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Background

There are many works that show secular growth from graviton
corrections in de Sitter and inflationary spacetimes.

Useful gauge-invariant observables are notoriously difficult to
evaluate, and all quantities secularly growing due to graviton loops
found in the literature are suspected to be non gauge invariant.
(Please raise your objections to this statement on Friday in one of
the discussion sessions on observables.)
Much of the secular growth comes from an explicit de Sitter
breaking term in the propagator.
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Main purposes of this talk

I argue that the de Sitter breaking term in a graviton propagator is
at least perilously close to being a gauge artefact.

I describe our attempt to construct a Woodard standard
(mode-sum, exact-gauge, Poincaré-patch) IR-finite de Sitter
invariant propagator. We (Markus Fröb, William de Lima and AH)
failed but came close.
I’ll convince most of the audience that I am not a “religious
fundamentalist de Sitter fanatic” but a moderate de Sitter breaking
sceptic.
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Outline

1 History of IR divergences in graviton propagator in de Sitter space
2 The IR divergence of the graviton correlator in the TT-synchronous

gauge
3 Covariant graviton propagator by mode sum

4 de Sitter invariant graviton vacuum state in the global patch
5 Removing the IR divergences in the Faddeev-Popov ghost

propagator
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Content

1 A brief and slightly(?) biased history of IR divergences in graviton
propagator in de Sitter space

2 The IR divergence of the graviton correlator in the TT-synchronous
gauge

3 Covariant graviton propagator by mode sum (with Markus Fröb and
William de Lima, work in progress)

4 de Sitter invariant graviton vacuum state in the global patch

5 Removing the IR divergences in the Faddeev-Popov ghost
propagator
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Ford and Parker, “Quantized gravitation wave perturbations in
Robertson-Walker universes,” Phys. Rev. D16, 1601 (1977):
“... The resulting [graviton] theory [in
transverse-traceless-synchronous gauge] is equivalent to that for
a pair of massless, minimally coupled scalar fields in [FLRW]
space-time. As an application of the formalism, we calculate the
spectrum of gravitons produced by a power-law expansion of the
universe and show that it has no divergences.”

AH, “Symmetric tensor fields in de Sitter spacetime,” Nov. 1985,
YTP-85-22 (unpublished):
“... It is also found [in the global patch] there is no infrared
singularity in the free graviton theory in spite of the similarity of the
field equation with that of the minimally coupled massless scalar
theory, which is known to have infrared singularity.”
The angular momentum L = 0 mode on the spatial section S3

causes IR divergences of the minimally-coupled massless scalar
field; the graviton modes starts at L = 2 [More later if time permits]
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Covariant propagator: history

Antoniadis, Illiopoulos and Tomaras, “Quantum instability of
de Sitter space,” Phys. Rev. Lett. 56, 1319 (1986):
“... The graviton propagator in a de Sitter background is found to
be divergent. ... If we start from de Sitter space as a classical
ground state, quantum corrections change it into flat Minkowski
space.”

In the gauge ∇µ(hµν − 1
4gµνh) = 0, the propagator for h = hαα is

IR singular.
AH, “Forbidden mass range for spin-2 theory in de Sitter
spacetime,” Nucl. Phys. 282, 397 (1987):
“... We find that there are no infrared divergences when [free
gravitons are] coupled to conserved currents [which should have
been “conserved stress-energy tensor”] [in the Poincaré patch].
He showed that near a point source the IR divergence can be
written in the form ∇µΛν +∇νΛµ.
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Covariant propagator: history

Allen, “The graviton propagator in de Sitter space,”
Phys. Rev. D34, 3670 (1986):
The covariant graviton propagator in the (average) gauge
corresponding to ∇µ[hµν − (1 + β−1)gµνh] = 0 is IR-divergent if
β = −L(L + 3)/3, L = 1,2,3, . . .. The propagator of Antoniadis,
Illiopoulos and Tomaras: L = 1. [More later]

