dD−1q⃗1

∫︁
dD−1q⃗2

∫︁∫︁ t

t0

dt3 dt4 𝛿 (p⃗ + q⃗1 + q⃗2) ×

×g*
p (t3) gp (t4) g*

q1
(t3) gq1(t4) g*

q2
(t3) gq2(t4) + O (t1 − t2),

𝜅p(t) ∝ −𝜆2
∫︁

dD−1q⃗1

∫︁
dD−1q⃗2

∫︁∫︁ t

t0

dt3 dt4 𝛿 (p⃗ + q⃗1 + q⃗2) ×

×g*
p (t3) g*

p (t4) g*
q1

(t3) gq1(t4) g*
q2

(t3) gq2(t4) + O (t1 − t2).
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Secular growth of loop corrections

If there is no background �eld, then gp ∝ e−i 𝜖(p) t√
𝜖(p)

and

np(t) ∝ 𝜆2 (t − t0)

∫︁
dD−1q⃗1

∫︁
dD−1q⃗2𝛿 (p⃗ + q⃗1 + q⃗2) ×

×𝛿
(︁
𝜖(p) + 𝜖(q1) + 𝜖(q2)

)︁
.(10)

Hence, np(t) = 0 = 𝜅p(t) due to energy conservation.

There is no energy conservation in time�dependent

background �elds (or energy is not bounded from below), then

we generically obtain:

np(t) ∝ 𝜆2 (t − t0) × (production rate),

𝜅p(t) ∝ −𝜆2 (t − t0) × (backreaction on the ground state rate).

The RHS is the collision integral.
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Side remark on QED with constant electric field

In QED with E⃗ = const formulas a bit di�erent. Harmonics

are gp(t) = g(p + eEt).
All expressions are invariant under p → p + a and

t → t − a/eE .

As the result, beyond the background �eld approximation, for

photons we obtain that:

np(t) ∝ e2 (t − t0) × (production rate),

𝜅p(t) = 0. (11)

Because of that t0 cannot be taken to past in�nity. Hence, we

have adiabatic catastrophe for any initial state.

For charged �elds n±p and 𝜅±p are time�dependent, but do not

grow as t − t0 → ∞. However, the one�loop contribution to

the current is growing with time.
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Side remark on black hole collapse

Harmonics are much more complicated, but at the �nal stage

of the collapse they depend on 𝜔 e−t/2rg .

Invariance under 𝜔 → 𝜔 a and t → t + 2rg log a.

As the result, if the collapse had started at t = 0, then we

obtain

np(t) ∝ 𝜆2 t × (production rate),

𝜅p(t) ∝ −𝜆2 t × (backreaction rate). (12)

Change of the Hawking's thermal spectrum? Information

paradox?

See the talk of F.Popov.
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de Sitter space, expanding patch

In expanding Poincare patch: gp(t) = 𝜂
D−1
2 h(p𝜂), where

𝜂 = e−t and h(p𝜂) is a Bessel function.

There is invariance under p → p a and 𝜂 → 𝜂/a.

For the case of massive scalars, m > D−1

2
, in the limit p𝜂 → 0,

we obtain that

np(𝜂) ∝ 𝜆2 log

(︂
m

p𝜂

)︂
× (production rate),

𝜅p(𝜂) ∝ −𝜆2 log
(︂
m

p𝜂

)︂
× (backreaction rate). (13)

No divergence, but there is secular growth.
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de Sitter space, contracting patch

Contracting Poincare patch is just time�reversal of the

expanding one.

For the case of massive scalars, m > D−1

2
, in the limit

p𝜂0 → 0 and p𝜂 → +∞, we obtain that

np(𝜂) ∝ 𝜆2 log

(︂
m

p𝜂0

)︂
× (production rate),

𝜅p(𝜂) ∝ −𝜆2 log
(︂

m

p𝜂0

)︂
× (backreaction rate). (14)

Here 𝜂0 = et0 is the time after which interactions are

adiabatically turned on.

In this case � IR divergence and, hence, adiabatic catastrophe

for any initial state.

In global de Sitter there is also adiabatic catastrophe for any

initial state. 21 / 31



de Sitter space geometry

D�dimensional dS space is the hyperboloid,

−X 2

0 + X 2

1 + · · · + X 2

D = 1, H = 1,

in (D + 1)�dimensional Minkowski space

ds2 = −dX 2

0 + dX 2

1 + · · · + dX 2

D .

dS isometry is the Lorentz rotation group of the ambient

Minkowski space�time.

Induced metric in the expanding Poincare patch (EPP):

ds2 = −dt2 + e2t dx⃗2 =
1

𝜂2
[︀
−d𝜂2 + dx⃗2

]︀
.

Here 𝜂 = e−t . Then 𝜂 = +∞ � past in�nity, while 𝜂 = 0 �

future in�nity.
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Penrose diagram for the 2D case

Grey region is EPP.

