

Florent Robinet Laboratoire de l'Accélérateur Linéaire robinet@lal.in2p3.fr

Gravitational-wave detectors Noise characterization

 \rightarrow Introduction / motivation

→Spectral noise

- gravitational-wave detector sensitivity
- noise budget
- noise spectral features

 \rightarrow Transient noise

- monitoring and characterization
- investigation and mitigation
- search vetoes

 \rightarrow Low-latency noise characterization

Florent Robinet Laboratoire de l'Accélérateur Linéaire robinet@lal.in2p3.fr

LIGO and Virgo detector characterization group:

- \rightarrow provide tools to monitor the detector status and noise
- \rightarrow characterize the detector noise (spectral and transient)
- \rightarrow assist the commissioning to improve the detector sensitivity
- \rightarrow provide data quality information to search groups
- \rightarrow produce event vetoes both for time and frequency domain
- \rightarrow provide the infra-structure to access vetoes online and offline
- \rightarrow vet gravitational-wave detections

A A . .

LIGO (Livingston) summary pages

Virgo monitoring pages

Lock Step status

Locking step (yellow areas = ITF not locked)

Stripchart of the DQ META ITF Mode variable

6/25/19

A A . .

6/25/19

A A . .

6/25/19

LIGO and Virgo detector characterization group:

- \rightarrow Provide tools to monitor the detector status
- \rightarrow characterize the detector noise (spectral and transient)
- \rightarrow Assist the commissioning to improve the detector sensitivity
- \rightarrow provide data quality information to search groups
- \rightarrow produce event vetoes both for time and frequency domain
- \rightarrow provide the infra-structure to access vetoes online and offline
- \rightarrow vet gravitational-wave detections

- \rightarrow Continuous waves produced by a pulsar would appear as a line in the spectrum
- -> A stochastic background of gravitational-waves would appear as a specific structure in the time of the structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would appear as a specific structure in the stochastic background of gravitational-waves would app
- \rightarrow The detector characterization group studies noise spectral features to exclude an instrument

- \rightarrow Transient searches are contaminated by spurious noise events mimicking GW signals
- \rightarrow Background distribution is highly non-Gaussian
- \rightarrow The detector characterization group studies the events in the tails and designs vetoes

$$P_{output}(t) \simeq \frac{P_{input}}{2} \left[1 + C\cos(\delta \phi_{OP}) - C\sin(\delta \phi_{OP}) \times \delta \phi_{GW}(t)\right]$$

 \rightarrow A gravitational wave is detected as a power variation

 \rightarrow Many noise sources can produce a power variation

GW detectors' readout system provides at any instant an estimate of strain: a quantity that is sensitive to arms' length difference:

 \rightarrow Digitized discrete time series: raw(t) (sampled at 16384 Hz or 20000 Hz) and synchronized with GPS clocks.

 \rightarrow Calibration of raw(t): apply a frequency dependent factor (in reality this is a bit more complicated : see Joseph's talk!)

 $\rightarrow h_{det}(t)$

time series = detector noise + all hypothetical GW signals

$$h_{det}(t) = n(t) + \frac{GW(t)}{GW(t)}$$

GW detectors' readout system provides at any instant an estimate of strain: a quantity that is sensitive to arms' length difference:

 \rightarrow Digitized discrete time series: raw(t) (sampled at 16384 Hz or 20000 Hz) and synchronized with GPS clocks.

 \rightarrow Calibration of raw(t): apply a frequency dependent factor (in reality this is a bit more complicated : **see Joseph's talk!**)

 $\rightarrow h_{det}(t)$

time series = detector noise + all hypothetical GW signals

$$h_{det}(t) = \frac{n(t)}{H} + GW(t)$$

The level of noise is measured using the power spectral density (PSD)

$$S_n(f) = \int_{-\infty}^{+\infty} \langle n(\tau)n(\tau+t)\rangle e^{-2i\pi ft} dt$$

= Fourier transform of the noise autocorrelation function (Wiener-Khinchin theorem)

Several elements to consider:

- \rightarrow We only want the power of stationary noise (excluding signals and transient noise)
- \rightarrow We work with a finite data set
- \rightarrow The noise is non-stationary

Noise power spectral density

 \sim

- \rightarrow Power spectral density estimator for finite data set: periodogram = $\frac{1}{\infty} \frac{1}{T} |\tilde{x}_T(f)|^2$
- \rightarrow Improved estimator:
 - average multiple periodograms (M) to reduce the variance
 - noise is non-stationary: T should not be too long (a few minutes)
 - use windowed data to limit spectral leakage
 - Welch approach: average of periodograms computed over overlapping windowed data segments
- \rightarrow Sensitivity measured using the noise power spectral density :

$$S_n(k) = Median_{0 \le m < M} \left\{ \frac{1}{Nf_s} \left| \sum_{j=0}^{N-1} x_m[j]w[j]e^{-2i\pi jk/N} \right|^2 \right\}$$

