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Various IR issues 

IR divergence coming from k-integral  
Secular growth in time ∝(Ht)n 

Adiabatic perturbation, 
     which can be locally absorbed by the choice of time slicing.  
Isocurvature perturbation 
    ≈ field theory on a fixed curved background 
Tensor perturbation 

Background	trajectory	
in	field	space	

isocurvature 
perturbation 

adiabatic 
perturbation 



§　Isocurvature perturbation   
 m2 > 0 : de Sitter invariant vacuum state even with 
interaction exists.  
If	we	choose	de	SiOer	invariant	vacuum	at	the	beginning,	
the	state	remains	unchanged.		
So,	there	is	no	secular	(me	evolu(on	in	this	case!	
However,	if	the	ini(al	state	is	different,	secular	(me	
evolu(on	will	happen.                                                                                         	
However,	the	secular	growth	can	be	not	an	instability	but	just	a	
relaxa(on	process	to	the	de	SiOer	invariant	vacuum	state.		

≈ field theory in de Sitter space 

 (Marolf and Morrison (1010.5327	))	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nmmnmm xxxxxxxx φφφφφφφφ !!!! 1111 ++ →
Clustering	property:	when	{x1,…,xm} are	far	apart	from	{xm+1,…,xn} 	

Perturba(ve	stability	of	de	SiOer	invariant	state	



poten(al	

 summing up only long wavelength modes beyond the Horizon scale 
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Large vacuum fluctuation	

More subtle issue arises in the small mass limit. 

If the field fluctuation is too large,   
it is easy to imagine that  a naïve 
perturbative analysis will break 
down once interaction is turned on. 	

De Sitter inv. vac. state does not exist in the massless limit. 
Allen & Folacci(1987) 
Kirsten & Garriga(1993)	



Stochas(c	interpreta(on	

∫=
aH i

kekd
0

3 kxφφ

 Let’s	consider	local	average	of	φ	:	

Equa(on	of	mo(on	for φ :	

( ) fV
dt
dH

dt
d

+ʹ−=+ φ
φφ 2

2

2

3

More	and	more	short	wavelength	modes	
par(cipate	in φ  as	(me	goes	on.	

Newly	par(cipa(ng	modes		
	act	as	random	fluctua(on	

32 kHkk ≈−φφ

( ) ( ) ( )ttHtftf ʹ−≈ʹ δ

In	the	case	of	massless	λφ4	:	〈φ 2〉 → 	
λ

2H

Namely,	in	the	end,	thermal	
equilibrium	is	realized	: V ≈ T 4≈ H 4 

 

(Starobinsky	&	Yokoyama	(1994))	



Wave	func(on	of	the	universe	
~parallel	universes	

•  Distant	universe	is	quite	different	from	ours.	

	

	
	

•  Each	small	region	in	the	above	picture		
										gives	one	representa(on	of	many	parallel	universes.		
•  However:	wave	func(on	of	the	universe	
								=	“a	superposi(on	of	all	the	possible	parallel	universes”	
							
•  Do	“simple	expecta(on	values	give	really	observables	for	us?”		

Our	observable	
universe	

	must	be	so	to	keep	transla(onal	invariance	of	the	wave	fn.	of	the	universe	



•  Do	“simple	expecta(on	values	give	really	observables	for	us?”		

However,		the	success	of		stochas(c	approach	teaches	us	
that	〈m 2〉	is	just	the	ensemble	average	of	many	parallel	
universes,	and	the	mass	squared	observed	in	each	horizon	
patch	is	just	∼λφ	2.	

“No	observer	can	see	the	secular	growth	of	
mass	unrelated	to	the	change	of	the	local	
averaged	field	value.”	

In	the	case	of	massless	λφ4		
	
		

λ

2H

As	a	result,	the	effec(ve	mass	squareddevelops	as	
	〈m 2〉 → 	 2Hλ

〈φ 2〉 → 	

“Maybe	No”	



 If	we	subtract	the	local	average 

Identifying the dominant 
component of IR fluctuation 

O(k) unless	|x|≫L  
( )∫ −= kk
kx φδφ

~3 Wekd i

( ) ( )∫= xx φφ Wxd 3
( )  : φφδφ −= x

	size	of	our		
	observable	
	universe.	

