(日) (同) (三) (三)

Constraints from higher-spin symmetries in dS QFTs

Ian A. Morrison

in collaboration with R. Costa (IFT, Sao Paulo)

McGill Unviersity

Workshop "Quantum fields and IR issues in de Sitter Space" Natal, July 20, 2015

イロト イ伺ト イヨト イヨト

Motivation

QFTs are hard to solve.

Most soluble models have *enhanced symmetry*, and/or *simplified dynamics* relative to the Standard Model.

Definition

Higher-spin symmetries are symmetries which enhance the spacetime isometry group. Generators transform as tensor components under isometry group.

Classic results on how HS symmetries constrain QFTs:

- Minkowski S-matrix [Coleman Mandula '67]
- D = 2 S-matrix [Parke '80]
- D = 2 CFTs [Zamolodchikov '85]
- ► D = 3 CFTs [Maldacena-Zhiboedev '11]

・ロト ・ 日 ・ ・ ヨ ・

Motivation

HS symmetries may also be incorporated into thys of quantum gravity. [Vasiliev \ldots]

Higher-spin AdS/CFT

- Bulk 4D Vasiliev thys / 3D (critical) O(N) model [Klebanov Polyakov '02, Giombi Yin '11]
- ▶ 3D Chern-Simons gravity thys / 2D W-algebra CFTs

Proposed dS/CFT duality

4D Vasiliev thys / SP(N) CFT $_3$ [Anninos Hartman Strominger '11] Provides a putative UV complete thy of quantum gravity admitting dS background.

HS QFTs obtained by breaking of local HS symmetry in HS gravity thys; HS gravity thys obtained from QFT by gauging HS symmetry.

・ロト ・同ト ・ヨト ・ヨ

Motivation

Soft thms in cosmology

- Maldacena consistency condition for single-field inflation [Maldacena '03]
- ► Infinite set of generalizations [Hinterbichler Hui Khoury '12]
- Understood as Ward identities applied to correlation functions near conformal boundary [Pimentel '13, McFadden '14]

イロト イ伺ト イヨト イヨト

Outline

In this talk:

- ► We study the consequences of HS symmetries in dS QFTs in D = d + 1 > 2.
- Examine Ward identities applied to correlation functions near conformal boundary.

Main result:

Consider a dS QFTs satisfying standard criteria (dS covariance, dS-invt vacua, flat-space limit). If thy admits HS symmetry, and satisfies a sparseness condition on the operator spectrum, then thy posses operators which become free near the conformal boundary – asymptotic gaussianity.

- Our result is an analogue of the Coleman Mandula thm for dS QFTs.
- Our analysis is more similar in spirit to [Maldacena-Zhiboedev '11].

Motivation

HS symmetries in free fields

HS charges with linear action

HS charges with non-linear action

Conclusions

Motivation

HS symmetries in free fields

HS charges with linear action

HS charges with non-linear action

Conclusions

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

HS symmetries in free fields

Consider a \mathbb{C} Klein-Gordon field on a Poincaré chart of $dS_{D=d+1}$:

$$ds^2 = rac{\ell^2}{\eta^2} \left(-d\eta^2 + \delta_{ij} dx^i dx^j
ight), \quad \eta \in (-\infty, 0), \; x^i \in \mathbb{R}^d,$$

$$S = \int d^D x \sqrt{-g} \left(-rac{1}{2}
abla_\mu \phi^\dagger
abla^\mu \phi(x) - rac{M^2}{2} \phi^\dagger \phi(x)
ight), \quad M^2 \geq 0.$$

Spin-1,2 currents are familiar "Klein-Gordon" current, "stress tensor"

$$\begin{split} J_{\mu}(x) &= \phi^{\dagger} \overleftarrow{\nabla_{\mu}} \phi(x), \\ J_{\mu\nu}(x) &= \nabla_{(\mu} \phi^{\dagger} \nabla_{\nu)} \phi(x) - \frac{1}{2} g_{\mu\nu} \left(\nabla_{\lambda} \phi^{\dagger} \nabla^{\lambda} \phi(x) + M^{2} \phi^{\dagger} \phi(x) \right) + \dots \end{split}$$

