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Early Cosmology

• basic variables

⊲ cosmologically relevant spacetimes:

ds2 = −dt2 + a2(t) dx · dx
a(t) is the scale factor (”radius of the universe”)

⊲ time variation of the scale factor gives instantaneous values

of the Hubble parameter H(t) and the deceleration parameter

q(t) or the convenient 1st slow-roll parameter ǫ(t):

H(t) ≡ ȧ(t)

a(t)
=

d

dt
ln a(t)

q(t) ≡ −ȧ(t) ä(t)
ȧ2(t)

= −1− Ḣ(t)

H2(t)
≡ −1+ ǫ(t)

⊲ current values: ǫ0 ∼ 0.47± 0.03

H0 ∼ (67.3± 1.2) km/secMpc ∼ 2.2× 10−18Hz
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• primordial inflation

⊲ inflation ≡ accelerated expansion ≡ (H > 0 , ǫ < 1)

⊲ a period of accelerated expansion can be a simple physical

solution to some basic issues of cosmology.

• π.χ. the horizon problem

(can detect cosmological history epochs in which the observable universe was in thermal

equilibrium to 1 part in 10−5)

⊲ horizon size is determined by light rays:

ds2 = −dt2 + a2(t) dr2 = 0 ⇒ dr = a−1(t) dt

⊲ for an event in some past time t:

Rpast =
∫ t0

t
dt a−1(t) , Rfuture =

∫ t

ti
dt a−1(t)
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• the horizon problem

t

O O

Past & future horizons of an event at t without (left) and with (right) primordial inflation.
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• the horizon problem

⊲ when q > 0, ie when only radiation and matter domination,

the upper limit dominates:

⇒ Rpast ≫ Rfuture ⇒ horizon problem

π.χ. at recombination or nucleosynthesis:

R2
past ∼

(

2000 or 109
)

R2
future

⊲ when q < 0, ie when inflation precedes radiation, the lower

limit dominates:

⇒ a(ti) → 0 implies Rfuture → ∞ ⇒ no horizon problem
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• brief history via ǫ(t) and N

⊲ N ≡ # of e-foldings wrt the end of inflation at tI
[ a(t) = a(tI) eN , e60 ≃ 1026 , 6000Mpc now was 2m then ]

⊲ cosmological epochs:

1. late acceleration : ǫ(t) ∼ 0 , 59 ≤ N ≤ 60

2. matter domination : ǫ(t) ∼ 1.5 , 52 ≤ N ≤ 59

3. radiation domination : ǫ(t) ∼ 2 , 5 ≤ N ≤ 52

4. reheating : ǫ(t) ∼ ? , −5 ≤ N ≤ 5

5. primordial inflation : ǫ(t) ∼ 0 , N ≤ −5

⊲ can observe early events, π.χ.

2. recombination at t ≈ 300,000 years

3. big bang nucleosynthesis at t ≈ 1 sec

⊲ current time is: t0 ≈ 13,800,000,000 years
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• scalar-driven inflation

⊲ what caused inflation?

⊲ the standard paradigm is the potential energy of a

(minimally coupled) scalar field, the inflaton:

L =
√−g

(

−1

2
gµν∂µϕ∂νϕ − V (ϕ) +

R

16πG

)

⊲ this can work if you are willing to ignore some issues
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• scalar-driven inflation issues

⊲ The universe began with the scalar field approximately

spatially homogeneous over more than a Hubble volume.

⊲ The scalar field potential is very flat.

⊲ The minimum of the scalar field potential has just the right

value to leave the post-inflationary universe with almost zero

vacuum energy.

⊲ The scalar field couples strongly enough to ordinary matter

to allow its kinetic energy to reheat the post-inflationary uni-

verse, but not so strongly that loop corrections from ordinary

matter to the effective potential endanger its flatness and

nearly zero minimum.
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• gravity-driven inflation

⊲ is there a more natural mechanism?