+ median-to-mean correction

- \rightarrow One-sided / Two sided PSDs
- \rightarrow Amplitude power spectral density: $\sqrt{S_n(k)}$

Noise power spectral density

Noise amplitude spectral density estimate for gravitational-wave detectors

On top of fundamental noise, many technical noises must be considered

- \rightarrow beam pointing / alignment
- \rightarrow control noise
- \rightarrow light scattered by detector components (mirror defects, towers, optical parts, ...)
- \rightarrow instrumental noise: laser, thermal compensation system, electronics...
- \rightarrow environmental noise:
 - cooling fans, air conditioning, power lines...
 - human, sea activity, weather, airplanes...

Noise budget = consider all possible noise sources and try to estimate the contribution to the r

A noise source is described by 1/ an amplitude 2/ the way it couples to the detector (transfer function)

Amplitude:

- \rightarrow modeled (ex: shot noise)
- \rightarrow measured offline
- \rightarrow measured online with auxiliary channels (ex: control noise)

Transfer function:

- \rightarrow modeled
- \rightarrow modeled with factors measured experimentally
- \rightarrow measured with noise injections

Over 100 noise sources must be considered.

- \rightarrow Add in quadrature all the noise contributions
- \rightarrow Compare with the measured noise curve

Noise budget (selection)

Noise budget

Noise spectral features can be classified based on the morphology and time evolution

- \rightarrow "Bumps" are typically associated to non-stationary sources
- → Lines associated to mechanical resonant modes (mirror or suspension): typical Lorentzi
- → A line can appear/disappear: often associated to devices switching on and off
- \rightarrow Wandering lines have a frequency evolving with time, sometime in a periodic way (following)
- \rightarrow Very narrow lines are often associated to electronic devices
- \rightarrow Line combs, often associated to digitized clocks
- \rightarrow Line harmonics resulting from the coupling of 2+ frequencies
- \rightarrow The **line frequency** can be associated to electronic devices: cooling fans, vacuum pumps,
- \rightarrow Spectral noise investigation is often based on a deep knowledge of the detector and its env

Thousands of auxiliary channels are used to monitor the instruments

- environmental sensors
- detector sub-systems
- detector control

Noise injection campaigns are con

Auxiliary signals are analyzed to fi

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1181606078.000000 (Thu Jun 15 23:54:20 2017 UTC)

V1:Hrec_hoft_20000Hz__FFTTIME

1250502010000 . Juli 5 2015 20.50.00 CTC 41.20.003

Cooling fans: mechanical vibrations coupling to the detector

Wandering lines

Noise disturbances (EM) produced by electronic devices are typically very sensitive to

d = k/T

+T+

Frequency Domain

Combs are often produced by clocks

t=0

₽ A Ł

Investigating the spectral noise

Measure the coherence between spectra of 2 channels **Brute force**: examine all auxiliary channels

Example:

50 Hz line + harmonics have a very high

--> Europe mains frequency = 50 Hz

Investigation tools are run every day to r

Spectral noise summary

A database is used to record our knowledge of spectral features

- \rightarrow time of appearance/disapearence
- \rightarrow central frequency
- \rightarrow bandwidth
- \rightarrow origin, if known

Transient noise

Q transform = short Fourier Transform with a Gaussian window (window size ~ 1/f)

lti-resolution analysis motivated in the introduction, the data are process unsform is a modification of the standard short time Fourier transform es inversely with frequency such that the time-frequency plane is covere signal time series, x(t), is projected onto a basis of complex-valued wind

$$X(\tau,\phi,Q) = \int_{-\infty}^{+\infty} x(t)w(t-\tau,\phi,Q)e^{-2i\pi\phi t}dt$$

ent, X, measures the average signal amplitude and phase within a time-fr ie τ and frequency ϕ , whose shape and area are determined by the requ

\rightarrow Tiling: Q planes with frequency rows (log) subdivided in time tiles (linear)

The time series must be whitened. Several methods are used :

- reweighting of frequency bins
- linear prediction
- \rightarrow white noise

The Q-transform of whitened data directly

Ф

- peak time and duration
- peak frequency and bandwidthSNR

The Q transform is computed for every tiles \rightarrow SNR \rightarrow maps

Maps are stacked up, tiles with highest SNR values are c

Output power

6/25/19

Data is calibrated \rightarrow GW strain amplitude *h*(*t*) (including high-pass filter f > 10 Hz)

h(t)

Data are low-pass filtered (here, < 500 Hz)

Data are whitened

SNR

Time-frequency decomposition (Q transform)

A trigger = a tile with a SNR value above a given threshold

41

Triggers are clustered in time

One cluster: – time – frequency – Q value – SNR → given by the tile with the highest SNR

+ duration, bandwidth...

