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A tale of two stories

1. Can we generalize the story of tree-level bosonic OSFT effective action with
gauge-invariant sourcing to open superstring field theory?

Can we actually evaluate the corresponding tree-level on-shell open-closed
amplitudes?

[see also Yuji’s and Harold’s talks on Monday]

2. Can we compute the tree-level quartic effective potential in heterotic Yang-Mills
from heterotic SFT without having to know the closed string bosonic quartic
vertex?

[Erbin, Maccaferri, JV: 1912.05463]



Gauge-invariants for A∞ SFTs

General A∞ SFT: given a cyclic A∞ structure (H, {mk}∞k=1, ω), we have

S(Ψ) =
∞∑
k=1

1

k + 1
ω(Ψ,mk(Ψ⊗k))

∑k−1
l=1 mlmk−l = 0

ω(Ψ1,mk−1(Ψ2, . . . ,Ψk)) =

= −(−1)d(Ψ1)ω(mk−1(Ψ1, . . . ,Ψk−1),Ψk)
[see Hiroshige Kajiura’s talk for intro]

Tensor coalgebra language: [Gaberdiel, Zwiebach: hep-th/9705038; Erler: 1505.02069]

S(Ψ) =

∫ 1

0
dt 〈ω|π1∂t

1

1−Ψ(t)
⊗ π1m

1

1−Ψ(t)

m2 = 0

〈ω|π2m = 0

where Ψ(0) ≡ 0, Ψ(1) ≡ Ψ and m ≡m1 + m2 + . . .

Gauge transformation: given an odd cyclic coderivation Λ, we have

δgaugeΨ = π1[m,Λ]
1

1−Ψ

[see e.g. Erler: 1610.03251]

Gauge-invariants: for an odd cyclic coderivation e,

E(Ψ) ≡
∫ 1

0
dt 〈ω|π1∂t

1

1−Ψ(t)
⊗ π1e

1

1−Ψ(t)

is gauge-invariant (up to pieces that vanish on-shell) whenever [e,m] = 0



Ellwood invariant in cubic OSFT: a small recap (1)

Cubic OSFT action augmented by Ellwood invariant:
[see Harold’s and Yuji’s talks for intro]

S(Ψ;µ) = µω(Ψ, e0) +
1

2
ω(Ψ,m1(Ψ)) +

1

3
ω(Ψ,m2(Ψ,Ψ))

e0 midpoint insertion of an on-shell (h, h̄) = (0, 0) closed string primary
state on identity string field
[Hashimoto, Itzhaki: hep-th/0111092; Gaiotto, Rastelli, Sen, Zwiebach: hep-th/0111129]

m1,m2 BRST operator Q, Witten’s star product
ω BPZ inner product (a.k.a. symplectic form)

Tensor coalgebra language:

S(Ψ;µ) =

∫ 1

0

dt 〈ω|π1∂t
1

1−Ψ(t)
⊗ π1m(µ)

1

1−Ψ(t)

where m(µ) ≡m + µe with m ≡m1 + m2, e ≡ e0 and

0 = m2

0 = [m, e] ( =⇒ gauge-invariant E(Ψ))

0 = e2

so that m(µ)2 = m2 + µ[m, e] + µ2e2 = 0 =⇒ (special) weak A∞ struct.



Ellwood invariant in cubic OSFT: a small recap (2)

Tree-level effective dynamics:
[Kajiura: math/0306332; Sen: 1609.00459; Yuji’s talk]

1. split Ψ ∈ H using a projector P0 ≡ I0Π0 (such that imP0 = kerL0) as

Ψ ≡ P0Ψ + (1− P0)Ψ ≡ ψ +R , b0R = 0

here I0 : P0H → H and Π0 : H → P0H are the canonical projection and inclusion

2. integrate R out using the propagator h0 ≡ −(b0/L0)P̄0 satisfying the HK
decomposition + annihilation conditions (→ SDR [Harold’s & Hiroshige’s talks])