⊲ fact : gravitation plays the dominant role in shaping the

cosmological evolution.

⊲ question : is there an ”inflation causing mechanism” within

gravitation?

⊲ answer : the presence of a bare and positive cosmological

constant Λ provides such a mechanism; de Sitter spacetime

is a solution of the field equations.

⊲ one should, therefore, first study its physical implications.
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• gravitational solution

⊲ de Sitter spacetime:

a(t) = eHt , H2 =
1

3
Λ > 0

⊲ its basic parameters are:

H(t) = H , q(t) = −1 , ǫ(t) = 0

⊲ physical lengths expand and momenta redshift:

xphys = eHt x , kphys = e−Ht k
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• gravity-driven inflation: consequences

⊲ because Λ is constant in space, no special initial condition

is needed to start inflation.

⊲ however Λ is constant in time as well.

⊲ classical physics cannot offer a natural mechanism for stop-

ping inflation once it has begun.

⊲ question : can quantum physics provide such a mechanism?

⊲ answer : perhaps via real particle production.
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• particle production

⊲ QFT ⇒ virtual pair ⇒ 0 → 2E (energy not conserved)

⊲ uncertainty principle ⇒ ∀∆t ≤ h̄
2E violation is not

detectable

⊲ curved spacetimes ⇒

energy : E(t,k) =
√

m2 c4 + h̄2 c2 |k|2 a−2(t)

undetectability :
∫ t+∆t

t
dt′ 2E(t′,k) ≤ h̄

⊲ virtual particle lifetime ∆t increases as:

(i) the mass decreases,

(ii) a(t) grows

⊲ when ∆t → ∞ we have real particle production
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• de Sitter particle production

⊲ massless lifetime bound:

2 c |kphys| ×
[

1 − e−H0∆t
]

≤ H0

⊲ thus, massless virtual particles with:

c |kphys| = c | k

a(t)
| ≤ H0

may never recombine ⇒ real particle production

⊲ production rates for such massless particles are highly

suppressed for growing a(t) unless the particle has a

non-conformally invariant classical lagrangian

( Conformal: gµν → Ω2 gµν , Aµ → Aµ , ψb → Ω−3
2 ψb , φ → Ω−1 φ )

⊲ particles with all these properties are:

graviton, massless minimally-coupled scalar, ?
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• inflationary graviton production

_ −1

η

H

Short wavelength (λphys < H−1) graviton pairs (violet) recombine.

Long wavelength (λphys > H−1) graviton pairs (red) cannot recombine.
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Gravitational Back-Reaction

• classical back-reaction

⊲ gravitation couples to any stress-energy source

(classical or quantum)

⊲ π.χ. infrared graviton production out of the vacuum is a

quantum process while the gravitational response to its

presence is essentially classical

⊲ the non-linearity of gravitation is a hindrance for the

analytical description of the response to the presence of

the source via the gravitational field equations

⊲ it is however possible to obtain non-perturbative results for

some static sources

⊲ it is also possible to obtain non-perturbative information

on an initial value surface (IVS) for arbitrary initial value

initial value data (IVD)
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• gravitational response to static sources

⊲ simple newtonian example:

the mass of the Earth is a little less than the sum Mbare

of the masses of its constituents owing to their negative

gravitational interaction energy:

Mtot = Mbare +Mint ≈ Mbare − 3GM2
bare

5R
(We assume the constituents are distributed uniformly through a sphere of radius R)

the decrease works out to over 2× 1015 kilograms

⊲ static point particle of bare mass M0 in GR: (ADM)

mass : M0 −→ M = 0

geometry : Schwarzschild −→ flat ∗

∗ with a “glitch” at the origin

gravity has the degrees of freedom to screen mass
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⊲ static point particle of bare mass M0 and charge e in GR:

mass : M0 −→ M ≈
√

e2

G
geometry : R−N −→ extremal R−N

(newtonian argument gives the same answer: limε=0

{

M =M0 + e2

ε
− GM2

ε

}

)

no gravitational degrees of freedom to screen charge

⊲ there is an upper limit to the screening: the complete

elimination of the source

⊲ there is change in the background geometry

⊲ these are non-perturbative results
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• generic gravitational response on the IVS