For noise investigation we will always work with clusters

Clusters will be called « triggers » for simplicity.

One typical week of glitches in Virgo data (O2)

- \rightarrow High rate of glitches
- \rightarrow Specific distribution in time/frequency/SNR \rightarrow we will exploit this for investigation
- \rightarrow Use glitch population for characterization studies

Frequency [Hz]

Frequency [Hz]

One typical week of glitches in Virgo data (O2)

Signal spectrograms

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

Glitch spectrograms

 \rightarrow Glitch time-frequency distribution can be very specific

 \rightarrow With experience, the noise source can identified when looking at time-frequency plots

- \rightarrow Glitch time-frequency distribution can be very specific
- \rightarrow With experience, the noise source can identified when looking at time-frequency plots

Glitch classification

integrating LIGO, machine learning, and citizen science

Glitch classification projects

ex. citizen science "gravity spy"

Machine learning algorithms

- \rightarrow classify glitches for noise investigations
- \rightarrow Test similarity of GW detections with glitch
- \rightarrow Detect GWs (?!)

Glitch-to-glitch example

Florent Robinet

51

Glitch-to-glitch example

52

Glitch coupling: visual analysis

SNR

SNR

Glitch-to-glitch example

Occasional loud magnetic glitches \rightarrow lightning strikes

Good witness channels: magnetometers

Brute force glitch coupling

We developed tools to study glitch-to-glitch coupling with auxiliary channels

UPV algorithm

- \rightarrow Scan triggers of hundreds of auxiliary channels
- \rightarrow Perform time coincidence
- \rightarrow The coupling is "real" if the fraction of coincidences is important

EXCAVATor

- \rightarrow Isolate a list of glitches
- \rightarrow Scan auxiliary channel values (or derivative) at the time of the glitches
- \rightarrow The coupling is "real" if the distribution of values differs from a distribution taken at random t

Alignment glitches

Before/after applying O2 Virgo vetoes

 \rightarrow Lists of time segments are produced

 $SNR \ge 5.0$

 $SNR \ge 8.0$ $SNR \ge 10.0$

- \rightarrow When conducting a GW search, glitc
- \rightarrow Specific vetoes are selected for a giv
- \rightarrow When designing a veto, care is taken
 - to limit the rejected time - to check that vetoes are not
 - coupled to GW signals!

Impact of O1 vetoes (LIGO) on CBC searches

- \rightarrow Transient searches are contaminated by spurious noise events mimicking GW signals
- \rightarrow Background distribution is highly non-Gaussian
- \rightarrow The detector characterization group studies the events in the tails and designs vetoes

- \rightarrow Transient searches are contaminated by spurious noise events mimicking GW signals
- \rightarrow Background distribution is highly non-Gaussian
- \rightarrow The detector characterization group studies the events in the tails and designs vetoes

 \rightarrow The background of transient searches is composed of random coincidences

Correlated noise

۸ Λ ...

esoluhown meter

black be ob-).5 Hz Fig. 1 cs for ld dint louring lative at the cts (a

Schumann resonance

LIGO-Hanford magnetometer

944696230 944696231 944696232 944696233 944696234 Loudest: 0P3+044696231.690, fa72.091 Hz, sarva75.571 Time [s]

944596230 944596231 944696232 944696233 944696234 Loudest: 0P5-5444696231,469, fs7,622 Hz, srvs5,035 Time [s]

944596230 944696231 944696232 944696233 944696233 Loudest: 0P3+044696231.677, 1+28.991 Hz, stree6.807 Time [s]

Low-latency searches

۸ ۸ . .

Low-latency searches

Handford Virgo Livingston + 10 seconds LIGO-Virgo data are recorded at the sites: - O(100,000) channels / detector

- online reconstruction $\rightarrow h(t)$ data

A A . .

Low-latency searches

LIGO-Virgo data are transfered to computing centers:

- Caltech, USA
- Virgo, Italy
- → Low-latency searches are conducted

Low-latency searches

V1 data source:

mkbasicsrc()

gstlal_inspiral

sub bank 2

V1 Triggering:

sub bank N

V1 Triggering: sub bank 1 Trigs sub bank 1

SNRs sub bank 2

SNRs sub bank N

SNRs sub bank

h(t) Nth-pow-of-2 Hz

h(t) 2048Hz

h(t) 4096Hz

V1 LLOID filtering engine:

mkLLOIDmulti()

V1 whitening and downsampling:

mkwhitened_multirate_src()