Qh0 + h0Q = P0 − 1 , Π0h0 = h0I0 = (h0)2 = 0

Case µ = 0: eff. A∞ structure
[Konopka: 1507.08250; Erler: 1610.03251; Matsunaga: 1901.08555]

m̃ ≡ Π̃0mĨ0

→ m2-perturbed homotopy-equivalence data

Ĩ0 ≡
1

1TH − h0m2

I0 , Π̃0 ≡ Π0
1

1TH −m2h0

, h̃0 ≡
1

1TH − h0m2

h0

→ unpackaged products: m̃k ≡ π1m̃πk, where m̃1 = P0m1, m̃2 = P0m2,

m̃3(ψ1, ψ2, ψ3) = P0m2(h0m2(ψ1, ψ2), ψ3) + P0m2(ψ1, h0m2(ψ2, ψ3)) , . . .

[Kajiura: hep-th/0112228]



Ellwood invariant in cubic OSFT: a small recap (3)

Cyclicity: BPZ properties of h0 =⇒ m̃, Ĩ0 cyclic w.r.t. 〈ω̃|π2 ≡ 〈ω|π2I0

Effective Ellwood invariant: defining

ẽ ≡ Π̃0eĨ0 =⇒ Ẽ(ψ) =

∫ 1

0
dt 〈ω̃|π1∂t

1

1− ψ(t)
⊗ π1ẽ

1

1− ψ(t)

can show [ẽ, m̃] = 0 =⇒ Ẽ(ψ) gauge-invariant for the effective SFT at µ = 0,
given by cyclic products ẽk ≡ π1ẽπk, where ẽ0 = P0e0 and for k > 0

ẽk(ψ⊗k) =

k−1∑
l=0

m̃k(ψ⊗l, h0e0, ψ
⊗k−1−l)

Case µ 6= 0: effective weak cyclic A∞ structure using “vertical composition”
[see Yuji’s and Harold’s talks]

m̃(µ) ≡ m̃ + µẽ +
∞∑
α=2

µαΠ̃0e(h̃0e)α−1Ĩ0

→ insufficient to deform m̃ by µẽ since (m̃ + µẽ)2 6= 0 (because ẽ2 6= 0)

→ need to consider amplitudes with arbitrary number of (on-shell) closed strings

→ unpackaged products m̃k ≡ π1m̃πk (except m̃0, which starts as µP0e0 + . . . )

m̃k(ψ
⊗k

) =
∞∑
α=0

∑
∑α+1
i=1

li=k

µ
α
m̃k+α(ψ

⊗l1 , h0e0, ψ
⊗l2 , . . . , ψ

⊗lα , h0e0, ψ
⊗lα+1 )

[see also Masuda, Matsunaga: 2003.05021]



Ellwood invariant in cubic OSFT: a small recap (4)

Vacuum shift: true vac. Ψv(µ) ≡
∑∞
α=1 µ

αΨα of the full OSFT with Ellwood

Ψ1 = h0e0 + ψ1 ,

Ψ2 = h0m2(h0e0 + ψ1, h0e0 + ψ1) + ψ2 ,
...

→ ψα ∈ kerL0 possible corrections at each order [Sen: 1411.7478]

→ can be obstructed ( =⇒ BCFT unable to adapt to µ-deformation)

O1 ≡ P0e0 + P0m1(ψ1) ,

O2 ≡ P0m2(h0e0 + ψ1, h0e0 + ψ1) + P0m1(ψ2) ,
...

Coalgebra description: denoting ψv(µ) ≡
∑∞
α=1 µ

αψα, we obtain

∞∑
α=1

µ
α

Ψα = π1
1

1TH − h0(µe + m2)

1

1− ψv(µ)
,

∞∑
α=1

µ
α
Oα = π1m̃(µ)

1

1− ψv(µ)
,

→ corrections ψk ∈ kerL0 determine the true vacuum ψv(µ) of the eff. SFT

→ full SFT obstructions Oα coincide with the EOMs for ψv(µ)

→ in most examples ψα = 0 =⇒ obstructions Oα determine the eff. tadpole



Munich A∞ open SFT: NS sector (1)