⊲ the gravitational field equations are:

Rµν −
1

2
gµν R+Λ gµν = 0 (Λ = 3H2 > 0)

⊲ they are supplemented by arbitrary initial value data

⊲ we cannot determine the full response of the system

under time evolution

⊲ thus, we are interested in the full response of the system

under infinitesimal time evolution

⊲ Question: which observable can quantify the back-reaction

in a useful way?
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• a measure of the back-reaction

⊲ an appropriate measure is the invariant expansion rate

observable

⊲ its local definition:

H[g](x) =
1

3
DµVµ[g](x) =

1

3

1√−g ∂µ[
√−g gµν Vν]

is in terms of a timelike 4-velocity field Vµ:

gµν(x)Vµ(x)Vν(x) = −1

⊲ for our purposes we shall construct Vµ from a scalar

functional Φ of the metric:

Φ[g](x) =
1√−g ∂µ[

√−g gµν ∂νΦ] = 3H

where H is the Hubble parameter

⊲ On the IVS:

Φ(t,x)|IVS = 0 , −gαβ(t,x) ∂αΦ(t,x) ∂βΦ(t,x)|IVS = 1
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• contrast with the 4-velocity field of the inflaton ϕ

⊲ the presence of ϕ automatically provides a clock in terms

of the 4-velocity uµ:

uµ ≡ − ∂µϕ
√

−gαβ ∂αϕ ∂βϕ

⊲ uµ is timelike while ϕ is rolling down its potential

⊲ by expanding about the classical inflaton ϕ̄(t) in a FRW

background geometry and by fixing the time:

ϕ(t,x) = ϕ̄(t) + δϕ(t,x) , δϕ(t,x) = 0

uµ corresponds to the field of observers co-moving with

the inflaton
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⊲ the resulting 4-velocity Vµ equals:

Vµ[g](x) ≡ +
∂µΦ[g](x)

√

−gαβ(x) ∂αΦ[g](x) ∂βΦ[g](x)

⊲ under coordinate transformations that preserve the IVS:

H[g′](x) = H[g](x′ −1(x))

⊲ Question: what is the value of H and its first time derivative

∂0H on the IVS?

⊲ the natural coordinate system to use is the ”3+1” (ADM)
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• the electromagnetic analogy

⊲ the dynamical variable is Aµ(x) with 4 degrees of freedom

⊲ there is a U(1) local invariance which when gauge fixed,

eg A0(x) = 0, reduces the physical degrees of fredom to 3

⊲ there is a constrained equation of motion which the IVD

must obey, ∇ · E = 0 (Gauss’s law), which further reduces

the physical degrees of fredom to 2
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• the ”3+1” decomposition

⊲ the ”3+1” line element:

ds2 = −g00dt2 +2g0i dtdx
i+ gij dx

idxj

= −N2dt2 + γij (dx
i+N idt)(dxj +Njdt)

(N is the lapse, N i is the shift vector, γij is the spatial metric)

⊲ the dynamical equations take the ”3+1” form:

∂0γij = −2NKij + D̄iNj + D̄jNi

∂0Kij = −D̄iD̄jN +NkD̄kKij +KikD̄jN
k +KjkD̄iN

k

+N [R̄ij − 2KikK
k
j +KKij − 3H2γij]

(Kij is the extrinsic curvature, K ≡ γijKij is its trace)

⊲ the constraint equations take the ”3+1” form:

R̄+K2 −KijK
ij = 6H2

D̄j(K
ij − γijK) = 0
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⊲ there are 12 = 6+ 6 degrees of freedom that γij and Kij
contain