Window	func(on	

W(|x|)	

　|x|	

L	

Dominant	IR	fluctua(on	is	concentrated	on	φ

	then,	
	with	

-	



Decoherence	of	the	wave	func(on	of	
the	universe 	 				

Decoherence	

Cosmic	expansion	

Sta(s(cal	ensemble		

Various	interac(ons	

Superposi(on	of	wave	packets			

Correlated		

φ

Before	 A(er	
( )φΨ Un-correlated		

( ) ( )φφρ ΨΨ=

( )( )!! ++++++= cbacba
!+++= ccbbaaρ

Coarse	graining	
Unseen	d.o.f.	

Our	classical	observa(on	
picks	up	one	of	the	

decohered	wave	packets.		

Sorry,	but	this	
process	is	too	
complicated.	

φ

( )φΨ

|a＞  |b＞  |c＞  



Subs(tute	of	picking	up		
one	decohered	history	

•  Discussing	quantum	decoherence	is	annoying.	
–  Which	d.o.f.	to	coarse-grain?	
–  What	is	the	criterion	of	classicality?	

•  To	avoid	subtle	issues	about	decoherence,		
								we	propose	to	introduce	a	“projec(on	operator”.	

Picking	up	one	history	is	difficult.		
Instead,	we	throw	away	the	other	histories	
presumably	uncorrelated	with	ours.			

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

2

2
exp

σ
φPPPO

We	compute	

	with	

	over-es(mate	of	fluctua(ons		
φ

( )φΨ

(Urakawa	&	Tanaka	PTP122:1207)	



IR	finiteness	

∵　Expansion	in	terms	of	interac(on-picture	fields:	

Integra(on	over	the	vertex	y	is	restricted	to	the	region	within	the	past	light-cone.		

( ) ( ) ( )∫≈ yyGyxGyxGyd ,,',4

One	of	Green	fns.	is	retarded,	GR.	

( ) ( ) ( ) ( ) ( ) !++= ∫ −
3

intint4
4

int , yyxGyydxx Rpo φλφφ

RG
x	 y 	+

<φint(x’)φint(y)>	

Window	fn.	 For	each	ηy,	IR	fluctua(on	of	φint (y)	is	
suppressed	since	φ (ηfin)  is	restricted.	

OK	to	any	order	of	loop	expansion!	

<φint(y)φint(y)>	
y 	x 	 x'	

(m
e	

 x’ 	
<φint(y)φint(y)>	

Projec(on	acts	only	on	the	external	lines.	
How	the	contribu(on	from	the	IR	modes	at	k ≈ kmin is	suppressed?	

RG



IR	finiteness	

-η	≈ Δη =Δ r	:past	light	cone	

φ φ

( )
( )!++−

−
≈ 22
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2 1 drd

H
ds Sitterde η

η

HH
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1
→

−

Δ
=

η

Then,	G(	y , y)	≈ <φint(y)φint(y)> becomes	large.	

 ηy-integral	looks	divergent,	but	
			homogeneous	part	of	φ  is	constrained	by	the	projec(on.	

					∂xGR(x , y )	→ 0	faster	than	GR(x , y )	for	ηy→ -∞	

	looks	OK	at	one-loop	level	but	not	promissing	in	general.	

	Past	light	cone	during	infla(on	
shrinks	down	to	horizon	size.		

y	

 	

( ) ( ) ( )∫≈ yyGyxGyxGxd R ,,',4

GR	(x , y)	→constant	for	ηy→ -∞	

However,	for	ηy→ - ∞,	the	suppression	due	to	constraint	on	φ		gets	weaker.	
∞∞∞∞∞	
	

Window	fn.	
(m

e	

-	

~	secular	growth	in	(me	



§IR	divergence	in	single	field	infla(on	

( ) ( ) ( ) ( )∫ ≈≈ min
3 /log kaHkPkdyy ζζ

Factor	coming	from	this	loop:		

	scale	invariant	spectrum		

31 k∝
curvature	perturba(on	in	

co-moving	gauge.	 	-	no	typical	mass	scale		

0=δφ Transverse	
traceless 	

( )ijij he exp22 ζργ +=

Setup:	4D	Einstein	gravity	+	minimally	coupled	scalar	field	

Single	field	case	is	special	because	broadening	of	averaged	field	
can	be	absorbed	by	an	appropriate	choice	of	the	(me	coordinate.	