Action and products: [Erler, Konopka, Sachs: 1312.2948]

S(Ψ) =

∫ 1

0

dt 〈ωS|π1∂t
1

1−Ψ(t)
⊗ π1M

1

1−Ψ(t)

→ define M ≡
∑∞
n=0 M

(n)
n+1 where #pic(M

(n)
n+1) = n, #gh(M

(n)
n+1) = 1− n

→ start with bosonic products M
(0)
1 ≡ Q, M

(0)
2 ≡ m2 and M

(0)
k ≡ 0 for k > 2,

define recursively

M
(n−1)
n+1 ≡

1

n− 1

(
[M

(0)
2 ,µ

(n−1)
n ] + [M

(1)
3 ,µ

(n−2)
n−1 ] + . . .+ [M

(n−2)
n ,µ

(1)
2 ]

)
,

µ
(n)
n+1 ≡

1

n+ 2

(
ξ0M

(n−1)
n+1 −M(n−1)

n+1

n∑
k=0

1
⊗k ⊗ ξ0 ⊗ 1

⊗n−k
)
,

M
(n)
n+1 ≡

1

n

(
[M

(0)
1 ,µ

(n)
n+1] + [M

(1)
2 ,µ

(n−1)
n ] + . . .+ [M

(n−1)
n ,µ

(1)
2 ]

)
,

→ both M
(p)
n and the gauge products µ

(p)
n are cyclic



Munich A∞ open SFT: NS sector (2)

Generating functions: [see Hiroshi Kunitomo’s talk for the heterotic L∞ version]

M(s, t) ≡
∞∑
n=0

tn(M
(n)
n+1 + sM

(n)
n+2) , µ(t) ≡

∞∑
n=0

tnµ
(n+1)
n+2

→ satisfy differential equations (with ICs M(1, 0) = m and M(0, 1) = M)

∂

∂t
M(s, t) = [M(s, t),µ(t)] ,

∂

∂s
M(s, t) = [η,µ(t)] ,

→ these imply M2 = [η,M] = 0

→ can solve to obtain

M = G−1QG

where we have introduced cyclic cohomomorphism

G ≡
←
Pt exp

(∫ 1

0

dtµ(t)

)



Ellwood invariant for Munich A∞ open SFT

Definition: starting with e0 ∈ H given by a local midpoint insertion of a weight
(0, 0) on-shell bulk primary with #gh = 2, #pic = −1, we define higher products

E0 ≡ e0 , Ek ≡
1

k

(
[E0,µ

(k)
k+1] + . . .+ [Ek−1,µ

(1)
2 ]

)
Generating function:

E(t) ≡
∞∑
k=0

tkEk ,
∂

∂t
E(t) = [E(t),µ(t)]

→ implies [E,M] = E2 = [η,E] = 0, also E manifestly cyclic

→ can solve to obtain E = G−1e0G

→ gauge-invariant quantity (up to pieces that vanish on-shell)

E(Ψ) ≡ +

∫ 1

0

dt 〈ωS|π1∂t
1

1−Ψ(t)
⊗ π1E

1

1−Ψ(t)

= +

∫ 1

0

dt 〈ωL|π1Gξt
1

1−Ψ(t)
⊗ π1e0

= −
∫ 1

0

dt 〈ωL|Ãt(ξ0Ψ̃(t))⊗ e0 [Erler: 1308.4400]

=⇒ t-Ellwood invariant of WZW-like SFT (using the field redefinition of
[Erler, Okawa, Takezaki: 1505.01659; very useful discussions with Ted Erler])



Effective Munich SFT with Ellwood invariant (1)

Completely parallel to the bosonic OSFT case. Differences:

→ Mk 6= 0 for k > 2
→ Ek 6= 0 for k > 0

µ-deformed products: M(µ) ≡M + µE

M(µ)2 = M2 + µ[E,M] + µ2E2 = 0 =⇒ weak A∞

Eff. structure at µ = 0: cyclic A∞ structure

M̃ ≡ Π̃0MĨ0

→ δM-perturbed homotopy-equivalence data (δM ≡
∑∞
k=2 Mk)