⊲ of these, only 4 = 2+ 2 are dynamical and correspond to the

two polarization states of the graviton

⊲ the other are the 4 constrained degrees of freedom from the

1+3 constraint equations, and the 4 gauge degrees of freedom

from the initial coordinate system choices
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• the elements of H on the IVS

⊲ the scalar functional Φ:

Φ |IVS = 0 , Φ,µ |IVS = −N δ0µ

⊲ the 4-velocity field Vµ:

Vµ |IVS = −N δ0µ , V µ |IVS = +
1

N
δ
µ
0

• H on the IVS

⊲ in general:

H =
1

3
DµV

µ =
1

3

1√−g ∂µ







√−ggµνΦ,ν
√

−gαβΦ,αΦ,β







=
1

3

Φ
√

−gαβΦ,αΦ,β

+
gµνΦ,µ gρσΦ,ρ DνDσΦ

3(−gαβΦ,αΦ,β)
3
2
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• H on the IVS

⊲ when restricted to the IVS:

H|IVS =
1

3
(3H + gµνΦ,µ g

ρσΦ,ρ DνDσΦ)|IVS

=
1

3
(3H +N2g0νg0σDνDσΦ)|IVS

=
1

3
{3H +N2[g00g00D0D0Φ+2g00g0iD0DiΦ

+g0ig0jDiDjΦ]}|IVS

=
1

3
{3H +N2[−N−2(3H − gijDiDjΦ)+ g0ig0jDiDjΦ]}|IVS

=
1

3
γijDiDjΦ |IVS = −1

3
γijKij |IVS = −1

3
K |IVS

⊲ since K is a pure gauge degree of freedom we conclude

that H can take any initial value of our choice

⊲ a natural choice is K = 0, so that H|IVS = 0
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• ∂0H on the IVS

⊲ to investigate the behaviour of H under infinitesimal time

evolution, consider its first time derivative

⊲ in general:

DµH =
HgκλΦ,κDµDλΦ

(−gαβΦ,αΦ,β)
3
2

+
HgκλΦ,κ gρσΦ,ρ (DλDσΦ) gγδΦ,γDµDδΦ

(−gαβΦ,αΦ,β)
5
2

+
2
3g
κλΦ,κ gρσ(DµDρΦ)DλDσΦ+ 1

3g
κλΦ,κ gρσΦ,ρDµDλDσΦ

(−gαβΦ,αΦ,β)
3
2

⊲ on the IVS:

DµH|IVS = Hg0λ(−NDµDλΦ)+N2g0λg0σDλDσ(−Ng0δDµDδΦ)

− 2

3
Ng0λgρσ(DµDρΦ)DλDσΦ+

1

3
N2g0λg0σDµDλDσΦ

⊲ we are interested in the µ = 0 component
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• ∂0H on the IVS

⊲ a tedious but straightforward computation (in K = 0 gauge)

gives:

∂0H|IVS = N(H2 − 1

3
KijK

ij)

⊲ the lapse function N sets the choice of physical time as

opposed to the coordinate time t

⊲ because KijK
ij is positive the expansion rate can indeed

diminish

⊲ there seems to be no restriction on Kij besides that its

covariant divergence vanishes (in K = 0 gauge)

⊲ of special interest are the correspondence limits of de Sitter

spacetime, the case of Λ = 0, and flat spacetime
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• correspondence limit: de Sitter

⊲ de Sitter in open coordinates – the cosmological patch:

N = 1 , N i = 0 , γij = e2Ht δij

so that:

Kij = −Hγij , K = −3H

implying:

H|IVS = H , ∂0H|IVS = 0

⊲ the expansion rate started at H and stays at H
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• correspondence limit: de Sitter

⊲ de Sitter in closed coordinates – the full manifold:

N = 1 , N i = 0 , γij = H−2 cosh2(Hτ)Ωij

(Ωij is the angular line element)

⊲ hence: Kij = −H tanh(Hτ) γij

⊲ the choice of τ = 0 (corresponding to the throat of the hyperboloid)

as the IVS implies that Kij |IVS = 0

⊲ therefore, the physical system started with no expansion

and instantaneously began accelerating:

