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Motivation

QFTs are hard to solve.

Most soluble models have enhanced symmetry, and/or simplified
dynamics relative to the Standard Model.

Definition
Higher-spin symmetries are symmetries which enhance the spacetime
isometry group. Generators transform as tensor components under
isometry group.

Classic results on how HS symmetries constrain QFTs:

I Minkowski S-matrix [Coleman Mandula ’67]

I D = 2 S-matrix [Parke ’80]

I D = 2 CFTs [Zamolodchikov ’85]

I D = 3 CFTs [Maldacena-Zhiboedev ’11]
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Motivation

HS symmetries may also be incorporated into thys of quantum gravity.
[Vasiliev . . . ]

Higher-spin AdS/CFT

I Bulk 4D Vasiliev thys / 3D (critical) O(N) model [Klebanov Polyakov

’02, Giombi Yin ’11]

I 3D Chern-Simons gravity thys / 2D W-algebra CFTs

Proposed dS/CFT duality
4D Vasiliev thys / SP(N) CFT3 [Anninos Hartman Strominger ’11]

Provides a putative UV complete thy of quantum gravity admitting dS
background.

HS QFTs obtained by breaking of local HS symmetry in HS gravity thys;
HS gravity thys obtained from QFT by gauging HS symmetry.
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Motivation

Soft thms in cosmology

I Maldacena consistency condition for single-field inflation [Maldacena

’03]

I Infinite set of generalizations [Hinterbichler Hui Khoury ’12]

I Understood as Ward identities applied to correlation functions near
conformal boundary [Pimentel ’13, McFadden ’14]

I. Morrison McGill

HS symmetries in dS QFTs



Motivation HS symmetries in free fields HS charges with linear action HS charges with non-linear action Conclusions

Outline

In this talk:

I We study the consequences of HS symmetries in dS QFTs in
D = d + 1 > 2.

I Examine Ward identities applied to correlation functions near
conformal boundary.

Main result:
Consider a dS QFTs satisfying standard criteria (dS covariance, dS-invt
vacua, flat-space limit). If thy admits HS symmetry, and satisfies a
sparseness condition on the operator spectrum, then thy posses operators
which become free near the conformal boundary – asymptotic gaussianity.

I Our result is an analogue of the Coleman Mandula thm for dS QFTs.

I Our analysis is more similar in spirit to [Maldacena-Zhiboedev ’11].
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HS symmetries in free fields
Consider a C Klein-Gordon field on a Poincaré chart of dSD=d+1:

ds2 =
`2

η2

(
−dη2 + δijdx idx j

)
, η ∈ (−∞, 0), x i ∈ Rd ,

S =

∫
dDx
√
−g

(
−1

2
∇µφ†∇µφ(x)− M2

2
φ†φ(x)

)
, M2 ≥ 0.

Spin-1,2 currents are familiar “Klein-Gordon” current, “stress tensor”

Jµ(x) = φ†
←→
∇µφ(x),

Jµν(x) = ∇(µφ
†∇ν)φ(x)− 1

2
gµν

(
∇λφ†∇λφ(x) + M2φ†φ(x)

)
+ . . . .

These normal-ordered w.r.t. vacuum Ω. Jµν(x) traceless at conformal
coupling

J µ
µ ∝ (M2 −M2

c.c.), M2
c.c`

2 =
d2 − 1

4
.
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HS symmetries in free fields
Thy admits spin-s current ∀ s:

Jµ1...µs (x) =
n∑

j=0

cj∇(µ1
. . .∇µjφ

†∇µj+1 . . .∇µs )φ(x) + trace terms,

Jννµ2...µs
(x) ∝

(
M2 −M2

c.c.

)
Jµ2...µs (x).

E.g., spin-3:

Jµνλ(x) =
1

4(d + 2)

[
(d − 1)

(
φ†∇(µ∇ν∇λ)φ(x)−∇(µ∇ν∇λ)φ

†φ(x)
)

− 3(3 + d)∇(µφ
†←→∇ν∇λ)φ(x) + 6g(µν∇αφ†

←→
∇λ∇α)φ(x)

+
[
6M2 − (d − 1)(3d + 2)`−2

]
g(µνJλ)(x)

]
,

Jµµλ(x) =
(
M2 −M2

c.c.

)
Jλ(x).
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HS symmetries in free fields
Using KVF pµ tangent to dη may construct charges

Q(s)
p := η1−d

∫
ddx pν1 · · · pνs Jην1...νs (η, x)

∣∣∣
η=const

,

[
Q(s)

p , φ(x)
]

= i∂spφ(x), Q(s)
p |Ω〉 = 0.