Ĩ0 ≡
1

1TH − h0δM
I0 , Π̃0 ≡ Π0

1

1TH − δMh0

, h̃0 ≡
1

1TH − h0δM
h0

Eff. structure at µ 6= 0: weak cyclic A∞ structure (Ẽ ≡ Π0EI0 & [Ẽ, M̃] = 0)

M̃(µ) ≡ M̃ + µẼ +
∞∑
α=2

µαΠ̃0E(h̃0E)α−1Ĩ0

Vacuum shift: obstructions to the full SFT vac. shift given by the equations of
motion for the true vacuum of the effective SFT (see the cubic case for details)



Effective Munich SFT with Ellwood invariant (2)

Effective action:

S̃(ψ;µ) =

∫ 1

0

dt 〈ω̃|π1∂t
1

1− ψ(t)
⊗ π1M̃(µ)

1

1− ψ(t)

Double expansion of couplings:

S̃(ψ;µ) =
∞∑
k=0

∞∑
α=0

1

k + 1
µαω̃(ψ, M̃kα(ψ⊗k))︸ ︷︷ ︸

≡S̃kα

→ k + 1 counts the number of open-string insertions
→ α counts the number of (on-shell) closed-string insertions

M̃k0 = M̃k , M̃kα ≡ π1Π̃0E(h̃0E)α−1Ĩ0πk for α > 0

Low-order expressions: have M̃00 = 0, M̃10 = P0M1 and

M̃01(ψ⊗0) = P0e0 → tadpole at O(µ1)

M̃11(ψ⊗1) = P0e1(ψ) + P0M2(h0e0, ψ) + P0M2(ψ, h0e0) → mass-shift at O(µ1)

M̃20(ψ⊗2) = P0M2(ψ,ψ) → cubic coupling at O(µ0)

M̃30(ψ⊗3) = P0M3(ψ⊗3) + P0M2(ψ, h0M2(ψ,ψ)) + P0M2(h0M2(ψ,ψ), ψ)

→ quartic coupling at O(µ0)



N = 2 localization (1)

Closed-string state:

e0 = εijcc̄(X0 + X̄0)Ui1
2
Ū
j
1
2

e−φ−φ̄(i)I (e0 is on-shell)

Open-string state:

ψ = cV 1
2
e−φ =⇒ 0 = M̃10(ψ⊗1) ≡ Qψ (ψ is on-shell)

Assume from now on that the background at hand supports a global N = 2
worldsheet superconformal symmetry. Both ψ and e0 at zero momentum.

R-charge decomposition: [Sen: 1508.02481; Maccaferri, Merlano: 1801.07607]

V 1
2

= V
+
1
2

+ V
−
1
2
,

U
i
1
2

= (Ui1
2
)+ + (Ui1

2
)− ,

Ū
j
1
2

= (Ūj1
2

)+ + (Ūj1
2

)− ,

Projector conditions: N = 2 worldsheet SCA implies that
[Maccaferri, Merlano: 1801.07607, 1905.04958; Mattiello, Sachs: 1902.10955; JV: 1910.00538]

0 = M̃20(ψ⊗2) ≡ P0M2(ψ,ψ) , (→ no eff. cubic coupling at O(µ0))

0 = M̃01(ψ⊗0) ≡ P0e0 , (→ eff. action tadpole-free at O(µ1))



N = 2 localization (2)

Auxiliary fields: bulk-boundary and boundary OPEs

G
±
1 ≡ εij lim

z→z̄

[
(Ui1

2

)±(z)(Ūj1
2

)±(z̄)

]
,

G0 ≡ εij lim
z→z̄

[
2z

(
(Ui1

2

)−(z)(Ūj1
2

)+(z̄)− (Ui1
2

)+(z)(Ūj1
2

)−(z̄)

)]
,

H
±
1 ≡ lim

z→0

[
V
±
1
2

(z)V±1
2

(−z)
]
,

H0 ≡ lim
z→0

[
2z
(
V
−
1
2

(z)V+
1
2

(−z)− V+
1
2

(z)V−1
2

(−z)
)]
,

S̃30 coupling: use the results of [Maccaferri, Merlano: 1801.07607]