H|IVS = 0 , ∂0H|IVS = H2
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• correspondence limit: Λ = 0

⊲ The Λ = 3H2 = 0 limit:

H|IVS = 0 , ∂0H|IVS = −N
3
KijK

ij

⊲ contraction when KijK
ij 6= 0

• correspondence limit: flat

⊲ The flat spacetime limit:

N = 1 , N i = 0 , γij = δij

⊲ the expansion rate H vanishes for all time
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• upper bound

⊲ Question: does an upper bound to KijK
ij exist?

⊲ the dimensionality of Kij is mass and only two mass scales

are present: the Hubble parameter H and the Planck mass

MPL

⊲ an upper bound on KijK
ij cannot vanish with H vanishing

since – in direct contradiction – there exist configurations

with H = 0 & Kij > 0

⊲ thus, the upper bound must involve MPl, a situation which

still allows cancellation of the H2 term because M2
Pl ≫ H2

(π.χ. KijKij =M2
Pl +H2)

⊲ however, a definitive answer requires precision numerical

analysis (SpEC, work in progress)

32



• summary

in the presence of a positive cosmological constant:

⊲ the initial value of the expansion rate can be gauged to

zero

⊲ the presence of initial gravitational waves with KijK
ij 6= 0

makes the initial time derivative of the expansion less than

its value in de Sitter

⊲ it seems that nothing precludes initial value data which

make the initial first derivative of the expansion rate vanish

⊲ there is a classical alternative to constant H expansion

(all these results are non-perturbative)
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Effective Theory

• lagrangian

LGR =
1

16πG
(−2Λ+R )

√−g + (counterterms)

• 2-parameter theory

⊲ Newton’s constant G

⊲ Cosmological constant Λ: take it to be “large” and positive

(Here “large” means a Λ induced by a matter scale M which can be as high as 1018GeV )

• perturbation theory

⊲ the dimensionless coupling constant is GΛ

⊲ even for M = 1018GeV it is very small:

GΛ =

(

M4

M4
Pl

)

∼ 10−4
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• background geometry:

ds2 = −dt2 + a2(t) dx · dx = a2(η) (−dη2 + dx · dx)

• quantum-induced stress tensor:

8πG Tµν ≡ Rµν −
1

2
gµνR+ gµνΛ

• quantum-induced expansion rate:

H(t) ≡ ȧ(t)

a(t)
=

a′(η)
a2(η)

=

√

Λ

3
+

8πG

3
ρ(t)

• the de Sitter background

(the maximally symmetric solution of this theory)

adS(t) = eH0 t = adS(η) = − 1

H0 η
, H2

0 ≡ 1

3
Λ > 0
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• perturbative results for the de Sitter background

⊲ for large observation times (infrared limit):

ρdS(t) = −H4
0

{

#(GΛH0 t) + O
[

(GΛH0 t)
2
] }

pdS(t) = +H4
0

{

#(GΛH0 t) + O
[

(GΛH0 t)
2
] }

HdS(t) = H0

{

1− GΛ
{

#′(GΛH0 t) +O
[

(GΛH0 t)
2
] }}

⊲ the rate of expansion decreases by an amount which
becomes non-perturbatively large at late times

⊲ the perturbation theory breakdown occurs when the
effective coupling constant becomes of order one :

GΛH0 t1 ∼ 1 ⇒ N1 ≡ H0 t1 ∼
(

MPl

M

)4

≫ 60

(more than adequate # of inflationary e-foldings)

⊲ the 2-loop effect becomes unreliable just when it starts to

get interesting
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⊲ all loops become comparable when the effective coupling

constant Φ = GΛN ∼ O(1) ⇒ perturbative breakdown

(The breakdown occurs not because any single graviton-graviton interaction gets strong but

rather because there are so many of them)

• possible resummation?