For each charge ∃ a charge conservation law (Ward identity)

0 =
〈 [

Q(s)
p , φ(x1)

]
φ(x2) . . . φ(xn) + · · ·+ φ(x1) . . . φ(xn−1)

[
Q(s)

p , φ(xn)
] 〉

Ω
.

Letting pµ∂µ = ∂1, in Fourier space

0 =
n∑

i=1

(±)(ki1)s .

For s = 1 this is usual momentum conservation. For s > 1 satisfied b.c.
for transl.-invt Gaussian states, momenta form equal/opposite pairs.
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HS symmetries in free fields
Why are HS symmetries so powerful?

1. Q
(s)
p enlarge isometry subgroup ISO(d) ⊂ SO(D, 1)[

Pi ,Q
(s)
p

]
= 0,

[
D,Q(s)

p

]
= −sQ(s)

p .

2. Finite action of Q
(s)
p displaces wavepackets in position space by

momentum-dependent amount.

φ[f ] :=

∫
dDx
√
−gf (x)φ(x), f̂ (k) = e−(k−k0)2/4w2

,

e iαQ(s)
p φ[f ] |Ω〉 = φ[f ′] |Ω〉 , f̂ ′(k) = e−(k−k0)2/4w2

e iα(p·k)s .

In D > 2 symmetry relates wavepackets that do not collide with
those that do.

3. Frequently thys with one HS symmetry actually have many.
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The Coleman Mandula thm
U is a symmetry of the S-matrix if:

i) U maps 1-particle states to 1-particle states,

ii) U maps many particle states as tensor product,

iii) U commutes with S,

U is an internal symmetry if it commutes with Pµ.

Theorem
Assume S 6= 1. If G is connected (Lie) symmetry group of S, then G is
locally isomorphic to ISO(D)× I , where I is an internal symmetry group.

Note:

I It is assumed that symmetry acts linearly on asympt. 1-particle
Hilbert space.

I For any finite mass M, there exists a finite number of particle
species with mass less than M.

I There are a few ugly technical assumptions about distributional
nature of some objects which go into proof.
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HS charges with linear action

Theorem
Consider a de Sitter QFT satisfying a few reasonable criteria which
admits a local HS charge

Q(s)
p := η1−d

∫
ddx pν1 · · · pνs Jην1...νs (η, x)

∣∣∣
η=const

, pµ ∈ Rd .

If the action of Q
(s)
p on a scalar operator φ(x) is linear then φ(x) is a

generalized free field.

Linear action:[
Q(s)

p , φ(x)
]

=
∞∑
k=0

cµ1...µk

k−s (x)∇µ1 . . .∇µk
φ(x).

I. Morrison McGill

HS symmetries in dS QFTs



Motivation HS symmetries in free fields HS charges with linear action HS charges with non-linear action Conclusions

HS charges with linear action

Reasonable criteria:

1. dS covariance: “thy does not have preferred direction”

2. flat-space limit: `→∞, all other dimensionful parameters fixed.
All operator equations, OPE, etc., admit flat-space limit without
assumptions about (expectation values of) operators.

3. ∃ SO0(D, 1)-invariant state(s) Ωi .

⇒ correlation functions of Ωi admit generalized Mellin transform [Marolf

IAM ’10, Hollands ’10, Korai Tanaka ’12]

〈Ω1|φ(x1) . . . φ(xn) |Ω2〉 =

∫
~µ

M(~µ)
n∏

i<j

X
µij

ij ,

∫
~µ

A(~µ) :=

 n∏
i<j

∫
Cij

dµij

2πi

A(µ12, . . . , µn−1,n), Xij =
|~xi − ~xj |2 − (ηi − ηj)2

4ηiηj
.
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HS charges with linear action

Sketch of proof: consider Q
(2)
p :

Lemma
The most general linear action of Q

(2)
p on φ(x) is[

Q(2)
p , φ(x)

]
= i

(
c1

η2
+

c2

η
∂η + c3∂

2
η + c4∂

2
p + c5∆s

)
φ(x) =: Dp(x)φ(x),

where ci are real constants, ∂p := pµ∂µ, and ∆s is the scalar Laplacian
compatible with the flat metric on Rd .

Follows from considering: C (x) := [Q
(2)
p , φ(x)]

I translations: U(a)C (x)U−1(a) = C (x − a)

I dilations: U(λ)C (x)U−1(λ) = λ−2C (λ−1x)

I length dimension & flat-space limit: `→∞
I Rd reflections ∂p → −∂p: C (x)→ C (x)
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HS charges with linear action

Charge conservation law:

0 =

(
n∑

i=1

Dp(xi )

)
〈Ω1|φ(x1) . . . φ(xn) |Ω2〉 ,

Dp(x) = i

(
c1

η2
+

c2

η
∂η + c3∂

2
η + c4∂

2
p + c5∆s

)
.