S̃30 = 〈H+
1 |H

−
1 〉+

1

4
〈H0|H0〉 (→ quartic eff. potential at O(µ0))

S̃11 coupling: can use R-charge conservation and c-ghost saturation to show

S̃11 = 2〈G−1 |H
+
1 〉+ 2〈G+

1 |H
−
1 〉+ 〈G0|H0〉 (→ mass-shift at O(µ1))

→ no integrations over bosonic moduli in S̃30 and S̃11

→ fully localized on the bdy of the moduli space (propagator → ∞-long strip)



N = 2 localization (3)

Leading-order effective potential:

Ṽ− Ṽmin = −〈H+
1 + 2µG+

1 |H
−
1 + 2µG−1 〉 −

1

4
〈H0 + 2µG0|H0 + 2µG0〉

→ terms on r.h.s. can be shown positive definite

→ true vacuum of the effective theory: ψv(µ) = 0 +O(µ2)

→ global minima at

H
±
1 = −2µG±1 , H0 = −2µG0 , (♣)

→ depth of the global minima

Vmin = 4

(〈
G

+
1

∣∣G−1 〉+
1

4

〈
G0

∣∣G0

〉)
=⇒ Ṽ is an eff. tachyon potential for modes ∈ kerL0 which become relevant

for µ 6= 0 → condensation into a bound state with mass defect Ṽmin

Example: D(−1)/D3 system in a B-field [level-trunc. → David: hep-th/0007235]

→ (♣) give non-commutative ADHM eqns [Nekrasov, Schwarz: hep-th/9802068]

→ Ṽmin reproduces the 1/4-BPS bound-state mass-defect computed from
supersymmetry [Obers, Pioline: hep-th/9809039]



A tale of two stories

1. Can we generalize the story of tree-level bosonic OSFT effective action with
gauge-invariant sourcing to open superstring field theory?

Can we actually evaluate the corresponding tree-level on-shell open-closed
amplitudes?

[see also Yuji’s and Harold’s talks on Monday]

2. Can we compute the tree-level quartic effective potential in heterotic Yang-Mills
from heterotic SFT without having to know the closed string bosonic quartic
vertex?

[Erbin, Maccaferri, JV: 1912.05463]



WZW-like heterotic SFT: NS sector

Expanded action: [Berkovits, Okawa, Zwiebach: hep-th/0406212, hep-th/0409018]

S(Φ) =
1

2

〈
η0Φ, QΦ

〉
+
κ

3!

〈
η0Φ, [Φ, QΦ]

〉
+

+
κ2

4!

(〈
η0Φ, [Φ, [Φ, QΦ]]

〉
+
〈
η0Φ, [Φ, QΦ, QΦ]

〉)
+O(κ3)

→ Φ in the large Hilbert space, #gh(Φ) = +1, #pic(Φ) = 0

Φ ∈ SCFTm︸ ︷︷ ︸
cm=15

⊗CFTbc ⊗ CFTβγ ⊗ CFTm︸ ︷︷ ︸
c̄m=26

⊗CFTbc

→ level-matching b−0 Φ = L−0 Φ = 0

→ inner product 〈Φ1,Φ2〉 ≡ 〈Φ1|c−0 |Φ2〉
→ cyclic symmetric bosonic CSFT products [Φ1, . . . ,Φk] satisfy L∞ relations



Tree-level effective WZW-like SFT

Kernel of L+
0 : for all ϕ ∈ kerL+

0 have

ϕ = ϕA + ϕD + unphysical fields

→ ϕA ≡ cγ−1V 1
2
,1c̄ with V 1

2
,1 ≡ εikV

i
1
2
W̄
k
1 =⇒ “usual” physical fields

→ ϕD ≡ DξY Q(∂c− ∂̄c̄) with D ∈ R, Y the inverse PCO =⇒ ghost dilaton

Effective action: for physical fields ϕp ≡ ϕA + ϕD ∈ kerL+
0

S(ϕp) =
1

2

〈
η0ϕp, Qϕp

〉
+

1

3!