⊲ Starobinskĭı developed a stochastic technique to sum

the leading infrared behaviour of the λϕ4 theory

⊲ in gravity, the general form of the infrared corrections is:

H(t)|IR = H0







1 −
∞
∑

ℓ=2

(GΛ)ℓ
ℓ−1
∑

k=0

cℓk (H0 t)
k







⊲ the leading infrared sum is:

H(t)|leading IR = H0







1 − GΛ
∞
∑

ℓ=2

cℓ, ℓ−1 (GΛH0 t)
ℓ−1







⊲ it is unknown how to implement the stochastic technique

in gravity: derivative interactions, local invariance, etc
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• known resummation results

(in non-dynamical de Sitter background geometry)

⊲ λϕ4 theory shows a small, constant increase of the vacuum

energy

⊲ a scalar-fermion theory with a Yukawa interaction shows

an unbounded decrease of the vacuum energy

⊲ scalar QED shows a small, constant decrease of the

vacuum energy
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• the physics of perturbative screening

⊲ graviton degrees of freedom: wave number k and

polarization

⊲ graviton dynamics: same as massless minimally-coupled

scalar (up to O(1))

⊲ any mode k evolves independently as a SHO with time-

dependent mass m(t) and frequency ω(t):

L =
1

2
mq̇2 − 1

2
mω2q2 , m(t) = a3(t) & ω(t) =

k

a(t)

⊲ the exact solution is:

q̈ + 3H q̇ +
k2

a2
q = 0 ⇒ q(t) = u(t, k) α + u∗(t, k) α†

u(t, k) =
H√
2k3

[

1− ik

H a(t)

]

exp

(

ik

H a(t)

)

, [α , α† ] = 1
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⊲ the number of gravitons of wave vector k produced after

N e-foldings of inflation is: N (k) = Λ
6k2

e2N

⊲ N (k) only reaches unity after λphys has redshifted to

horizon scale H−1
0 :

λphys =
2π

kphys
=

2π

k
eN ≥ H−1

0

⇒ these particles are very infrared.

⊲ the total kinetic energy density of IR gravitons is constant:

ρIR = e−3N
∫

d3k

(2π)3
θ(N (k)− 1)×N (k)× ke−N =

Λ2

144π2

⊲ the kinetic energy density ρIR sources a gravitational field

⊲ as each newly-created graviton pair recedes, the intervening

space is filled by their long-range gravitational potentials

40



⊲ these potentials persist even after the gravitons that caused

them have reached cosmological separations

⊲ as more pairs are ripped apart, their potentials add to those

already present ⇒ the total potential Φ grows

⊲ IR gravitons potential : Φ ≈ − h̄c−3 (GΛ)(H0 t)

⊲ IR gravitons interaction energy : ρint ∼ ρIR ×Φ

⊲ therefore screening occurs

⊲ particle production is a 1-loop effect, gravitational response

to its presence is a 2-loop effect (QFT result)
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Non-Perturbative Screening

• the problem

⊲ the perturbative screening mechanism becomes unreliable

when it starts to get interesting

⊲ all loops become comparable when the effective coupling

constant Φ becomes of order one, and perturbation theory

breaks down

⊲ how big should the screening get and how big can it get?
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• the question

⊲ the total energy density consists of 3 parts:

ρtot = ρΛ + ρIR + ρint

⊲ ρΛ is much bigger than ρIR:

ρΛ =
Λ

8πG
≈ M2M2

Pl , ρIR ≈ Λ2 ≈ M4 ⇒ ρΛ ≫ ρIR

⊲ if we want ρtot ≈ 0, we must have:

|ρint| ≫ ρIR

⊲ Question: is this possible within gravitation?