Allen and Turyn, “An evaluation of the graviton propagator in
de Sitter space,” Nucl. Phys. B292, 813 (1987):
An explicit de Sitter invariant construction of the covariant graviton
propagator by the Euclidean method with the gauge-fixing term
−1/2[∇µ(hµν − 1

2gµνh)]2, i.e. β = −2 [(average) de Donder
gauge].
Antoniadis and Mottola, “Graviton fluctuation in de Sitter space,”
J. Math. Phys. 3, 103 (1991):

Explicit construction of the propagator in the AIT gauge.
Claimed the retarded Green’s function was singular.
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The claim was that the retarded Green’s function ∆ret (x , x ′) for the
spin-0 sector did not satisfy

2/3(� + 4H2)∆ret (x , x ′) = δ4(x , x ′) (A)

but satisfied instead

2/3(� + 4H2)∆ret (x , x ′) = δ4(x , x ′)−
5∑

i=1

ξ(i)(x)ξ(i)(x ′),

where the ξ(i)(x) are the conformal Killing vectors on de Sitter space.

Now the authors find that Eq. (A) is actually satisfied though the issue
of quantum IR singularity is a different matter.
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Tsamis and Woodard, “Quantum gravity slows inflation,”
hep-th/9602315, claimed that due to two-loop effects the effective
Hubble constant behaved as a function of proper time t as

Heff(t) = H

{
1−

(
κH
4π

)4 [(Ht)2

6
+ (sub-leading) + O(κ2)

]}
.

The authors now believe that this result was entirely due to a
non-gauge-invariant UV regularisation and that the two-loop
effects will lead to

Heff(t) = H

{
1−

(
κH
4π

)4 (
cHt + O(κ2)

)}
,

c: some constant.
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Covariant propagator: history

Kouris and AH, “The covariant graviton propagator in de Sitter
spacetime,” gr-qc/0107036.

Generalisation of the Allen-Turyn and Antoniadis-Mottola
propagators by the Euclidean method with the gauge-fixing term
− 1

2α [∇µ(hµν − (1 + β−1)gµνh)]2. (This includes the exact gauge
α = 0!)
IR finite and de Sitter invariant if β 6= −L(L + 3)/3, L = 1,2,3, . . ..
If β > 0, the growth of the propagator as Z = cos(Hµ) (µ: geodesic
distance for spacelike-separated points) the propagator behaves
like αC1Z + C2 log Z for large |Z |.

Woodard, “De Sitter breaking in field theory,” gr-qc/0408002.
Among other things, the retarded Green’s function obtained from
the covariant propagator cannot generate the correct field in
spacetime with spacelike past infinity due to causality.
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Covariant propagator: history

I−

I+

A

− +

Figure: Carter-Penrose diagram for
de Sitter space: field generated from
the charges at antipodal points

The retarded Green’s function
obtained from the covariant
propagator generates non-zero
fields only in the shaded region
due to causality. The electric field
on the sphere at A vanishes, hence
the Gauss’ law is not satisfied.

Consensus: the retarded Green’s
function is correct but should be
used differently (c.f. Lee and AH,
“How to use retarded Green’s
functions in de Sitter spacetime,”
arXiv:0808.0642.)
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Covariant propagator: history

Miao, Tsamis and Woodard, “Transforming to Lorentz gauge on
de Sitter,” arXiv:0907.4930.

The average covariant gauge with gauge-fixing term
−(1/2α)(∇µAµ)2 for QED in flat D-torus space (and de Sitter
space?) introduces space-independent A0(t), which should not be
there according to the path-integral derivation.
The extra mode A0(t) causes various problems.