These normal-ordered w.r.t. vacuum Ω . $J_{\mu\nu}(x)$ traceless at conformal coupling

$$J_{\mu}^{\ \mu} \propto (M^2 - M_{\rm c.c.}^2), \quad M_{\rm c.c}^2 \ell^2 = \frac{d^2 - 1}{4}$$

イロト イヨト イヨト イヨト

HS symmetries in free fields

Thy admits spin-s current \forall s:

$$J_{\mu_1\dots\mu_s}(x) = \sum_{j=0}^n c_j \nabla_{(\mu_1}\dots\nabla_{\mu_j}\phi^{\dagger}\nabla_{\mu_{j+1}}\dots\nabla_{\mu_s})\phi(x) + \text{trace terms},$$

$$J^{\nu}_{\nu\mu_2\dots\mu_s}(x) \propto \left(M^2 - M^2_{\text{c.c.}}\right) J_{\mu_2\dots\mu_s}(x).$$

E.g., spin-3:

$$\begin{split} J_{\mu\nu\lambda}(x) &= \frac{1}{4(d+2)} \bigg[(d-1) \left(\phi^{\dagger} \nabla_{(\mu} \nabla_{\nu} \nabla_{\lambda)} \phi(x) - \nabla_{(\mu} \nabla_{\nu} \nabla_{\lambda)} \phi^{\dagger} \phi(x) \right) \\ &\quad - 3(3+d) \nabla_{(\mu} \phi^{\dagger} \overleftrightarrow{\nabla_{\nu}} \nabla_{\lambda)} \phi(x) + 6 g_{(\mu\nu} \nabla^{\alpha} \phi^{\dagger} \overleftrightarrow{\nabla_{\lambda}} \nabla_{\alpha)} \phi(x) \\ &\quad + \big[6M^2 - (d-1)(3d+2)\ell^{-2} \big] g_{(\mu\nu} J_{\lambda)}(x) \bigg], \\ J^{\mu}_{\ \mu\lambda}(x) &= \left(M^2 - M^2_{\text{c.c.}} \right) J_{\lambda}(x). \end{split}$$

HS symmetries in free fields

Using KVF p^{μ} tangent to $d\eta$ may construct charges

$$Q^{(s)}_{p} := \eta^{1-d} \int d^d x \, p^{
u_1} \cdots p^{
u_s} J_{\eta
u_1\dots
u_s}(\eta, x) \Big|_{\eta= ext{const}},$$

$$\left[Q_{\rho}^{(s)},\phi(x)\right]=i\partial_{\rho}^{s}\phi(x),\quad Q_{\rho}^{(s)}\left|\Omega\right\rangle=0.$$

For each charge \exists a charge conservation law (Ward identity)

$$0 = \left\langle \left[Q_p^{(s)}, \phi(x_1) \right] \phi(x_2) \dots \phi(x_n) + \dots + \phi(x_1) \dots \phi(x_{n-1}) \left[Q_p^{(s)}, \phi(x_n) \right] \right\rangle_{\Omega}.$$

Letting $p^{\mu}\partial_{\mu}=\partial_{1}$, in Fourier space

$$0 = \sum_{i=1}^{n} (\pm) (k_{i1})^{s}.$$

For s = 1 this is usual momentum conservation. For s > 1 satisfied b.c. for transl.-invt *Gaussian states*, momenta form equal/opposite pairs.

<ロト < 団ト < 団ト < 団ト

HS symmetries in free fields

Why are HS symmetries so powerful?

