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Various IR Issues

{IR divergence coming from k-integral
Secular growth in time oc(Ht)”

" Adiabatic perturbation,
which can be locally absorbed by the choice of time slicing.

~ Isocurvature perturbation

= field theory on a fixed curved background

_Tensor perturbation

isocurvature
perturbation

T —
Background trajectory
in field space

adiabatic
perturbation



§ Isocurvature perturbation

= field theory in de Sitter space
m? > 0: de Sitter invariant vacuum state even with
Interaction exists.

If we choose de Sitter invariant vacuum at the beginning,
the state remains unchanged.
So, there is no secular time evolution in this case!

However, if the initial state is different, secular time
evolution will happen.

However, the secular growth can be not an instability but just a
relaxation process to the de Sitter invariant vacuum state.

Clustering property: when {x,,...,x, } are far apart from {x _..,....x,}

(#lx,)--o(x, W, ) olx, ) = (@lx,)--glx, N, ) -0l )

# Perturbative stability of de Sitter invariant state
(Marolf and Morrison (1010.5327))



More subtle iIssue arises in the small mass limit.

summing up only long wavelength modes beyond the Horizon scale

/ 2
<¢2~ g (ko _H
~Jo K (aH) Cm?

&=) De Sitter inv. vac. state does not exist in the massless limit.
Allen & Folacci(1987)
Kirsten & Garriga(1993)

: Large vacuum fluctuation

potential If the field fluctuation is too large,
it is easy to imagine that a naive
perturbative analysis will break
down once interaction is turned on.

distrihution



Stochastic interpretation

(Starobinsky & Yokoyama (1994))
Let’s consider local average of ¢ :

¢ = Hd3k¢ o'* | More and more short wavelength modes
0 g participate in ¢ as time goes on.

Newly participating modes
act as random fluctuation

<¢k¢-k> =~ Hz/k3
= (1))~ Hol

In the case of massless A¢*: (¢ ?) — 77

Namely, in the end, thermal
equilibrium is realized : V' = T4~ H4



Wave function of the universe
~parallel universes

e Distant universe is quite different from ours.

Our observable
universe

/S ‘LW -
..
 Each small region in the above picture
gives one representation of many parallel universes.

e However: wave function of the universe

= “a superposition of all the possible parallel universes”
must be so to keep translational invariance of the wave fn. of the universe
Do “simple expectation values give really observables for us?”




Do “simple expectation values give really observables for us?”

“Maybe No”
In the case of massless A¢*
7€
(92— 77
As a result, the effective mass squareddevelops as
(m 2y =J1H*
However, the success of stochastic approach teaches us

that {(m 2) is just the ensemble average of many parallel
universes, and the mass squared observed in each horizon
patch is just ~A¢ ~.

“No observer can see the secular growth of
mass unrelated to the change of the local
averaged field value.”



|dentifying the dominant
component of IR fluctuation

If we subtract the local average TR e U T

o= plx)-¢ W(|x|)
with §=fd3xW(x)¢(x) P A
then, size of our
5= [k (™ -1, ) overse,
O(k) unless |x|> L x|

Dominant IR fluctuation is concentrated on ¢



Decoherence of the wave function of

the universe
Before After

‘P(ﬁ) qj(¢ ) Un-correlated

Correlated

Cosmic expansion

Various inteiactions

Decoherence
Superposition o_f wave packets Coarse graining Statistical ensemble
p=‘1p(¢)><lp(¢)‘ Unseen d.o.f.
=qa>+‘b>+‘c>+...)(<a‘+<b‘+<c‘+...)T’ p=‘“><“‘+@<_b,‘+\c><c\+“'

Our classical observation
picks up one of the
decohered wave packets.

Sorry, but this
process is too
complicated.



Substitute of picking up
one decohered history

(Urakawa & Tanaka PTP122:1207)
e Discussing quantum decoherence is annoying.
— Which d.o.f. to coarse-grain?
— What is the criterion of classicality?

 To avoid subtle issues about decoherence,
—) we propose to introduce a “projection operator”.

w(p

A

Picking up one history is difficult.
Instead, we throw away the other histories
presumably uncorrelated with ours.

|:> over-estimate of fluctuations

¢

‘ We compute qu )

(PO)/(P) iy P=exp(— 2

20



IR finiteness

Projection acts only on the external lines.
How the contribution from the IR modes at k = k. is suppressed?

. Cy) . zfd“y@G(X',y)G(y,y)

X
One of Green fns. is retarded, Gy, = <¢int(y)¢int(y)>

" Expansion in terms of interaction-picture fields:

$6)= () + (A9 ()G (501 () 4
G GR <¢int(y) ¢int(y)>

X X y

) <¢int(x ’) ¢int(y)>

Integration over the vertex y is restricted to the region within the past light-cone.

indow For each 77, IR fluctuation of ¢, (v) is
suppressed since ¢ (7;;,) is restricted.

time

OK to any order of loop expansion!