HOME	SEARCH	CREATE	REPORTS	RSS	LAT	EST OF	TIONS DO	CUMENTATION				AUTHENTICATED AS: FLORENT
Basic I	nfo											
UID		Labe	els		Group	Pipeline	Search	Instruments	UTC • Event Time	FAR (Hz)	Links	UTC + Submitted
G211117	HIOK LIO	K ADVOK EM	READY	C	CBC	gstlal	HighMass	H1,L1	2015-12-26 03:38:53 UTC	3.333e-11	Data	2015-12-26 03:40:00 UTC
Coine '	Fables					CI.	alo Inoniu	ol Toblog				
Come	ables					50	igie inspir	ai l'ables				
End Time	(GPS)	1135136350	0 6478 s			IFC Ch	,		HI COS CALIB STRAIN			
		115515655				En	d Time (GDE)	1125126250 64699	GUS-CALID_STRAIN			
						Tor	nine (GPS)	2 25322770554 c	2 25322770554 c			
Total Mas	is	26.3501 M _o				Eff	active Distance	472 03436 Mpc	461 88870 Mpc			
7.						0	A Phace	2 7356486 rad	0 13060257 rad			
2.						Ma		19 924686 M	19 924685 M			
Ching Ma	55	9.5548 M _☉				Ma	55 1	6 4354546 M	6 4254546 M			
`O						Ma	55 2	0.4234340 Mo	0.4234340 M _O			
						η 	1	0.18438664	0.18438664			
SNR		11.7103				F F	inai	1024.0 HZ	1024.0 Hz			
						SN	к	7.3947201	9.0802174			
False Ala	rm Probability	1.120e-04				X ²		1.0857431	1.0069774			
	,					X2	DOF	1	1			
						sp	nlz	0.33962944	0.33962944			
Log Likel	ihood Ratio	22 5006				sp	n2z	-0.1238557	-0.1238557			

Neighbors [-5,+5]

UID	Labels	Group	Pipeline	Search	Instruments	GPS Time • Event Time	∆gpstime	FAR (Hz)	Links	UTC - Submitted
<u>G211182</u>		Burst	CWB2G	AllSky	H1,L1	1135136350.6291	-0.018658		Data	2015-12-26 09:44:37 UTC
<u>G211115</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6405	-0.007229	1.032e-09	Data	2015-12-26 03:39:59 UTC
<u>G211118</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6477	-0.000043	3.279e-08	Data	2015-12-26 03:40:00 UTC
G216856		CBC	gstlal	HighMass	H1,L1	1135136350.6480	0.000278	1.187e-12	Data	2016-01-15 14:31:22 UTC
<u>G211116</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6485	0.000780	4.507e-09	Data	2015-12-26 03:40:00 UTC

HOME	SEARCH	CREATE	REPORTS	RSS	LATEST	OPTI	ONS DOC	UMENTATION				AUTHENTICATE	D AS: FLORENT ROB
Basic I	nfo												
UID		Labe	els	G	roup Pi	ipeline	Search	Instruments	UTC -	FAR (iz) Lir	nks	UTC -
G211117	HIOK LIO	K ADVOK EM_	READY	СВС	gstla	al	HighMass	H1,L1	2015-12-26 03.38:53 UTC	3.333e-1	Data	2015-12-26 0	3:40:00 UTC
			m	odele	d seai	rch							
Coinc	Tables					Sing	le Inspira	d Tables					
						IFO		La Contraction	H1	🔪 +1 mir			
End Time	e (GPS)	1135136350	0.6478 s			Chan	nel	GDS-CALIB_STRAIN	GDS-CALIB_STRAIN				
						End 1	lime (GPS)	1135136350.6468	83043 s 1135136350.64775	7924 s			
Total Ma	ce	26 3501 Ma				Temp	late Duration	2.25322770554 s	2.25322770554 s				
		20.5501 110				Effec	tive Distance	472.93436 Mpc	461.88879 Mpc				
						COA	Phase	2.7356486 rad	0.13969257 rad				
Ching Ma	SS	9.5548 M _o				Mass	1	19.924686 M _☉	19.924686 M _☉				
<u>`6</u>						Mass	2	6.4254546 M _☉	6.4254546 M _☉				
						η		0.18438664	0.18438664				
SNR		11.7103				F Fin	al	1024.0 Hz	1024.0 Hz				
						SNR		7.3947201	9.0802174				
False Ala	rm Probability	1 120e-04				X ²		1.0857431	1.0069774	/pnys	ical pa	arameters	
Turbe Ale	, in the balance	1.1200 04				χ ² DC	DF	1	1	/ (nrel	imina	rvl	
						spinl	z	0.33962944	0.33962944		iiiiiia	· y /	
Log Like	lihood Ratio	22.5996				spin2	Z	0.1238557	-0.1238557				

