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Introduction

In the presence of massless and minimally coupled scalar fields in
accelerating universes, quantum fluctuations at super-horizon scales
make physical quantities growing with time

From a semiclassical view point, it was proposed that such IR effects
are well-described by a Langevin equation

In de Sitter space, the stochastic approach has been proved to be
equivalent to resummation of leading powers of the growing time
dependences

We extend these investigations in a general accelerating universe
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Free scalar field in dS space
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In interacting field theories (i)

At each vertex integral,
one of propagators is retarded: G(x,x") = 0(n — n')[wo(x), wo(x')]
the other are the Wightman functions: (pg(z)eo(z")), {(po(z")po(x))

due to Causality
Secular growths of the Wightman functions originate in
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In interacting field theories (ii)
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Retarded propagator has no secular growth

3 —q . /
") =001 —1f) [ (55 5 H L= = (e

= 00— ') x < HR (=) — (-0)*]6P (x — x)

spatially local
but integral of it induces a secular growth as
—i (7 dn 3 3
Vgt Gty = oy [ () ()
/ sy | ) O]

i [
~ 3—H§/ d(loga’)




Leading IR effects

For example in ¢* theory, as loop level is increased by one,
quantum corrections are multipled by up to the factor:

A: coupling

A log2 (a/ ao) constant

Even if A < 1, perturbation theory is eventually broken

(after Alog?(a/ag) ~ 1, in ¢* theory)

Resummation formula for leading powers of IR logs. is necessary
to evaluate them nonperturbatively
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Resummation formula R P Woodard

Yang-Feldman formalism is reduced to the stochastic equation
up to leading powers of IR logarithms:
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Fokker-Planck eq.

Langevin eq. can be translated to the equation of the probability density p:
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An equilibrium state is eventually established: p(t, ®) — poo(¢), t — 0

The solution of the equilibrium state is given by
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Not suppressed by A

Scale invariance is recovered
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Semiclassical description A. A. Starobinsky
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massless,
minimally coupled

Free scalar field in Accelerating universe
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Accelerated expansion:

size of universe: a/pg

Scaling law breaking

We focus on fluctuations at super-horizon scales:
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In interacting field theories (i)

For resummation of leading IR effects, we extract dominant terms
of the Wightman functions and the retarded propagator

Secular growths of the Wightman functions originate in
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In interacting field theories (ii)
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Leading IR effects

For example in ¢* theory, as loop level is increased by one,
quantum corrections are multipled by up to the factor:

A / d(loga’) H' 2 / d(loga) H"?
—  Alog*(a/ag) at dS limit

Even if A < 1, perturbation theory is broken after an enough
time passed

In a similar way in dS space, resummation formula for leading
IR effects is derived from reduction of Yang-Feldman formalism



Resummation formula
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Fokker-Planck eq.
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Naive extension of semiclassical description
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Improved semiclassical description

It is distinguished by e-folding number whether time variations
are at early times (N < 1) or at late times (IV > 1)

Hdt = d(loga) = dN

Neglecting second derivative with respect to /N rather than ¢:
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Semiclassical description is consistent with Resummation formula
including all coefficients



Free scalar field in Accelerating universe 02 N. c. Tsamis,
where ¢ 7é 0 R. P. Woodard

At P <« H, the wave function of a masslsess, minimally coupled
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The IR behavior of the corresponding propagator is
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We changed coordinates as p = H'a' (dp = (1 — €/)pd(loga’))



Integration at each vertex
Leading IR behavior of the retarded propagator is given by
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Resummation formula

Substituting the leading IR behaviors of po(z) and GF(z, '),
Yang-Feldman formalism is reduced to the Langevin eq.:
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If € # 0, e-folding number is not a good choice for semiclassical description



Generalized semiclassical description

For comparison between first and second derivatives, we choose
a time coordinate 71" as its friction coefficient p is constant:
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Summary

In accelerating universes, the increase of d. o. f. at super-horizon scales
makes physical quantities growing with time through the propagator of
a massless, minimally coupled scalar field

In order to evaluate the IR effects nonperturbatively, we extended the
resummation formula of the leading IR effects in a general accelerating
universe

The resulting equation is given by a Langevin eq. with a white noise,
each coefficient of which is modified by the slow-roll parameter

If we adopt a time coordinate as its friction coefficient is constant, the
semiclassical description of the scalar field leads to the same equation