Gauge	issue	in	single	field	infla(on	

–  In	conven(onal	cosmological	gauge	invariant	
perturba(on	theory,	gauge	is	not	completely	fixed.	

Yuko	Urakawa	and	T.T.,	PTP122:	779	arXiv:0902.3209	

Time	slicing	can	be	uniquely	specified:	δφ =0				OK!	

but	spa(al	coordinates	are	not.	
j
ji

j
j hh ,0 ==

ijjiijgh ,, ξξδ +=
Residual	gauge:	

Ellip(c-type	differen(al						
		equa(on	for	ξ i. 	

Not	unique	locally!	

u  To	solve	the	equa(on	for	ξ i,	by	
imposing	boundary	condi(on	at	
infinity,	we	need	informa(on	about	
un-observable	region.	

!=Δ iξ

observable	
region	 (me	

direc(on	



Why	I	expect	IR	finiteness	in	single	field	infla(on	

•  First	of	all,	our	observables	in	the	real	world	are	
finite	and	infla(onary	universe	model	works	well	
without	dras(c	modifica(on	due	to	IR	effects.		

•  The	local	spa(al	average	of	ζ	can	be	set	to	0	
iden(cally		by	an	appropriate	gauge	choice		

													(=(me-dependent	scale	transforma(on).	
•  Even	if	we	choose	such	a	local	gauge,	the	evolu(on	
equa(on	for	ζ		stays	hyperbolic.	So,	the	interac(on	
ver(ces	are	localized	inside	the	past	light	cone.		

•  Therefore,	IR	divergence	does	not	appear	as	long	as	
we	compute	ζ		in	this	local	gauge.	But	here	we	
assumed	that	the	ini(al	quantum	state	is	free	from	
IR	divergence.		



Complete	gauge	fixing	vs.	
Genuine	gauge-invariant	quan((es	

•  Local	gauge	condi(ons.		
!=Δ iξ Imposing	boundary	

condi(ons	on	the	boundary	
of	the	observable	region	

But	unsa(sfactory?	
The	results	depend	on	
the	choice	of	boundary	

condi(ons.	
Transla(on	invariance	

is	lost.	
u  Genuine		coordinate-independent	quan((es.		

No	influence	from	outside	
Complete		gauge	fixing	☺ 

Correla(on	func(ons	for	3-d	scalar	curvature	on	φ =constant	slice.		
〈R(x1) R(x2)〉 	 Coordinates	do	not	have	gauge	invariant	meaning.	

x		origin	

 x(XA, λ=1) =XA + δ xA	
x	

Specify	the	posi(on	by	solving	geodesic	eq.	 022 =λdxD i

ii XdDx =
=0λ

λ	with	ini(al	condi(on		

XA	

gR(XA) := R(x(XA, λ=1)) = R(XA) +δ xA∇ R(XA) + …	

〈gR(X1) gR(X2)〉 should	be	truly	coordinate	independent.	

(Giddings	&	Sloth	1005.1056)	
(Byrnes	et	al.	1005.33307)	Use	of	geodesic	coordinates:	



( )[ ] 02 21 =∇⋅+Δ−−
Ie ζρ x

In	δφ =0	gauge,	EOM	is	very	simple		

IR	regularity	may	require		

Non-linearity	is	concentrated	on	this	term.		
( ) ( )[ ] 03 2

2
2 ≈Δ−∂++∂ +− ζρε ζρett !

	Formal	solu(on	in	IR	limit	can	be	obtained	as			
!+Δ−= −−

III e ζζζζ ρ212

( ) Δ−∂++∂= − ρρε 2
2

2 3 ett !	with	L-1 being	the	formal	inverse	of																																																.		

( )[ ]!+∂⋅+Δ−Δ−≈ −−−
III

g eeR ζζζ ρρ
xx212 24

Only	relevant	terms	in	the	
IR	limit	were	kept.																												