AH: In the Hamiltonian, A0(t) appears only as

H = · · ·+ 1
2α

[Ȧ0(t)]2 + A0(t)Q + · · ·

Q: conserved total charge. (Q|ψ〉 = 0 to satisfy Gauss’ law.) A0(t)
is exactly given as A0(t) = 1

2αt2Q + tO1 + O2 (O1,O2: constant
operators) and it decouples from the rest. So, for QED there is no
problem. (There may be problems with α 6= 0 for Yang-Mills theory
or perturbative gravity.) [More later if time really permits]
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Covariant propagator: history

Miao, Tsamis and Woodard, “The graviton propagator in
de Donder gauge on de Sitter background,” arXiv:1106.0925,
Mora, Tsamis and Woodard, “Graviton propagator in a general
invariant gauge on de Sittter,” arXiv:1205.4468.

Construction of the graviton propagator in the exact/Landau(α = 0)
gauge, i.e. with the gauge condition
∇µ(hµν − (1 + β−1)gµνhα

α) = 0.
Spin-0 sector has no IR divergences if β > 0.
Spin-2 sector is IR divergent and breaks de Sitter invariance.

Morrison, “On cosmic hair and “de Sitter breaking” in linearized
gravity,” arXiv:1302.1860. He points out that there is a de Sitter
invariant solution to the equations for the spin-2 sector.
Miao, Tsamis and Woodard, “Perils of analytic continuation,”
arXiv:1107.4733. Rebuttal.
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Covariant propagator: history

The graviton two-point function in the exact covariant gauge
consists of the spin-2 and spin-0 sectors.

The 4th-order TT-projection operator:

Pµναβhαβ = ∇γ∇δC(1)
γµδν(h),

C(1)
γµδν(h): linearised Weyl tensor.

The spin-2 sector of T 〈0|hµν(x)hµν(x ′)|0〉 (H = 1, Z = cosµ,
µ(x , x ′): geodesic distance between x and x ′ if spacelike
separated) is

∆TTµν
µν (Z ) = PµναβPµν

αβ

[
A(Z )(∇(α∇(αZ )(∇β)∇β)Z )

]
,

1
2
�A(Z ) = U(Z ),

(n − 3)2

4(n − 2)2�
2(�− (n − 2))2U(Z ) = a + bZ + i

δn(x , x)√
|g|

.
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Covariant propagator: history

(n − 3)2

4(n − 2)2�
2(�− (n − 2))2U(Z ) = a + bZ + i

δn(x , x)√
|g|

.

Miao, Mora, Tsamis, Woodard,...: a = 0 (b = 0)
⇒ de Sitter non-invariant solution.

Morrison: a = 1/Vol(Sn) (b = 0)⇒ de Sitter invariant solution.

Question: Which one do we find in the mode-sum construction?
Fröb, de Lima and AH, work in progress. [More later]
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TT-synchronous gauge

Allen, “The graviton propagator in homogeneous and isotropic
spacetimes,” Nucl. Phys. B287, 743 (1987),
Kouris and AH, “Large distance behaviour of the graviton
two-point function in de Sitter spacetime,” gr-qc/0004079.

In the Poincaré patch ds2 = (Hη)−2(−dη2 + dx2), −∞ < η < 0, the
graviton correlator in the gauge h0µ = 0, hi

i = 0, ∂ jhij = 0 is IR
divergent (Ford and Parker).
However, the IR divergent part can be reproduced by a two-point
function of the form 〈0|∇(µAν)(x)∇(µ′Aν′)(x ′)|0〉, i.e. as a ‘pure
gauge’.
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TT-synchronous gauge

In the Poincaré patch and in the gauge h0µ = 0 (synchronous),
∂ ihij = 0 (transverse) hi

i = 0 (traceless), the correlator is

∆
(TT )
ijk` (x , x ′) =

∫
dn−1p

∑
s

γs
ij (p, x)γs

k`(p, x
′),

where
γs

ij (p, x) = C′εsij(−η)(n−5)/2H(2)
(n−1)/2(pη)eip·x,

εsii = piε
s
ij = 0, εsijε

s′
ij = 2δss′ .