White region is contracting Poincare patch (CPP) � time

reversal of EPP.
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Discussion

We consider model example:

S =

∫︁
dDx

√︀
|g |

[︂
g𝛼𝛽 𝜕𝛼𝜑𝜕𝛽𝜑+ m2 𝜑2 +

𝜆

3
𝜑3 + . . .

]︂
.

(15)

When m > 0 there is a dS invariant state. We restrict

ourselves to this case.

However, from the phenomenological point of view the most

interesting case is m = 0 and the graviton. In these cases the

presence of dS invariant ground state is still under discussion.

We do not consider these issues here.
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Free harmonics in de Sitter space

Any harmonic function in dS:

gp (𝜂) = 𝜂
D−1
2 hi 𝜇(p𝜂), 𝜇 =

√︃
m2 −

(︂
D − 1

2

)︂2

. (16)

hi 𝜇(t) is a solution of Bessel equation with i 𝜇 as the index:

hi𝜇(x) =

{︃
A1

e i x√
x

+ A2
e−i x
√
x
, x ≫ |𝜇|

B1 x
i𝜇 + B2 x

−i𝜇, x ≪ |𝜇|
(17)

During this talk we consider m > D−1

2
(𝜇 is real).

If A2 = 0 in (17) � Bunch�Davies (BD) or in�harmonics

hi𝜇(x) ∼ H
(1)
i 𝜇 (x) (Hankel function).

If B2 = 0 � out�harmonics hi𝜇(x) ∼ Ji𝜇(x) (Bessel function).
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Free harmonics in de Sitter space

Due to the expansion of EPP every harmonic experiences a red

shift.

In UV limit harmonics do not feel the curvature of dS and

behave as in �at space ∼ e±p𝜂.

In IR limit they behave very di�erent from �at space case

∼ (p𝜂)±i 𝜇.

BD modes � proper UV behavior. Any other type of

harmonics � wrong UV behavior.
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Discussion

Expand solution of
[︀
�(g) + m2

]︀
𝜑 = 0 as

𝜑 (𝜂, x⃗) =

∫︁
dD−1p⃗

[︁
âp⃗ gp (𝜂) e−i p⃗ x⃗ + h.c.

]︁
.

Ground state âp⃗ |0⟩ = 0.

If dS isometry is respected, then any propagator is

D (𝜂1, 𝜂2, |⃗x1 − x⃗2|) = D (Z12) .

Here

Z12 = 1 +
|𝜂1 − 𝜂2|2 − |⃗x1 − x⃗2|2

2𝜂1𝜂2

is the hyperbolic distance. Z12 = cos L12, where L12 is the

geodesic distance.
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Discussion

If hi𝜇(p𝜂) are related to BD modes via a Bogolubov rotation,

then the dS isometry is respected at tree�level. These are so

called 𝛼�vacua for m > 0.

For BD Z12 = 1 (or L12 = 0) is the only singularity of D (Z12).
The same UV singularity as in �at space.

For other 𝛼�vacua we have extra Z12 = −1 singularity. That is

due to wrong UV behavior � linear combination of e±i p 𝜂.
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Discussion

What should one do with these growing with time quantum

corrections?

Note that if background �eld is on for long enough, then

𝜆2(t − t0) ∼ 1 and quantum corrections are of the same order

as classical contributions; np ∼ 1 � classical e�ects.

We need to sum up leading corrections from all loops: sum(︀
𝜆2(t − t0)

)︀n
and drop o� e.g. 𝜆4(t − t0) ≪ 𝜆2(t − t0).

Does the dependence on t0 disappear after the summation?

We did this summation in de Sitter space (expanding and

contracting Poincare patches) and in QED with constant �eld

background.
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Summation of leading loop corrections

To do the summation one has to solve the system of the

Dyson�Schwinger equations for propagators and vertexes in

the IR limit.

In all the above listed cases vertexes do not receive growing

with time corrections. Also retarded and advanced propagators

do not secularly growing correction. Hence, to sum up leading

corrections we put them to be of tree�level form.

Ansatz for the Keldysh propagator:

DK
p (t1, t2) =

(︂
1

2
+ np(t)

)︂
gp(t1) g*

p (t2) + 𝜅p(t) gp(t1) gp(t2) + c.c ..

As the result we obtain a system of Boltzmann type of

equations for np and 𝜅p.

Solution of these equations, with speci�ed initial conditions,

solves the problem of the summation of such corrections.
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Summation of leading loop corrections

Dyson�Schwinger equations are covariant under simultaneous

Bogolyubov rotations of harmonics and np and 𝜅p.

Hence, to sum up leading IR corrections we have to �nd

harmonics for which there is such a solution that 𝜅p = 0.

Otherwise there is no hope for stationary state!

Inspiration from the non�stationary theory for superconductors.
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