UID	Labels	Group	Pipeline	Search	Instruments	GPS Time Event Time	Δgpstime	FAR (Hz)	Links	UTC • Submitted	
<u>G211182</u>		Burst	CWB2G	AllSky	H1,L1	1135136350.6291	-0.018658		Data	2015-12-26 09:44:37 UTC	
G211115		CBC	gstlal	HighMass	H1,L1	1135136350.6405	-0.007229	1.032e-09	Data	2015-12-26 03:39:59 UTC	
G211118		CBC	gstlal	HighMass	H1,L1	1135136350.6477	-0.000043	3.279e-08	Data	2015-12-26 03:40:00 UTC	
G216856		CBC	gstlal	HighMass	H1,L1	1135136350.6480	0.000278	1.187e-12	Data	2016-01-15 14:31:22 UTC	
<u>G211116</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6485	0.000780	4.507e-09	Data	2015-12-26 03:40:00 UTC	

HOME	SEARCH	CREATE	REPORTS	RSS	LATEST	OPTIC	DNS DOG	CUMENTATION		AUTHENTICATED AS: FLORENT RO
Basic I	nfo									
UID		Labe	als.	Gr	pup P	ipeline	Search	Instruments	UTC -	FAR 950 VI-1 UTC -
G211117	HIOK LIO	K ADVOK EM	READY	СВС	gst	lal	HighMass	H1,L1	2015-12-26 03:38:53 UTC	C 3.333e-11 Data 2015-12-26 03:40:00 UTC
			m	odeleo	disea	rch				
Coinc '	Tables			oucie	a sea	Sing	le Inspira	al Tables		
						IFO		L.	H1	+1 min
End Time	e (GPS)	1135136350	0.6478 s			Chan	nel	GDS-CALIB_STRAIN	GDS-CALIB_STRAIN	
						End T	ime (GPS)	1135136350.6468	83043 s 1135136350.64775	57924 s
Total Ma		26 3501 M-				Temp	late Duration	1 2.25322770554 s	2.25322770554 s	
	33	20.3301 110				Effect	ive Distance	472.93436 Mpc	461.88879 Mpc	
						COAI	Phase	2.7356486 rad	0.13969257 rad	
Ching Ma	SS	9.5548 M _☉				Mass	1	19.924686 M _☉	19.924686 M _☉	
` 6						Mass	2	6.4254546 M _☉	6.4254546 M _☉	
						η		0.18438664	0.18438664	
SNR		11.7103				F Fina	al .	1024.0 Hz	1024.0 Hz	
						SNR		7.3947201	9.0802174	
False Ala	m Probability	1 120e-04				X ²		1.0857431	1.0069774	/physical parameters
Tube Ala	in Probability	1.1200-04				χ ² D0	F	1	1	(preliminary)
						spinl	z	0.33962944	0.33962944	(preminary)
Log Like	lihood Ratio	22.5996				spin2	Z	0.1238557	-0.1238557	

UID	Labels	Group	Pipeline	Search	Instruments	GPS Time Event Time	∆gpstime	FAR (Hz)	Links	UTC - Submitted
<u>G211182</u>		Burst	CWB2G	AllSky	H1,L1	1135136350.6291	-0.018658		Data	2015-12-26 09:44:37 UTC
<u>G211115</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6405	-0.007229	1.032e-09	Data	2015-12-26 03:39:59 UTC
<u>G211118</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6477	-0.000043	3.279e-08	Data	2015-12-26 03:40:00 UTC
G216856		CBC	gstlal	HighMass	H1,L1	1135136350.6480	0.000278	1.187e-12	Data	2016-01-15 14:31:22 UTC
<u>G211116</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6485	0.000780	4.507e-09	Data	2015-12-26 03:40:00 UTC

HOME	SEARCH	CREATE	REPORTS	RSS	LATEST	OPTIONS	DOCUMENTATION		AUTHENTICATED AS: FLORENT ROBI
Basic Ir	ıfo								
		Lab		C -	Die	line C	and Instances	UTC -	AR 950 yr-1
6211117	H10K L10		READY	CBC	astia	Hight	Mass H111	2015-12-26 03 38-53 UTC	3 333e-11 Data 2015-12-26 03:40:00 UTC
0211117	montro	KADTOK EN_			gotio		1055 111,01	2013 12 20 07.30.35 010	
- ·			m	odele	a sear	cn			
Coinc 1	ables					Single I	ispiral Tables		+1 min
End Time	(GPS)	113513635	0 6478 c			IFO	CDC CAUD CT	H1	
chu thire	(0/3)	115515055	0.04703			Channel	GDS-CALIB_STR	GDS-CALIB_STRAIN	24.2
						Template [uration 2 2532277055	400000435 1100100047757 A c 2 25322770554 c	924 5
Total Mass	5	26.3501 M _o				Effective	istance 472 93436 Mn	45 2.235227703545	
						COA Phase	2.7356486 rad	0.13969257 rad	
3						Mass 1	19.924686 Mo	19.924686 Mo	
Chine Mas	S	9.5548 M _☉				Mass 2	6.4254546 M _o	6.4254546 Mo	
0						η	0.18438664	0.18438664	
SNR		11.7103				F Final	1024.0 Hz	1024.0 Hz	
						SNR	7.3947201	9.0802174	
						χ ²	1.0857431	1.0069774	/physical parameters
False Alar	m Probability	1.120e-04				χ ² DOF	1	1	
						spinlz	0.33962944	0.33962944	(preliminary)
Log Likelil	hood Ratio	22.5996				spin2z	0.1238557	-0.1238557	