1. $Q_p^{(s)}$ enlarge isometry subgroup $ISO(d) \subset SO(D,1)$

$$\left[P_i, Q_p^{(s)}\right] = 0, \quad \left[D, Q_p^{(s)}\right] = -sQ_p^{(s)}.$$

2. Finite action of $Q_p^{(s)}$ displaces wavepackets in position space by momentum-dependent amount.

$$\phi[f] := \int d^D x \sqrt{-g} f(x) \phi(x), \quad \hat{f}(k) = e^{-(k-k_0)^2/4w^2},$$

$$e^{ilpha Q_p^{(\mathrm{s})}} \phi[f] \ket{\Omega} = \phi[f'] \ket{\Omega}, \quad \hat{f}'(k) = e^{-(k-k_0)^2/4w^2} e^{ilpha (p\cdot k)^s}$$

In D>2 symmetry relates wavepackets that do not collide with those that do.

3. Frequently thys with one HS symmetry actually have many.

The Coleman Mandula thm

- ${\sf U}$ is a symmetry of the S-matrix if:
 - i) U maps 1-particle states to 1-particle states,
 - ii) U maps many particle states as tensor product,
- iii) U commutes with S,

U is an *internal symmetry* if it commutes with P_{μ} .

Theorem

Assume $S \neq 1$. If G is connected (Lie) symmetry group of S, then G is locally isomorphic to $ISO(D) \times I$, where I is an internal symmetry group.

Note:

- It is assumed that symmetry acts linearly on asympt. 1-particle Hilbert space.
- ► For any finite mass *M*, there exists a finite number of particle species with mass less than *M*.
- There are a few ugly technical assumptions about distributional nature of some objects which go into proof.

Motivation

HS symmetries in free fields

HS charges with linear action

HS charges with non-linear action

Conclusions

・ロト ・同ト ・ヨト ・ヨ

HS charges with linear action

Theorem

Consider a de Sitter QFT satisfying a few reasonable criteria which admits a local HS charge

$$Q_{p}^{(s)} := \eta^{1-d} \int d^{d} x \, p^{\nu_{1}} \cdots p^{\nu_{s}} J_{\eta \nu_{1} \dots \nu_{s}}(\eta, x) \Big|_{\eta = \text{const}}, \quad p^{\mu} \in \mathbb{R}^{d}.$$

If the action of $Q_p^{(s)}$ on a scalar operator $\phi(x)$ is linear then $\phi(x)$ is a generalized free field.

Linear action:

$$\left[Q_{\rho}^{(s)},\phi(x)\right]=\sum_{k=0}^{\infty}c_{k-s}^{\mu_{1}\ldots\mu_{k}}(x)\nabla_{\mu_{1}}\ldots\nabla_{\mu_{k}}\phi(x).$$

HS charges with linear action

Reasonable criteria:

- $1.\ \text{dS}$ covariance: "thy does not have preferred direction"
- 2. flat-space limit: $\ell \to \infty$, all other dimensionful parameters fixed. All operator equations, OPE, etc., admit flat-space limit without assumptions about (expectation values of) operators.
- 3. $\exists SO_0(D, 1)$ -invariant state(s) Ω_i .

 \Rightarrow correlation functions of Ω_i admit generalized Mellin transform [Marolf IAM '10, Hollands '10, Korai Tanaka '12]

$$\langle \Omega_1 | \phi(x_1) \dots \phi(x_n) | \Omega_2 \rangle = \int_{\vec{\mu}} \mathcal{M}(\vec{\mu}) \prod_{i < j}^n X_{ij}^{\mu_{ij}},$$

$$\int_{\vec{\mu}} A(\vec{\mu}) := \left[\prod_{i < j}^{n} \int_{C_{ij}} \frac{d\mu_{ij}}{2\pi i} \right] A(\mu_{12}, \dots, \mu_{n-1,n}), \quad X_{ij} = \frac{|\vec{x}_i - \vec{x}_j|^2 - (\eta_i - \eta_j)^2}{4\eta_i \eta_j}.$$