For small p

γs
ij (p, x) ≈ CT ε

s
ijη

(n−5)/2
[
(pη)−(n−1)/2 + O((pη)−(n−5)/2

]
(1 + ip · x)

= CT ε
s
ijη
−2p−(n−1)/2 + O(p−(n−3)/2)).

The IR divergent contribution is space-independent.
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TT-synchronous gauge

∆
(TT )
ijk` (x , x ′) ≈ |C′T |

2(ηη′)−2
∫

dn−1p
p(n−1)

∑
s

εsij(p̂)εk`(p̂),

p̂ ≡ p/p.

With dn−1p = dppn−2dΩn−1,

∆
(TT )
ijk` (x , x ′) ≈ |C′T |

2(ηη′)−2
∫ H

0

dp
p

∫
dΩn−1

∑
s

εsij(p̂)εsk`(p̂)

= |CT |(ηη′)−2 n(n − 3)

(n + 1)(n − 2)
δijk`

∫ H

0

dp
p
,

where
δijk` = δikδj` + δi`δjk −

2
n − 1

δijδk`.

Can this IR divergence be reproduced by ∇µAν +∇νAµ?
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TT-synchronous gauge

Let A0 = 0 and

As
i (p, x) = C′′V ε

s
i (−η)(n−3)/2H(2)

(n+1)/2(pη)eip·x

= C′V ε
s
i

[
η−2p−(n+1)/2 + O(p−(n−3)/2)

]
eip·x,

εsi pi = 0, εsi ε
s′
i = δss′ .

∇0A0 = 0 and

∇iA0 +∇0Ai = η−2∂η(η2Ai) = O(p−(n−3)/2) (harmless).

γ
s(V )
ij (p, x) ≡ ∇iAs

j (p, x) +∇jAs
i (p, x)

= iC′V (p̂iε
s
j + p̂jε

s
i )η−2p−(n−1)/2 + O(p−(n−2)/2).

Compare with γs
ij (p, x) = C′T ε

s
ijη
−2p−(n−1)/2 + O(p−(n−2)/2).
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TT-synchronous gauge

∆
(V )
ijk` (x , x ′)

=

∫
dn−1p

∑
s

γ
s(V )
ij (x)γ

s(V )
k` (x ′)

≈ |C′V |
2(ηη′)−2

∫ H

0

dp
p

∫
dΩn−1

∑
s

(p̂iε
s
j + p̂jε

s
i )(p̂kε

s
` + p̂`εsk )

= |CV |(ηη′)−2 2
n + 1

δijk`

∫ H

0

dp
p
.

δijk` ≡ δikδj` + δi`δjk − 2
n−1δijδk`.

Compare with

∆
(TT )
ijk` (x , x ′) ≈ |CT |(ηη′)−2 n(n − 3)

(n + 1)(n − 2)
δijk`

∫ H

0

dp
p
,

The IR divergence in the TT -synchronous gauge can be reproduced
by a field of the form ∇µAν +∇νAµ.
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TT-synchronous gauge

Marolf, Morrison and AH, “de Sitter invariance of the dS graviton
vacuum,” arXiv:1107.2712.
It is possible to choose the mode functions h(TT )

ij with

∂ ih(TT )
ij = h(TT )i

i = 0 such that the IR divergences are absent.

IR-divergent contribution of γs
ij (p, x) ∝ η−2εsij .

ds2 = η−2(−dη2 + δijdx idx j)→ η−2
[
−dη2 + (δij + qεsij)dx idx j)

]
= η−2

[
−dη2 + δijdX idX j

]
,

where X i = x i + qεs ijxj + O(q2).
The subtraction of the leading IR divergence is a (large) gauge
transformation:

γs
ij (p,x)→ γs

ij (p,x)− C′T ε
s
ijη
−2p−(n−1)/2e−ρp2

.
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TT-synchronous gauge

A rebuttal: Miao, Tsamis and Woodard, “Gauging away physics,”
arXiv:1107.4733.
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How to find commutators

L =
1
2
AIJQ̇IQ̇J + BIJQ̇IQJ +

1
2
CIJQIQJ .