UID	Labels	Group	Pipeline	Search	Instruments	Event Time	∆gpstime	FAR (Hz)	Links	Submitted
<u>G211182</u>		Burst	CWB2G	AllSky	H1,L1	1135136350.6291	-0.018658		Data	2015-12-26 09:44:37 UTC
<u>G211115</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6405	-0.007229	1.032e-09	Data	2015-12-26 03:39:59 UTC
<u>G211118</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6477	-0.000043	3.279e-08	Data	2015-12-26 03:40:00 UTC
G216856		CBC	gstlal	HighMass	H1,L1	1135136350.6480	0.000278	1.187e-12	Data	2016-01-15 14:31:22 UTC
<u>G211116</u>		CBC	gstlal	HighMass	H1,L1	1135136350.6485	0.000780	4.507e-09	Data	2015-12-26 03:40:00 UTC

multiple detections over time

2

In O3, significant events uploaded in the database are publicly available (immediately!)

	EARCH LA	TEST DOCUMENT	TION						LOG
Superever	nt Info								
Superevent	Category	Labels	FAR (Hz)	FAR (yr ⁻¹)	t_start	t_0	t_end	UTC • Submission time	Link
S190524q	Production	DQOK ADVNO SKYMAP_READY EMBRIGHT_READY PASTRO_READY GCN_PRELIM_SENT	6.971e-09	1 per 4.5458 years	1242708743.678669	1242708744.678669	1242708746.133301	2019-05-24 04:52:30 UTC	Data
Preferred	Event Inf	0							
Group	Pipelin	e Search	Instrum	nents	GPS Til Event	me ▼ time	UTC 👻 Submission time		
CBC	gstlal	AllSky	H1,L1,V1		1242708744.6787	201	2019-05-24 04:52:28 UTC		
- Superev	vent Log M	lessages							

223 Mpc

Since O3, GCN notices are issued publicly and automatically

🕼 GWOLLUM doc 🔛 Analysis 🕅 🛙	DetChar wiki 🔀 PCE - MXT 🔀 SatAndLight 🖨 Scientific partition 🛛 LAL webmail 🏧 International Institute
//////////////////////////////////////	GCN/LVC NOTICE + 6 min
NOTICE DATE:	Fri 24 May 19 04:58:33 UT
NOTICE TYPE:	LVC Preliminary
TRIGGER_NUM:	S190524q
TRIGGER_DATE:	18627 TJD; 144 DOY; 2019/05/24 (yyyy/mm/dd)
TRIGGER_TIME:	17526.678669 SOD {04:52:06.678669} UT
SEQUENCE_NUM:	1
GROUP_TYPE:	1 = CBC
SEARCH_TYPE:	1 = AllSky
PIPELINE_TYPE:	4 = GSILAL
FAR:	6.9/10-09 [HZ] (one per 1660.3 days) (one per 4.55 years)
PRUB_NS:	1.00 [range 15 0.0-1.0]
	1.00 [range 15 0.0-1.0]
PROB NSBH	0.29 [range is $0.0-1.0$]
PROB_RBH	0.00 [range is $0.0-1.0$]
PROB MassGan:	0.00 [range is 0.0-1.0]
PROB_TERRES:	0.70 [range is 0.0-1.0]
TRIGGER ID:	0x10
MISC:	0x189C407
SKYMAP FITS URL:	https://gracedb.ligo.org/api/superevents/S190524g/files/bayestar.fits.gz
EVENTPAGE URL:	https://gracedb.ligo.org/superevents/S190524q/view/
COMMENTS:	LVC Preliminary Trigger Alert.
COMMENTS:	This event is an OpenAlert.
COMMENTS:	LIGO-Hanford Observatory contributed to this candidate event.
COMMENTS:	LIGO-Livingston Observatory contributed to this candidate event.
COMMENTS:	VIRGO Observatory contributed to this candidate event.