⊲ a few remarks are in order before attempting to answer
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• 1st remark: small is not zero

⊲ super-horizon gravitons have kinetic energy ke−N which

redshifts towards zero as the universe expands

⊲ however, this is balanced by the fact that a lot of them

are produced:

total# = (
3

Λ
)
3
2

∫

d3k

(2π)3
θ(N (k)− 1)×N (k) =

e3N

2
5
2π2

for N ∼ (GΛ)−1 >∼ 104 this number is staggering

• 2nd remark: gravitational interactions screen their sources

(discussed earlier)
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• 3rd remark: big volume can beat small density

⊲ consider the total energy density ρtot produced by a static

energy density ρbare distributed throughout a sphere of

radius R

⊲ use the Newtonian formula assuming it is the total mass
4
3πR

3 ρtot that gravitates (ADM):

ρtot ≈ ρbare −
4πR2Gρ2tot

5
⇒

ρtot ≈ 5

8πGR2





√

1 +
16πR2Gρbare

5
− 1





as R → +∞ the screening becomes total: ρtot → 0 ,

independent of how small ρbare is

⊲ even a small energy density can experience total screening

if it interacts over a sufficiently large volume
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• 4th remark: causality accesses early times

⊲ the cosmological case requires much more than the static

”source screening” upper limit of: |ρint| = ρIR
how can |ρint| ≫ ρIR occur?

⊲ cosmology is not static, the universe evolves causally

⊲ |ρint| ≫ ρIR can occur at late times by means of gravita-

tional potentials which were sourced far back in the past

light-cone, when screening was still insignificant

⊲ instead of the effect being too weak, it is actually prone

to grow too strong because the past light-cone opens up

as the expansion rate slows down

⊲ to see this compare the volume of the past light-cone

– in synchronous gauge – for inflation and for flat space:

Vinfl =
4π√
3Λ3

ct+O(1) , Vflat =
π

3
(ct)4
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• local observer

O

The past light-cone of the local observer O accesses the diffuse energy density

of super-horizon gravitons of progressively smaller wavelengths.
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• the mechanism

⊲ Λ-driven inflation seems to be natural iff some mechanism

could be found to eventually halt it

⊲ quantum gravity can provide such a mechanism in the form

of the back-reaction to infrared virtual gravitons which are

continually ripped out of the vacuum during inflation

⊲ these gravitons possess a negative gravitational potential

energy (ρint) and a positive kinetic energy (ρIR) both of

which contribute to the total vacuum energy

⊲ the kinetic energy is present immediately whereas the

potential energy must build up causally as more and more

infrared gravitons come into contact with one another
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⊲ although the kinetic energy density is small, the potential

energy can be large because it derives from interactions over

the enormous volume of the past light-cone

⊲ because screening was small in the distant past, the negative

potential energy can vastly exceed the positive kinetic energy

which sourced it

⊲ a large bare Λ can be screened by the vacuum polarization of

a sea of infrared gravitons produced during primordial inflation

49



Epilogue

⊲ (classical is enough) For the physical situation at hand, once

inflationary gravitons are produced their effect on cosmological

evolution can be understood in completely classical terms.

⊲ (gravity is attractive) Since gravitational waves attract each

other and act to diminish expansion, when enough of them are

present they can completely stop it and even reverse the trend

leading to collapse.

⊲ (classical state) It should be possible to find a classical con-

figuration of gravitational waves such that the universe holds

itself together, against the tendency for de Sitter expansion.

⊲ (initial value data) We do not know what initial value data

describe this classical configuration of gravitons. We do how-

ever know from our present non-perturbative analysis that initial

value data exist for which the universe does not succumb to

accelerated expansion.
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⊲ it would be very significant to explicitly verify that inflationary

graviton production eventually forms a state of the kind that

stops inflation
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The initial value surface and its cousin after inflationary evolution
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⊲ (stability) Such a classical state will almost certainly not be

completely stable but if it is formed from the steady production

of infrared gravitons over a prolonged period of inflation, the

decay time would almost certainly be longer than the lifetime of

the universe.

⊲ (in one sentence) The cosmological evolution of the universe

can be a sustained gravitational collapse.

52