Define
P I ≡ ∂L

∂Q̇I
= AIJQ̇J + BIJQJ .

The canonical commutation relations:

[QI(t),PJ(t)] = iδJ
I , [QI(t),QJ(t)] = [P I(t),PJ(t)] = 0. (C)

Suppose that a full set of solutions is given by {q(σ)
I (t),q(σ)

I (t)}σ.

q(σ)
I (t): ‘positive-frequency solutions’

q(σ)
I (t): ‘negative-frequency solutions’

p(σ)I(t) ≡ AIJ q̇(σ)
J (t) + BIJq(σ)

J (t).
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How to find commutators

The symplectic product:

Sσσ′ = (q(σ),q(σ′))symp

≡ i
∑

I

[
q(σ)

I (t)p(σ′)I(t)− pI(σ)(t)q(σ′)
I (t)

]
.

(It can be shown that (d/dt)Sσσ′ = 0.)
Choose {q(σ)

I (t)} such that

Sσσ′ ≡ i
∑

I

[
q(σ)

I p(σ′)I − p(σ)Iq(σ′)
I

]
= 0.

Expand

QI(t) =
∑
σ

[
aσq(σ)

I (t) + a†σq(σ)
I (t)

]
.

Then the canonical commutation relations (C) are equivalent to[
aσ,a

†
σ′

]
= (S−1)σσ′ , [aσ,aσ′ ] =

[
a†σ,a

†
σ′

]
= 0.
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How to construct the two-point function

QI(t) =
∑
σ

[
aσq(σ)

I (t) + a†σq(σ)
I (t)

]
.

[
aσ,a

†
σ′

]
= (S−1)σσ′ , [aσ,aσ′ ] =

[
a†σ,a

†
σ′

]
= 0.

Sσσ′ ≡ i
∑

I

[
q(σ)

I (t)p(σ′)I(t)− pI(σ)(t)q(σ′)
I (t)

]
,

Sσσ′ = 0.

The two-point function for the state |0〉 defined by aσ|0〉 = 0 is

〈0|QI(t)QJ(t)|0〉 =
∑
σ,σ′

q(σ)
I (t)(S−1)σσ′q

(σ′)
J (t).
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The Lagrangian and field equations

(
√
|g|)−1L = EH(2)(h)− 1

2α
[∇αhαµ−(1+β−1)∇µh]2−1

4
m2(hµνhµν−h2).

hµν = h(TT )
µν +∇µAν +∇νAµ +∇µ∇νB + gµνΨ.

∇µh(TT )
µν = h(TT ) = 0, ∇µAµ = 0.

(�− (n − 2)H2 −m2)h(TT )
µν = 0,

(� + 2(n − 1)H2 − αm2)Aµ = 0.

In the massless limit,[
�− (n − 1)βH2

]
Ψ = 0,[

�− (n − 1)βH2
]

B = −
(

n +
λβ

2n

)
Ψ,

λ ≡ 2(n − 1)− (n − 2)α.
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Gravition two-point function

∆µνµ′ν′(x , x ′) = 〈0|hµν(x)hµ′ν′(x ′)|0〉

= ∆
(T )
µνµ′ν′(x , x

′) + ∆
(V )
µνµ′ν′(x , x

′) + ∆
(S)
µνµ′ν′(x , x

′).

∆M2(x , x ′): the propagator for the scalar field with mass M,

∆
(1)
M2(x , x ′) ≡ ∂

∂M2 ∆M2(x , x ′).