I R ﬁ N |te neSS ~ secular growth in time

. Past light cone during inflation
indow fn. , . .
shrinks downlto horizon size.
dsje Sitter = —2(_ d772 + drz + )
(- Hn)
= -n = An =Ar :past light cone
s AI/' 1
Rlightcone = g
| -Hn H

However, for n,— — , the suppression due to constraint on ;b gets weaker.
00O Ken, G(y,y) = <¢..(v)9..(v)> becomes large.

9, O JO = [d'xGy(xy)G(x, y)G(r, y)

Gy (x, y) —constant for n,— -0

n,-integral looks divergent, but
homogeneous part of ¢ is constrained by the projection.

d,Gr(x,y) = Ofaster than Gg(x, y) for n,— ~00

looks OK at one-loop level but not promissing in general.



§IR divergence in single field inflation

Setup: 4D Einstein gravity + minimally coupled scalar field

Single field case is special because broadening of averaged field
can be absorbed by an appropriate choice of the time coordinate.

/\ Factor coming from this loop:
(EWk ) = [d’k Plk)=~loglaH /)
:

curvature perturbation in scale invariant spectrum
co-moving gauge - no typical mass scale

_ 2p+28
}/ij =€ cXp i
5¢ —0 Transverse

traceless




Gauge issue in single field inflation
Yuko Urakawa and T.T., PTP122: 779 arXiv:0902.3209

— In conventional cosmological gauge invariant
/perturbation theory, gauge is not completely ﬁxed\.

Time slicing can be uniquely specified: 0¢ =0 OK!
but spatial coordinates are not. Elliptic-type differential
J J
h =0= h equation for &°.
ReS|duaI gauge: > Agl _
Oh, =& +E, .
\ St Not unique Iocally!/
¢ To solve the equation for &%, by
imposing boundary condition at %

infinity, we need information about
un-observable region.

observable
[ time
direction




Why | expect IR finiteness in single field inflation

* First of all, our observables in the real world are
finite and inflationary universe model works well
without drastic modification due to IR effects.

* The local spatial average of {can be setto O
identically by an appropriate gauge choice

(=time-dependent scale transformation).

* Even if we choose such a local gauge, the evolution
equation for C stays hyperbolic. So, the interaction
vertices are localized inside the past light cone.

 Therefore, IR divergence does not appear as long as
we compute £ in this local gauge. But here we
assumed that the initial qguantum state is free from
IR divergence.



Complete gauge fixing vs.
Genuine gauge-invariant quantities

* Local gauge conditions.
AE =-..

But unsatisfactory?

Imposing boundary
conditions on the boundary »The results depend on
the choice of boundary

of the observable region

: : conditions.
No influence from outside iation i _
Complete gauge fixing @ Translation invariance
/ is lost.

¢ Genuine coordinate-independent quantities.
Correlation functions for 3-d scalar curvature on ¢ =constant slice.

(R(x)) R(x,)) Coordinates do not have gauge invariant meaning.

(Giddings & Sloth 1005.1056)

Use of geodesic coordinates: (Byrnes ot al, 1005.33307)

x(X, A=1)=X,+0dx,

Specify the position by solving geodesic eq. sz"/a’}»2 =0
origin with initial condition Dxi/dﬂ‘/l=0 =X

8R(X)) == R(x(X,, A=1))=R(X)) +ox,VR(X,) + ...
(¢R(X,) 2R(X,)) should be truly coordinate independent.



Extra requirement for IR regularity
In 0¢ =0 gauge, EOM is very simple
[af +(3+¢e,)pa, —e 2PN

A
Non-linearity is concentrated on this term.

¥ Only relevant terms in the
Jé‘ =~ () IR limit were kept.

Formal solution in IR limit can be obtained as

d2
é-=él]_2é-1 —le—szé’I_l_... €2=—dp210gH
with L being the formal inverse of =09; +(3+¢&,)p0, -7 A

°R z—4€_2pA\_§[ —é’,(Z 'le'2pA+x-ax)§‘, +J

<gR(xl)gR(x2)>9<§12><A(2 _le'sz+x'8x)§](x1)xA(2 '1e'2pA+x-ax)§'1(xl)>
IR divergent factor

IR regularity may require \_2 TP A + (x-V)ng =0



IR regularity may require
2 “eA+(x-v)|g, =0
However, L should be defined for each Fourier component.
_lf(f»x)=fd3keik'x klﬁc(t) for arbitrary function £ (¢,.x)
with , =d>+(3+¢,)00, +e 2k

Then, satisfying 2 ~'e’Ag, +(x-V)é’, =0 isimpossible,
because for &, = [ d3k (e*v,(t) a, + h.c.),

12 k- . : k-
e’AE, x e**a, while (x-V)E, < ik-xe*a,



Instead, one can impose

[2 e A+ (x ]i,’ fa’3k(akD e™v, (t)+ h.c.)
with Dk = k—3/2e—i¢( )Lk?)/Zeigb(k)

dlogk ’
which reduces to conditions on the mode functlons

2 -l —2,0 B

extension to the higher order:

[(2 - 2pA)2 2+x V)x-V|E fd k(asze by (¢)+ h.c.)