イロト イポト イヨト イヨト

HS charges with linear action

Sketch of proof: consider $Q_{\rho}^{(2)}$:

Lemma

The most general linear action of $Q_p^{(2)}$ on $\phi(x)$ is

$$\left[Q_{\rho}^{(2)},\phi(x)\right] = i\left(\frac{c_1}{\eta^2} + \frac{c_2}{\eta}\partial_{\eta} + c_3\partial_{\eta}^2 + c_4\partial_{\rho}^2 + c_5\Delta_s\right)\phi(x) =: \mathcal{D}_{\rho}(x)\phi(x),$$

where c_i are real constants, $\partial_p := p^{\mu} \partial_{\mu}$, and Δ_s is the scalar Laplacian compatible with the flat metric on \mathbb{R}^d .

Follows from considering: $C(x) := [Q_p^{(2)}, \phi(x)]$

- translations: $U(a)C(x)U^{-1}(a) = C(x-a)$
- dilations: $U(\lambda)C(x)U^{-1}(\lambda) = \lambda^{-2}C(\lambda^{-1}x)$
- Iength dimension & flat-space limit: $\ell \to \infty$
- \mathbb{R}^d reflections $\partial_p \to -\partial_p$: $C(x) \to C(x)$

< ロ > < 同 > < 三 > < 三 :

HS charges with linear action

Charge conservation law:

$$0 = \left(\sum_{i=1}^{n} \mathcal{D}_{p}(x_{i})\right) \left\langle \Omega_{1} | \phi(x_{1}) \dots \phi(x_{n}) | \Omega_{2} \right\rangle,$$

$$\mathcal{D}_{p}(x) = i\left(\frac{c_{1}}{\eta^{2}} + \frac{c_{2}}{\eta}\partial_{\eta} + c_{3}\partial_{\eta}^{2} + c_{4}\partial_{p}^{2} + c_{5}\Delta_{s}\right).$$

Analyze in "Mellin space":

- Each ∂_{ρ}^2 terms must vanish individually.
- Each term yields constraint on Mellin transform $\mathcal{M}(\vec{\mu})$.
- For (n > 2)-pt function: correlation function is *disconnected*.
- $\Rightarrow \phi(x)$ is generalized free field.

Motivation

HS symmetries in free fields

HS charges with linear action

HS charges with non-linear action

Conclusions

HS charges with non-linear action

In general, action on $\phi(x)$ is *non-linear*.

$$\left[Q_p^{(s)},\phi(x)\right]=i\sum_A\frac{1}{\eta^{s-k}}c_A^{\mu_1\dots\mu_k}\mathcal{O}_{\mu_1\dots\mu_k}^A(x).$$

Any operator w/ correct quantum numbers may enter RHS. Modest goal:

Consider equal-time correlation functions in limit $\eta \rightarrow$ 0,

$$F_n(\eta; \vec{x}_1, \ldots, \vec{x}_n) := \langle \Omega_1 | \phi(\eta, \vec{x}_1) \ldots \phi(\eta, \vec{x}_n) | \Omega_2 \rangle.$$

How do HS symmetries constrain asymptotic behavior near conformal boundary?

Definition

An operator $\phi(x)$ is asymptotically Gaussian if the leading behavior of all $\{F_n\}$ as $\eta \to 0$ is Gaussian (i.e., composed of connected 2-pt functions).