∆
(S)
µνµ′ν′(x , x

′)

=
λ

(n − 1)2(n − 2)H4∇µ∇ν∇µ′∇ν′∆(n−1)βH2(x , x ′)

+
2

(n − 1)(n − 2)H2

(
n +

λβ

2

)
∇µ∇ν∇µ′∇ν′∆

(1)
(n−1)βH2(x , x ′)

+
2

(n − 1)(n − 2)H2

[
gµν(x)∇µ′∇ν′ + gµ′ν′(x ′)∇µ∇ν

]
∆(n−1)βH2(x , x ′).
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(n − 1)2(n − 2)H4∇µ∇ν∇µ′∇ν′∆(n−1)βH2(x , x ′)

+
2

(n − 1)(n − 2)H2

(
n +

λβ

2

)
∇µ∇ν∇µ′∇ν′∆

(1)
(n−1)βH2(x , x ′)

+
2

(n − 1)(n − 2)H2

[
gµν(x)∇µ′∇ν′ + gµ′ν′(x ′)∇µ∇ν

]
∆(n−1)βH2(x , x ′).
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IR structure of the graviton two-point function

If we take the limit m2 → 0 before p-integration:

∆
(S)
µνµ′ν′(x , x

′) is basically a two-point function of scalar field with
mass (n − 1)βH2 ⇒ No IR problem or dS breaking if β > 0.

∆
(T )
µνµ′ν′ and ∆

(V )
µνµ′ν′ have no IR problem except when µ, ν, µ′, ν ′

are all space indices.

Write ∆
(T )
iji ′j ′ = ∆

(TT−sync)
iji ′j ′ + ∆

(T ,V+S)
iji ′j ′ , where ∆

(TT−sync)
iji ′j ′ is the

transverse-traceless-synchronous (or ‘physical’) contribution.
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IR structure of the graviton two-point function

Then, in the infrared we have

∆
(TT−sync)
iji ′j ′ + ∆

(T ,V+S)
iji ′j ′ + ∆

(V )
iji ′j ′

≈ |CT |2(ηη′)−2(δii ′δjj ′ + δij ′δji ′ − 2
n−1δijδi ′j ′)

∫ H

0

dp
p

×
[

n(n − 3)

(n + 1)(n − 2)
− 2(n − 3)(n − 1)

(n + 1)(n − 2)
+ α

(n − 1)(n − 3)

(n + 1)2

]
= |CT |2(ηη′)−2(δii ′δjj ′ + δij ′δji ′ − 2

n−1δijδi ′j ′)

∫ H

0

dp
p

×
[
−n − 3

n + 1
+ α

(n − 1)(n − 3)

(n + 1)2

]
.

(
no IR div. if α =

n + 1
n − 1

)
For the exact gauge (α = 0) the gauge contribution
over-compensates the ‘physical’ IR divergence and changes the
sign of the IR divergence.
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IR structure of the graviton two-point function

What happens if we perform the p-integration and then take the
massless limit?

∆
(TT−sync)
iji ′j ′ + ∆

(T ,V+S)
iji ′j ′ + ∆

(V )
iji ′j ′

≈ |CT |2(ηη′)−2(δii ′δjj ′ + δij ′δji ′ − 2
n−1δijδi ′j ′)

×

[
−n − 3

n + 1

∫ H

0

dp
p

p
2m2

(n−1)H2 + α
(n − 1)(n − 3)

(n + 1)2

∫ H

0

dp
p

p
2αm2

(n+1)H2

]
≈ |CT |2(ηη′)−2(δii ′δjj ′ + δij ′δji ′ − 2

n−1δijδi ′j ′)

×
[
−n − 3

n + 1
(n − 1)H2

2m2 + α
(n − 1)(n − 3)

(n + 1)2
(n + 1)H2

2αm2

]
= 0.
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IR structure of the graviton two-point function

∆
(T )
iji ′j ′(x , x

′) + ∆
(V )
iji ′j ′(x , x

′) is IR-finite if we perform the p-integration and
then take the massless limit.