Analyze in “Mellin space”:

I Each ∂2
p terms must vanish individually.

I Each term yields constraint on Mellin transform M(~µ).

I For (n > 2)-pt function: correlation function is disconnected.

⇒ φ(x) is generalized free field. �
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HS charges with non-linear action
In general, action on φ(x) is non-linear:[

Q(s)
p , φ(x)

]
= i
∑
A

1

ηs−k
cµ1...µk

A OA
µ1...µk

(x).

Any operator w/ correct quantum numbers may enter RHS.

Modest goal:
Consider equal-time correlation functions in limit η → 0,

Fn(η;~x1, . . . ,~xn) := 〈Ω1|φ(η,~x1) . . . φ(η,~xn) |Ω2〉 .

How do HS symmetries constrain asymptotic behavior near conformal
boundary?

Definition
An operator φ(x) is asymptotically Gaussian if the leading behavior of all
{Fn} as η → 0 is Gaussian (i.e., composed of connected 2-pt functions).
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HS charges with non-linear action
Examine commutator in Fefferman-Graham expansion.

ds2 =
`2

η2

(
−dη2 + δijdx idx j

)
.

Local operators have characteristic scaling set by EOM, Ward identity,
etc.

φ∆(x) = O(η∆), ∆ > 0,

valid as operator equation. May regard ∆ as one of the quantum
numbers of φ(x).
E.g., for light KG fields,

∆KG =
d

2
−
√

d2

4
−M2`2, M2`2 <

d2

4
.

For conserved currents, Ward identities require

Jη(x) = O(ηd−1), Tηi (x) = O(ηd−1), Tηη(x) = O(ηd), . . . .
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HS charges with non-linear action

In FG expansion, asymptotic charge conservation identity simplifies:

as η → 0 :
[
Q(s)

p , φ(x)
]
→ i

∞∑
k=0

1

ηs−k
cµ1...µk

A OA
µ1...µk

(x)

∣∣∣∣
O(η∆)

.

Consider the following:

Sparseness condition:
All O(η∆) operators on RHS of commutator eqn. are linear in φ(x).

1. When SC satisfied, the asympt. action of Q
(s)
p on φ(x) is linear.

Thus φ(x) is asymptotically gaussian.

2. If SC not satisfied, thy contains another operator which

i) has quantum numbers to enter in C(x) = [Q
(s)
p , φ(x)],

ii) is O(η∆) as η → 0,
iii) is not linear in φ(x).
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HS charges with non-linear action

So far I have said nothing profound!

Consider light operators: ∆ ∈ R, O(1). These of greatest interest
because they feel background the most, and are most “visible” at late
times. Consider the “minimal” operator algebra, poly(φ)+conserved
currents:

1. For ∆ /∈ N0, no obvious candidate to violate SC.

2. For ∆ ∈ N0, ∃ many candidates in minimal algebra which could
violate SC.

Conjecture
Generic HS thys with non-integer ∆ are asymptotically Gaussian, but
there exist exceptional HS thys with operators of integer ∆ which are not.

Resonates w/ perturbative global dS S-matrix [Marolf IAM Srednicki ’12].
HS gravitational thys have integer ∆!
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HS charges with non-linear action

The minimal operator algebra:

1. poly(φ): φ(x), φ2(x), φ2∇µφ(x), . . . .

I WLOG may consider φ(x) unique scalar operator of scaling
dimension ∆.

I In GFF know exactly how all members scale at late times. Only φ(x)
scales like η∆.

I In generic thy don’t know scaling dimension of composite operators,
but do expect for very light fields that all polynomials to decay at
least as fast as φ(x).

2. conserved currents

I Ward id: scale like integer power: ηd−1+n, n = 0, 1, . . . ,
I for D > 2 the “twist” ∆− s > 0, so for most components higher

spin currents decay more rapidly
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Conclusions

Conclusions
For operators with “generic” quantum numbers, HS symmetries greatly
constrain asymptotic form of correlation functions.

I scalars with ∆ /∈ N0: expect asymptotic gaussianity

I scalars with ∆ ∈ N0: no statement

Remains to determine the generality of our analysis:

I extend discussion to tensor operators

I incorportate local gauge symmetries

I study concrete examples

Our analysis does not apply to D = 2, where ∃ interesting, interacting,
soluble thys w/ HS symmetries (Ask me about non-linear sigma models
in 2D dS)
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