With this choice, IR divergence disappears.

(ROGPROG) ™ o (87 x gk e o)

IR divergent factor total derivative




Physical meaning of IR regularity condition

In addition to considering R, we need additional conditions

- 2k? ,;16_2'0 = Dkvk and its higher order extension.

What is the physical meaning of these conditions?

~~

Background gauge: x=e'x 5(35)= g‘,’(x)
ds® = —dt’ + &> dx’ al~2 = —dt’ + ezp‘z“’d” i
H =1 [} 1, [C] -H|E v h,

*Quadratic part in Cand S s identlcal to s = 0 case.
*Interaction Hamiltonian is obtained just by replacing
the argument £ with £ —s.

Therefore, one can use
1) common mode functions for &, and Z;I

&, = [ d% (e* v (f)a, + h.c.) &, = [ d%k (e* v, (f)a, + h.c.)

2) common iteration scheme.

§=§1+5§[ 1] E=Ez+5§\_EI_SJ

s




We may require
<O‘§(x1 )é(xz) ' é'(xn XO> = <O‘§(§1 )5 (352) ' é‘(}n XO>
=) -2k’ ;e?’v, =Dy,

the previous condition compatible with Fourier
decomposition

Retarded integral with &(1,)=C(n,) guarantees the commutation relation of
I:> D,v,(n,)=0 : incompatible with the normalization condition.

It looks quite non-trivial to find consistent IR regular states.

However, the Euclidean vacuum state (defined by the regularity 7,
—+j 00 ) satisfies this condition.



Why the Euclidean vacuum state is special.

We define Euclidean vacuum by the conditions
(T.L(x)-Elx, ) <o for nle,)—>-(lxie)

These conditions are equivalent even if they are
written in terms of C.
Thus, we find

<T;é'(xl ) ) é’(‘X"n )> = <T;5(tlﬂes‘xl ) ) .5(tn,esxn )>
is satisfied when the both sides are evaluated
in the Euclidean vacuum.



Sketch of our proof.

Gauge transformation: X=e'Xx
ds’ = —dt? +e2(p+é‘)dx2 — _gt* +e2(p+5—s)c&2
£'(%)=E(%)-s=¢(x)-s
For constant s, the form of the Hamiltonian does not

change. Setting s=Z_\¢,,.x), we can suppress the IR
contribution at r=¢,,, but &'(%)=- £(x)- g&) which
appears in the past vertices, is not IR-suppressed.

Thus, we need to make s to be time-dependent.
- H|E 7|+, |E -s.7]-s7xVE
£ appears only in the form & -s(¢),VE,9.C

— All the propagators are associated with an
IR suppressing factor.

Further, we replace s(¢) with the operator £ by inserting its complete
set, using the property of Euclidian vacuum is independent of s(?).



Sketch of our proof.

IR suppressed free propagator in Euclidean vacuum is

regular, except for the case that the two points are light-like.
no singularity in the complex & plane since the mode
equation and the boundary conditions are analytic in £.

Mode sum is finite for both IR and UV limits.
IR) owing to IR suppressing operators
UV) owing to ie prescription, peculiar to the Euclidean vacuum

When two times in the arguments of the Wightman function are
far apart, there is suppression from one side.

To solve the constraint equations, we use the local boundary conditions
— |Integration region is restricted to the causal past.

Cluster X .
containing /¥ ¢ f n)H

propagators

> time



Summary

There are conditions required for the absence of IR
divergences

dmeamoﬂm@nmm tmml{cwmm

If we naively set initial condition by choosing a free field
vacuum at a finite time, these IR regularity conditions
are not satisfied.

However, Euclidean vacuum (selected by ig-prescription)
and its excited states satisfy the IR regular condition.

Discussions are similar but more complicated when we
include the graviton loops:

PTEP2014 073EO1 :arXiv:1402.2076



How we avoided the effect of UV mode to the geodesic distance.

We did not compute the geodesic in the full perturbed metric
including all UV modes.

Instead, we consider a finite volume and define an averaged
metric perturbation in that volume:

c zfd3xW(x)é'(x)

which depends on the choice of the window function.

Therefore, the discussed quantities are not manifestly
gauge invariant, although one can say quantities under a
completely specified gauge conditions are gauge invariant.

Actual definition of £ is a little more complicated because #(x)
should also be defined with respect to the geodesic distance.