However... ∆
(V )
0i0i ′(x , x

′) contains terms proportional to

m2
∫ H

0

dp
p3 p

2αm2

(n+1)H2 ,

which is IR-divergent unless m2 is large enough.
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IR structure of the graviton two-point function

Summary
∆µνµ′ν′(x , x ′) is IR finite (only) for α = (n + 1)/(n − 1) if we take
the massless limit and then perform the p-integration. Does the
α = 0 case agree with the MTW propagator?
∆iji ′j ′(x , x ′) is IR finite for all α if we perform the p-integration and
then take the massless limit, but then ∆

(V )
0i0i ′(x , x

′) will be badly
divergent though it is manifestly of ‘pure-gauge’ form.

∆µνµ′ν′(x , x ′) is well-defined if αm2 is large enough. This massive
two-point function, as an analytic function of m2, has a finite
massless limit, which is expected to agree with the IR-finite
covariant two-point function.
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1 A brief and slightly(?) biased history of IR divergences in graviton
propagator in de Sitter space

2 The IR divergence of the graviton correlator in the TT-synchronous
gauge

3 Covariant graviton propagator by mode sum (with Markus Fröb and
William de Lima, work in progress)

4 de Sitter invariant graviton vacuum state in the global patch

5 Removing the IR divergences in the Faddeev-Popov ghost
propagator
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AH, “Quantum linearization instabilties of de Sitter spacetime: I,”
Class. Quant. Grav. 8, 1961 (1991); “Linearized gravity in de Sitter
spacetime as a representation of SO(4,1),” Class. Quant. Grav. 8,
12005 (1991).
We quantise the linearised gravity in the global patch (H = 1)

ds2 = −dt2 + cosh2 t dΩ2
3

with the gauge N = 1, N i = 0 (H = 1) so that h0µ = 0.

hij = h(TT )
ij + DiAj + DjAi + (DiDj + δij)F .

(�− 2)h(TT )
µν = 0.

Unphysical modes: (
∂2

∂t2 − tanh t
∂

∂t
− 2
)

Ai = 0,(
∂2

∂t2 − tanh t
∂

∂t
− 1

cosh2 t
− 2
)

F = 0.

The operator ∇i∇i does not appear!
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unphysical modes

Ai(t ,θ) =
∑
L≥2

∑
σ

[
bLσ cosh2 t + b̃Lσf1(t)

]
V (Lσ)

i (θ)

+
∑
L6=0

∑
σ

[
cLσ cosh2 t + c̃Lσf1(t)

]
DiY (Lσ)(θ),

F (t ,θ) =
∑
L 6=1

[sLσ sinh t cosh t + s̃Lσf2(t)] Y (Lσ)(θ).

f1(t) =
i cosh2 t

2
ln

1 + i sinh t
1− i sinh t

− sinh t ,

f2(t) = −d
dt

f1(t).
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unphysical modes

[bLσ, b̃L′σ′ ], [cLσ, c̃L′σ′ ] and [sLσ, s̃L′σ′ ] are all proportional to
δLL′δσσ′ .
Classically, the linearised Hamiltonian and momentum constraints
lead to b̃Lσ = c̃Lσ = s̃Lσ = 0. We incorporate these conditions
quantum mechanically as b̃Lσ|ψ〉 = c̃Lσ|ψ〉 = s̃Lσ|ψ〉 = 0.
If we choose to represent |ψ〉 as a wave function that depends on
bLσ, cLσ and sLσ, i.e.

|ψ〉 = Ψ({bLσ, cLσ, sLσ, . . .}),

Then
∂

∂bLσ
Ψ =

∂

∂cLσ
Ψ =

∂

∂sLσ
Ψ = 0.

That is, Ψ is independent of bLσ, cLσ and sLσ.
The unphysical modes are irrelevant.

39 / 46



Physical modes

h(TT )
ij (t ,θ) =

∞∑
L=2

∑
σ

[
aLσf (Lσ)ij (t ,θ) + a†Lσf (Lσ)ij (t ,θ)

]
.