HS charges with non-linear action

Examine commutator in *Fefferman-Graham* expansion.

$$ds^2 = rac{\ell^2}{\eta^2} \left(-d\eta^2 + \delta_{ij} dx^i dx^j
ight).$$

Local operators have characteristic scaling set by EOM, Ward identity, etc.

$$\phi_{\Delta}(x) = O(\eta^{\Delta}), \quad \Delta > 0,$$

valid as operator equation. May regard Δ as one of the quantum numbers of $\phi(x)$. E.g., for light KG fields,

$$\Delta_{{\sf K}{\sf G}}=rac{d}{2}-\sqrt{rac{d^2}{4}-M^2\ell^2}, \quad M^2\ell^2<rac{d^2}{4}.$$

For conserved currents, Ward identities require

$$J_{\eta}(x) = O(\eta^{d-1}), \quad T_{\eta i}(x) = O(\eta^{d-1}), \quad T_{\eta \eta}(x) = O(\eta^{d}), \quad \dots$$

(日) (同) (三) (三)

HS charges with non-linear action

In FG expansion, asymptotic charge conservation identity simplifies:

as
$$\eta \to 0$$
: $\left[Q_p^{(s)}, \phi(x) \right] \to i \sum_{k=0}^{\infty} \frac{1}{\eta^{s-k}} c_A^{\mu_1 \dots \mu_k} \mathcal{O}_{\mu_1 \dots \mu_k}^A(x) \Big|_{\mathcal{O}(\eta^{\Delta})}$

Consider the following:

Sparseness condition:

All $O(\eta^{\Delta})$ operators on RHS of commutator eqn. are linear in $\phi(x)$.

- 1. When SC satisfied, the asympt. action of $Q_p^{(s)}$ on $\phi(x)$ is linear. Thus $\phi(x)$ is asymptotically gaussian.
- 2. If SC not satisfied, thy contains another operator which
 - i) has quantum numbers to enter in $C(x) = [Q_p^{(s)}, \phi(x)]$,
 - ii) is $O(\eta^{\Delta})$ as $\eta
 ightarrow$ 0,
 - iii) is not linear in $\phi(x)$.

HS charges with non-linear action

So far I have said nothing profound!

Consider light operators: $\Delta \in \mathbb{R}$, O(1). These of greatest interest because they feel background the most, and are most "visible" at late times. Consider the "minimal" operator algebra, $poly(\phi)+conserved$ currents:

- 1. For $\Delta \notin \mathbb{N}_0$, no obvious candidate to violate SC.
- 2. For $\Delta \in \mathbb{N}_0,$ \exists many candidates in minimal algebra which could violate SC.

Conjecture

Generic HS thys with non-integer Δ are asymptotically Gaussian, but there exist exceptional HS thys with operators of integer Δ which are not.

Resonates w/ perturbative global dS S-matrix [Marolf IAM Srednicki '12]. HS gravitational thys have integer Δ !

イロト イヨト イヨト イヨト

HS charges with non-linear action

The minimal operator algebra:

- 1. poly(ϕ): $\phi(x)$, $\phi^2(x)$, $\phi^2 \nabla_{\mu} \phi(x)$,
 - WLOG may consider φ(x) unique scalar operator of scaling dimension Δ.
 - In GFF know exactly how all members scale at late times. Only φ(x) scales like η^Δ.
 - ► In generic thy don't know scaling dimension of composite operators, but do expect for very light fields that all polynomials to decay at least as fast as φ(x).
- 2. conserved currents
 - Ward id: scale like integer power: η^{d-1+n} , n = 0, 1, ...,
 - for D > 2 the "twist" $\Delta s > 0$, so for most components higher spin currents decay more rapidly

Motivation

HS symmetries in free fields

HS charges with linear action

HS charges with non-linear action

Conclusions

(日) (同) (三) (三)

Conclusions

Conclusions

For operators with "generic" quantum numbers, HS symmetries greatly constrain asymptotic form of correlation functions.

- scalars with $\Delta \notin \mathbb{N}_0$: expect *asymptotic gaussianity*
- scalars with $\Delta \in \mathbb{N}_0$: no statement

Remains to determine the generality of our analysis:

- extend discussion to tensor operators
- incorportate local gauge symmetries
- study concrete examples

Our analysis does not apply to D = 2, where \exists interesting, interacting, soluble thys w/ HS symmetries (Ask me about non-linear sigma models in 2D dS)