	nar	n v/a	atti	na
				IIM

HOME	SEARCH	н	CREATE	REPORTS	RSS LAT	EST OF	TIONS	DOCUMENTATION						AUTHENTICATED AS: FLORENT ROBIN
lasic I	nfo													
UID			Labels		Group	Pipeline	Sear	ch Instruments		UTC + Event Time	FAJ	R (Hz)	Links	UTC + Submitted
5211117	H10	K LIOK	ADVOK EM_RE	ADY	CBC	gstiel	HighMas	s H1,L1	2015	-12-26 03:38:53 UTC	3.333	⊳11 D	nte	2015-12-26 03:40:00 UTC
oine '	l'ables					Sir	igle Ins	piral Tables						
						IFC		11		н1				
nd Time	(GPS)		135136350.6	478 5		Ch	annel	GDS-CALIB_STRAIN	E	GDS-CALIB_STRAIN				
						Ene	d Time (GP	5) 1135136350.6468	183043 s	1135136350.6477579	24 s			
	25		A 1020 M			Ter	nplate Dur	ation 2.25322770554 s		2.25322770554 s				
PLAI PLAS	·	1	0.3301 Hg			Eff	ective Dist	ance 472.93436 Mpc		461.88879 Mpc				
						co	A Phase	2.7356486 rad		0.13969257 rad				
him Mar			SSAR M.			Ma	ss 1	19.924686 M ₀		19.924686 M _p				
mp rea						Ma	55 2	6.4254546 Mo		6.4254546 Mo				
						η.		0.18438664		0.18438664				
NR			1,7103				inal	1024.0 Hz		1024.0 Hz				
						SN	R	7.3947201		9.0802174				
						x ²		1.0857431		1.0069774				
sise Ala	rm Proba	bility 1	120e-04			Ça.	DOF	1		1				
						-	nlr	0 73962944		0 33962944				
257	1. 20.		12000				n77	.0 1218557		.0 1238552				
yg Likel	ihood Raf	10	2.5996											
eighb	ors [-	5,+5]												
UID		Labels	Group	Pipeline	Searc	h 1	nstrument	s GPS Tim	ie +	Agpstime	FAR (Hz)	Links		UTC + Submitted
211182			Burst	CW82G	AllSky	H1,L1		1135136350.629	1	-0.018658		Data	201	5-12-26 09:44:37 UTC
211115			CBC	gstial	HighMass	HILL		1135136350.640	5	-0.007229	1.032e-09	Data	201	5-12-26 03:39:59 UTC
211118			CBC	gstial	HighMass	H1,1,1		1135136350.647	7	-0.000043	3.279e-08	Data	201	5-12-26 03:40:00 UTC
216856			CBC	gstial	HighMass	H1.L1		1135136350.648	0	0.000278	1.187e-12	Data	201	6-01-15 14:31:22 UTC
			CBC	ostial	HighMass	HILI		1135136350.648	5	0.000780	4.507e-09	Oata	201	5-12-26 03:40:00 UTC

 \rightarrow Preliminary GCN notice is issued

- \rightarrow The gravitational-wave candidate is scrutinized:
 - data quality
- \rightarrow Electronic alerts (emails, texts, phone calls) are sent to LIGO-Virgo people constants
 - event preliminary parameters
 - first sky map

 \rightarrow GCN notice is updated

- \rightarrow Virtual meeting with many people
 - detector control rooms
 - detector experts
 - run coordinators
 - detector characterization experts
 - search pipeline managers
 - calibration experts

👛 GWOLLUM doc 📑 Analysis 📓 DetChar wiki 📆 PCE-MXT 🖨 SatAndLight 🖨 Scientific partition 🔽 LAL webmail 🏧 International Institute...

TITLE: GCN CIRCULAR NUMBER: 24656 SUBJECT: SUBJECT: LIGO/Virgo S190524q: Retraction of GW compact binary merger candidate DATE: 19/05/24 05:20:40 GMT FROM: Brandon Piotrzkowski at U of Wisconsin-Milwaukee <piotrzk3@uwm.edu>

The LIGO Scientific Collaboration and the Virgo Collaboration report:

The trigger S190524q is no longer considered to be a gravitational

wave signal.

The data in LIGO-Livingston were highly non-stationary leading up to

the reported trigger time.

ΛΛ

Detector characterization online pipeline

Detector characterization online pipeline

2019-03-15 Online DQ/Veto : detailed architecture

ΛΛ.