H
d
d log2

2

2 ρ
ε −=

( ) ( ) ( ) ( ) ( ) ( )121
1

212
21 22 xxxxxx xx III

gg eeRR ζζζ ρρ ∂⋅+ΔΔ×∂⋅+ΔΔ −−−−

IR	divergent	factor	

∋	

Extra	requirement	for	IR	regularity	



Then,	sa(sfying																																																					is	impossible,	

However,	L-1	should	be	defined	for	each	Fourier	component.																																							

( ) ( )tfekdtf k
-
k

i ~, 131 ∫ ⋅− = xkx

	because	for ζΙ  ≡ ∫ d 
3k (eikx vk(t) ak + h.c.), 	

																								

for	arbitrary	func(on	f (t,x)	

( ) k
xkxkx aei i

I
⋅⋅∝∇⋅ ζ	while																																				k

xk aee i
I

⋅−− ∝Δζρ21

	with	 ( ) 22
2

2 3 kettk
ρρε −+∂++∂= !

( ) 02 21 =∇⋅+Δ−−
IIe ζζρ x

( )[ ] 02 21 =∇⋅+Δ−−
Ie ζρ x

IR	regularity	may	require		



			

With	this	choice,	IR	divergence	disappears.		

( ) ( ) ( )( )∫ +=⎥⎦

⎤
⎢⎣

⎡ ∇⋅∇⋅++Δ−− ..2
2
12 23221 chtveDakde i

kI k
kx

kxx ζρ

・extension	to	the	higher	order:	

( ) ( )
( )

( ) ( ))(272
log

24

21
21log XXkXX −∫ ∂×∝ i

kkI
gg evkkdRR ζ

IR	divergent	factor		 	total	deriva(ve		

( )[ ] ( )( )∫ +=∇⋅+Δ−− ..2 321 chtveDakde i
kI k

kx
kx ζρ

kkkk vDvek =− −− ρ2122

Instead,	one	can	impose		

																																																																																																										,		
	which	reduces	to	condi(ons	on	the	mode	func(ons.	

( ) ( )kk φφ ii
k ek

kd
dekD 2/32/3

log
−−≡with	



			

What	is	the	physical	meaning	of	these	condi(ons?		

2222 xdedtds ρ+−=
Background	gauge:		

[ ] [ ]ζζ int0 HHH +=

• Quadra(c	part	in	ζ and	s	is	iden(cal	to	s = 0 case.		
• Interac(on	Hamiltonian	is	obtained	just	by	replacing	　	
　the	argument	ζ 	with	ζ - s.	

kkkk vDvek =− −− ρ2122
In	addi(on	to	considering	gR,	we	need	addi(onal	condi(ons	

Physical	meaning	of	IR	regularity	condi(on	

	and	its	higher	order	extension.		

22222 ~~ xdedtsd s−+−= ρ
xx se=~

[ ] [ ]sHHH −+= ζζ
~~~

int0

( ) ( )xx ζζ =~~

~	

~	

Therefore,	one	can	use		
			1)	common	mode	func(ons	for	ζΙ		and	ζΙ		

~	

[ ]II ζδζζζ += [ ]sII −+= ζδζζζ
~~~

 ζΙ  ≡ ∫ d 
3k (eikx vk(t) ak + h.c.)            ζΙ  ≡ ∫ d 

3k (eikx vk(t) ak + h.c.) 	
																								

~	 ~	

2)	common	itera(on	scheme.		



		However,	the	Euclidean	vacuum	state	(defined	by	the	regularity	η0	
→±i ∞ )	sa(sfies	this	condi(on.		

	It	looks	quite	non-trivial	to	find	consistent	IR	regular	states.	

kkkk vDvek =− −− ρ2122

Dkvk(η0)=0	:	incompa(ble	with	the	normaliza(on	condi(on.	

We	may	require	
( ) ( ) ( ) ( ) ( ) ( )0~~~~~~~0~00 2121 nn xxxxxx ζζζζζζ !! =

	the	previous	condi(on	compa(ble	with	Fourier	
decomposi(on	

Retarded	integral	with	ζ(η0)=ζI(η0)	guarantees	the	commuta(on	rela(on	of	ζ	



Why	the	Euclidean	vacuum	state	is	special.	
					