〈
η0ϕp, [ϕp, Qϕp]

〉
+

+
1

4!

(〈
η0ϕp, [ϕp, [ϕp, Qϕp]]

〉
+
〈
η0Φ, [ϕp, Qϕp, Qϕp]

〉)
+

+
1

8

〈
[η0ϕp, Qϕp],

b+0
L+

0

ξ0P 0[η0ϕp, Qϕp]

〉
+O(ϕ5

p)

→ we fixed Siegel gauge to integrate out modes outside kerL+
0

→ out-of-Siegel equations trivialized by EOM for ϕ [see Harold’s talk]

→ unphysical fields in kerL+
0 decouple up to quartic order



N = 2 localization (1)

Assume global N = 2 worldsheet superconf. symm. in the holomorphic sector.

Effective couplings at zero momentum for ϕA only (so that η0QϕA = 0).

R-charge decomposition: ϕA ≡ εikcγ−1
V
i
1
2
W̄
k
1 c̄ where

V
i
1
2

= (Vi1
2
)+ + (Vi1

2
)−

ϕA = ϕ+ + ϕ−

Projector condition: N = 2 global SCA implies

P0[η0ϕA, QϕA] = 0 (→ zero eff. cubic coupling)

Quartic eff. coupling: R-charge conservation & c-ghost saturation =⇒

S̃4(ϕA) = −
1

8

〈
[η0ϕ

−, ϕ−], P0[ϕ+, Qϕ+]
〉
−

1

8

〈
[η0ϕ

+, ϕ+], P0[ϕ−, Qϕ−]
〉

−
1

8

〈
[ϕ−, ϕ+], P0[η0ϕ

−, Qϕ+]
〉
−

1

8

〈
[ϕ+, ϕ−], P0[η0ϕ

+, Qϕ−]
〉

→ fully localized on the bdy of the moduli space (propagator → ∞-long tube)

→ fundamental bosonic quartic vertex drops out



N = 2 localization (2)

Auxiliary fields: bulk OPEs

H
±
1,1 = lim

z→0
z̄→0

[
(2z̄)V±1

2
,1

(z, z̄)V±1
2
,1

(−z,−z̄)
]

H0,1 = lim
z→0
z̄→0

[
± |2z̄|2V±1

2
,1

(z, z̄)V∓1
2
,1

(−z,−z̄)
]

Leading-order effective potential:

Ṽ (ϕA) = −
1

4

(
〈H+

1,1|H
−
1,1〉+ 〈H0,1|H0,1〉

)
(♠)

→ global minima at H±1,1 = H0,1 = 0 =⇒ moduli space for given background

Yang-Mills in flat 10d space:

ϕA = (gµν +Bµν)ξcψµe−φc̄ i∂̄X̄ν +Aµiξcψ
µe−φc̄J̄ i ,

→ J̄i for i = 1, . . . , dim g are the k = 1 affine KM currents for given heterotic
gauge group G = SO(32) , E8 × E8

→ (♠) becomes (with C the Dynkin index)

Ṽ (g,B,A) =
1

16

1

C
tr
[
[Aµ, Aν ][Aµ, Aν ]

]
→ algebraic YM coupling, no dependence on g,B



Conclusions and outlook

Summary:

→ we defined a gauge-invariant quantity for the Munich A∞ open SFT

→ we used it to study deformations of open superstring field theory

→ we examined efficient methods (localization) of evaluating certain low-order
tree-level on-shell Neveu-Schwarz open-closed and heterotic amplitudes at
zero momentum

Future directions:

→ investigate the fate of the WZW-like structure at low energies

→ localization: in the Ramond sector? at higher orders in perturbation theory?
at loop level? for non-zero momentum? for ghost-dilaton couplings?

→ effect of RR deformations on open superstring backgrounds?

→ Ellwood invariant from a limit of open-closed superstring field theory?



Thank you!