Detector characterization online pipeline

State vector bit definition:

The state vector is used to tell the online pipelin

This bit (@1Hz) flags serious detector malfuncti

- 0: h(t) was successfully computed
- 1: science mode button is pushed
- 2: observation ready
- 3: h(t) was produced by the calibration pipeline
- 4: calibration filters settled in
- 5: No stochastic HW injections
- 6: No CBC HW injection
- 7: No burst HW injection
- 8: No HW injections for detector characterization

9: No continuous wave HW injection

10: good data quality (CAT1 type)

11: interferometer is locked

Florent Robinet

Current definition :

- Saturation of output port photodiodes
- Saturation of suspension coil drivers
- Saturation of omicron glitch rate (DARM)

Detector characterization online pipeline

LIGO

h(t) gating

h(t) gating

Florent Robinet

BNS Range

Range (Mpc)

Virgo implementation:

Open a gate whenever the BNS range drops below 60% of its nominal value (+ < 1s)

A A . .

Detector characterization online pipeline

Goal:

→ produce a veto channel informing the searches when the data is contaminated wit

What:

 \rightarrow a channel taking 1/0 values: 1= "BAD", 0="GOOD"

How:

- \rightarrow online monitors are flagging the data when the quality is bad (~250 channels)
- \rightarrow select the relevant flags for a given search
- \rightarrow combine the flags into a single channel
- \rightarrow revisit the flag selection as often as possible

LIGO equivalent: iDQ, Reed Essick et al. CQG (2013)

A A . .

Detector characterization online pipeline

HOME SI	EARCH L	ATEST DOCUME	NTATION						LOGI	
upereve	nt Info									
Superevent ID	Category	Labels	FAR (Hz)	FAR (yr ⁻¹)	t_start	t_0	t_end	UTC • Submission time	Link	
S190524q	Production	DQOK ADVNO SKYMAP_READY EMBRIGHT_READ PASTRO_READY GCN_PRELIM_SEM	Y IT 6.971e-09	1 per 4.5458 years	1242708743.678669	1242708744.678669	1242708746.133301	2019-05-24 04:52:30 UTC	Data	
Preferred	Event In	fo								
Group	Pipeli	ne Search	Instrum	nents	GPS Til Event	me 🔹 time	UTC Submissi	• on time		
CBC	gstlal AllSky		H1,L1,V1	H1,L1,V1		6787 203		19-05-24 04:52:28 UTC		
Superev Sky Localizat	tion	Aessages	*	#### D G333837 ####CC 1022103 P	795		A DQR ana	llysis		

- \rightarrow A DQR web page is automatically generated whenever an event is uploaded to graceDB
- \rightarrow Tens of checks are performed to characterize the data quality around the time of the event
- \rightarrow The results of the checks are uploaded to graceDB

:p3.fr	Perso SVOM	rgo 🗎 ROOT 🗎 LAL 🗎 LSC 🖆 Doxygen 🖆 Papers 🖆 Computing 🚔 Programming 📑 Analysis 🛥 Gravity spy metadata	
	S190412m low	high latency	H1 shown L1 shown V1 shown
		Data Quality Report for S190412m Event: GPS = 1239082262 (2019-04-12 05:30:44+00:00 UTC) DQR generation starting at 2019-04-12 05:33:54+00:00 UTC	
m		Clickable buttons: GraceDB event GraceDB joint LIGO-Virgo DQR Condor monitoring Color caption: pass fail human_input_needed error or bad_state missing higher latency tier	
GRA 50 790 mission		THE MOST IMPORTANT CHECKS: TO BE CHECKED FIRST Brute-force coherence reports (bruco) Is the candidate GPS time in Virgo suspicious? Status of the Virgo systems UPV on last 24 hours Virgo data quality antiflags Virgo data quality flags Virgo giltch characterization	
ən ings i & Frier	,	What was the Virgo noise stationarity while the candidate signal was observed? What was the Virgo status while the candidate signal was observed? What was the status of the environment around Virgo at the time of the candidate? What was the Virgo status while the candidate signal was observed? Virgo status (process: virgo_status) (V1) Virgo status (process: virgo_status) (V1)	
		Important Virgo data quality flags (process: dqprint_key_dqflags) (V1) High-resolution spectrogram of h(t) (V1) (process: omicronscanhoftV1) (V1)	

Data quality report (DQR)

Data quality checks

- \rightarrow detector status
- \rightarrow h(t) spectrograms + full scans of aux. channels
- \rightarrow check online data quality flags
- \rightarrow check noise stationary
- \rightarrow check environment
 - earthquakes around the globe
 - weather, sea activity
- \rightarrow detchar analyses
 - brute force coherence
 - glitch-to-glitch coupling
- \rightarrow scan all online process log files
- \rightarrow sub-system data quality

Results are checked by humans

- \rightarrow Transient noise modeling based on auxiliary signals
- \rightarrow Transient noise subtraction
- \rightarrow Automatic data quality validation of GW detection (take the human out of the loop)
- \rightarrow Completely integrate detector characterization in the search pipelines
 - ranking statistics including auxiliary channels
 - technical challenge: transfer raw data at a single location
- \rightarrow Use machine-learning techniques in main stream analyses