These	condi(ons	are	equivalent	even	if	they	are	
wriOen	in	terms	of	ζ. 
Thus,	we	find	

We	define	Euclidean	vacuum	by	the	condi(ons		

																																																					for				( ) ( ) ∞<nc xxT ζζ !1 ( ) ( )εη ita ±−∞→ 1

~	

( ) ( ) ( ) ( )ns
n

s
cnc xetxetTxxT ,~,~

111 ζζζζ !! =

is	sa(sfied	when	the	both	sides	are	evaluated	
in	the	Euclidean	vacuum.	



For	constant	s,	the	form	of	the	Hamiltonian	does	not	
change.	Sevng																		,	we	can	suppress	the	IR	
contribu(on	at	t=tfin,	but																												,	which	
appears	in	the	past	ver(ces,	is	not	IR-suppressed.		

Sketch	of	our	proof.		

( ) 2222 xdedtds ζρ++−=
Gauge	transforma(on:		

( ) 2~22 ~xdedt s−++−= ζρ

xx se=~

( ) ( ) ( ) ss −=−=ʹ xxx ζζζ ~~~

( ) ( ) ( )xxx ζζζ −=ʹ ~
( )x,fints ζ=

Thus,	we	need	to	make	s to	be	(me-dependent.		
[ ] [ ] ζππζπζ

~~~,~~,~~
int0 ∇⋅−−+= xssHHH !

ζ
~				appears	only	in	the	form		 ( ) ζζζ

~,~,~
tts ∂∇−

				→　All	the	propagators	are	associated	with	an	
IR	suppressing	factor.	

ζFurther,	we	replace	s(t)	with	the	operator					by	inser(ng	its	complete	
set,	using	the	property	of	Euclidian	vacuum	is	independent	of	s(t).			



no	singularity	in	the	complex	k	plane	since	the	mode	
equa(on	and	the	boundary	condi(ons	are	analy(c	in	k.		
Mode	sum	is	finite	for	both	IR	and	UV	limits.		

Sketch	of	our	proof.		

To	solve	the	constraint	equa(ons,	we	use	the	local	boundary	condi(ons	
　→	Integra(on	region	is	restricted	to	the	causal	past.		

IR	suppressed	free	propagator	in	Euclidean	vacuum	is	
regular,	except	for	the	case	that	the	two	points	are	light-like.	

When	two	(mes	in	the	arguments	of	the	Wightman	func(on	are	
far	apart,	there	is	suppression	from	one	side.	

IR)		owing	to	IR	suppressing	operators	
UV)	owing	to	iε	prescrip(on,	peculiar	to	the	Euclidean	vacuum	

(me	

X	
X	

Cluster	
containing	N 
propagators	

( )∫ NHad 2η
η
η



However,	Euclidean	vacuum	(selected	by	iε-prescrip(on)	
and	its	excited	states	sa(sfy	the	IR	regular	condi(on.		

There	are	condi(ons	required	for	the	absence	of	IR	
divergences.		

“Wave function must be homogeneous in the 
direction of background scale transformation”	

If	we	naively	set	ini(al	condi(on	by	choosing	a	free	field	
vacuum	at	a	finite	(me,	these	IR	regularity	condi(ons	
are	not	sa(sfied.	

Discussions	are	similar	but	more	complicated	when	we	
include	the	graviton	loops:		
PTEP2014		073E01	:arXiv:1402.2076	



How	we	avoided	the	effect	of	UV	mode		to	the	geodesic	distance.	

We	did	not	compute	the	geodesic	in	the	full	perturbed	metric	
including	all	UV	modes.		
Instead,	we	consider	a	finite	volume	and	define	an	averaged	
metric	perturba(on	in	that	volume:	

( ) ( )∫≈ xx ζζ Wxd 3

	which	depends	on	the	choice	of	the	window	func(on.		

Therefore,		the	discussed	quan((es	are	not	manifestly	
gauge	invariant,	although	one	can	say	quan((es	under	a	
completely	specified	gauge	condi(ons	are	gauge	invariant.	

Actual	defini(on	of						is	a	liOle	more	complicated	because	W(x)	
should	also	be	defined	with	respect	to	the	geodesic	distance.					

ζ