The vacuum |0〉 defined by aLσ|0〉 = 0 for all L and σ is SO(4) invariant.
With a boost Killing vector X ,

LX f (L,σ)µν (t ,θ) = ic(L + 1, σ)f (L+1,σ)
µν (t ,θ)− ic(L, σ)f (L−1,σ)

µν (t ,θ)

+∇µΛν +∇νΛµ.

The ‘positive-frequency solutions’ transform among themselves
modulo gauge transformations.
⇒ The annihilation operators aLσ transform among themselves under
a boost as well as under SO(4) rotations, i.e. they transform among
themselves under SO(4,1).
⇒ the condition aLσ|0〉 = 0 is SO(4,1) invariant, i.e. the vacuum state
is SO(4,1) invariant.
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Yang-Mills Lagrangian (Nakanishi-Lautrup)

1√
|g|
L = −1

4
Fab · F ab −∇aB · Aa −

α

2
B · B + i∇ac · Dac

(B: The Nakanishi-Lautrup auxiliary field)

B · B ≡ BABA,

(Dac)A = DacA + qf ABCAB
a cC ,

F A
ab = ∇aAA

b −∇bAA
a + f ABCAB

a AC
b .

f ABC : totally anti-symmetric structure constant of the Lie algebra
q : gauge coupling constant

Define f ABCAB
a AC

b = (Aa × Ab)A etc.
We’ll omit the gauge indices from now on, e.g. AA

a → Aa.
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IR problem in the ghost sector

The free field (q = 0) equations :

∇a∇ac = ∇a∇ac = 0.

The ghost and anti-ghost are minimally-coupled massless scalar field.
Hence the propagator is IR-divergent/dS non-invariant in de Sitter
space. The ghosts in perturbative gravity also has similar IR
divergences.

The propagator on de Sitter space reguralised with a small mass m

GF (x , x ′) =
Hn

m2VSn
+ G̃F (x , x ′),

VSn : the volume of the unit Sn; G̃F (x , x ′): de Sitter invariant & IR-finite.
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The form of the FP-ghost coupling

The FP-ghost propagator in the Euclidean (dS invariant) vacuum (with
small mass)

−iT 〈0|c(x)c(x ′)|0〉 =
Hn

m2VSn
+ G̃F (x , x ′).

The coupling or the FP-ghosts and gauge field: −iq∇ac · (Aa × c).

The derivative on c eliminates the IR-divergent constant in the
propagator;
The ghost propagator appears always in an internal loop.

Proposal : Use the dS-invariant effective propagator G̃F (x , x ′) instead
of the IR-divergent one, GF (x , x ′). Faizal and AH, arXiv:0806.3735

Question : Can we derive this without the IR-regularisation?
Yes! Jos Gibbons and AH, arXiV:1410.7830
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Conserved charges

Field equations in the Landau gauge α = 0:

∇aAa = ∇aDac = ∇aDac = 0.

Conserved charges:

QA =

∫
dΣaAa,

Qc =

∫
dΣaDac,

Qc =

∫
dΣaDac.

The proposal to use the effective IR-finite propagator is equivalent to
imposing the following conditions on the states |ψ〉:

QA|ψ〉 = Qc |ψ〉 = Qc |ψ〉 = 0.
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Consistency with the BRST (and anti-BRST)
invariance

QA

Qc

Qc

Qglobal-gauge

BRST

anti-BRST

anti-BRST

BRST

The consistency with the BRST
(and anti-BRST) invariance leads
to the condition Qglobal-gauge|ψ〉 = 0,
i.e. the invariance of the states
under the global gauge
transformations.

46 / 46


	A brief and slightly(?) biased history of IR divergences in graviton propagator in de Sitter space
	The IR divergence of the graviton correlator in the TT-synchronous gauge
	Covariant graviton propagator by mode sum (with Markus Fröb and William de Lima, work in progress)
	de Sitter invariant graviton vacuum state in the global patch
	Removing the IR divergences in the Faddeev-Popov ghost propagator

