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Introduction

• Pure Spinor formulation is a manifestly super-Poincare covariant worldsheet theory of 
superstrings. Berkovits 

• Tremendously successful in computing of scattering of massless string states – at loop 
levels surpasses the well-known RNS formalism approach.

Berkovits, Chandia, Mafra, Gomez, Schlotterer,…

• The massive states remained comparatively unexplored. Unintegrated vertex for 1st

massive state was constructed by Berkovits & Chandia (hep-th/0204121). DDF-like 
construction was given by Jusinskas (1406.1902).

• General arguments established equivalence between PS and RNS/GS formalism.  
Explicit equivalence known for massless states.

Berkovits; Berkovits, Mafra…

• Explicit equivalence for massive states? 
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1-slide summary of PS formalism
• The worldsheet action is

• The commuting Majorana-Weyl spinor λ satisfies the pure spinor constraint

• Spacetime SUSY is made manifest in terms of the GS variables 

• The PS constraint implies a gauge invariance                                    , which is 
dealt with by working with gauge invariant currents 

• Our ordering convention for any composite object is 

• BRST operator takes a simple form 
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Vertex operators in PS
• All vertex operators are of the form

• For n-th massive state, the unintegrated vertex V must have 
conformal weight = n  and ghost number = 1.

• All have conformal weight = 1, ghost no. = 0.

• has conformal weight = 0 but ghost number =1.
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Unintegrated vertex 

• Constructing the vertex requires determining the superfields        in 
terms of the physical superfield representing the supermultiplet such 
that the BRST condition is satisfied.

• Ideally, we would like to set all                 and solve for the Superfields.

• However, due to pure spinor constraint, not all of the         are actually 
independent. So one needs to take care of that.
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1st Massive states in open superstrings

• The first massive supermultiplet contains

84                    44                     128

• These physical fields satisfy 

• Berkovits-Chandia constructed the unintegrated vertex for this 
supermultiplet. All superfields must be expressed in terms of the physical 
on-shell superfield               and its super-covariant derivative.
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Berkovits-Chandia construction
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Berkovits-Chandia construction
• QV + (Lagrange multiplier term) = 0 gives

• Formidable set of equations, but it was solved!

• All Superfields were  expressed in terms of a 

Single superfield              and its supercovariant

derivative                     .

• Rest frame analysis showed this superfield 

contains all the 128 bosonic + 128 fermionic d.o.f
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What more do we want?
• Vertex operators are used to compute scattering amplitudes. For this one 

needs the full covariant θ expansion of the vertex.

• The BC construction only allows one to perform a θ expansion in rest 
frame.

• We also need a general prescription to repeat this feat for integrated vertex 
and for all higher massive states.

• Goals-
1. Give a systematic procedure to construct massive vertices in PS .

2. The procedure must also allow one to perform the full covariant θ
expansion of the vertex.

3. Compute scattering of massive states, compare with RNS and extend the 
explicit equivalence to include massive states.
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A systematic procedure to construct 
massive vertex

• Step 1: For the n-th massive state, write down the most general 
operator of form

• Example: For n=1,   
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• Step 2: For each physical field in the supermultiplet, introduce a 
superfield defined as 

and promote all algebraic conditions on the physical fields to 
superfields. We will call these Superfields physical Superfields.

Example: For n=1,
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• Step 3: Derive all constraints between operators        at conformal weight n and 

ghost no. 2. These constraints are either due to pure spinor constraint or due the 

OPE of various constituent objects.

• Handle the constraints either by introducing Lagrange multiplier Superfields or by 

solving them to eliminate some operators in favor of others. 

• Incorporate them in the BRST condition QV=0.

• Example: for n=1,
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• Step 4: Use representation theory of the little group SO(9) to write 
down ansatz for each unknown Superfields       as a linear 
combination of the physical Superfields              .

• Example: For n=1, we had the superfield             appearing in the 
vertex. We can decompose it as 
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• Step 4: Use representation theory of the little group SO(9) to write down 
ansatz for each unknown Superfields       as a linear combination of the 
physical Superfields              .

• Example: For n=1, we had the superfield             appearing in the vertex. We 
can decompose it as 

• Therefore there are 2 independent tensor structures linear in the physical 
superfield           in terms of which             can be expressed.
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• Step 5: Write down similar ansatz for supercovariant derivative of the 
physical fields using representation theory.

• Example: For n=1,

• We will see soon that these relations are the ones which will allow us to 
perform completely covariant θ expansion of the vertex.
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• Step 6: Solve for the unknown co-efficients in the ansatz by requiring

1. The ansatz solves QV=0.

2. The ansatz are consistent with the definitions of the physical 
superfields.

3. All the ansatz are mutually consistent.

• This completes the construction of unintegrated vertex at n-th mass 
level.
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• Step 6: Solve for the unknown co-efficients in the ansatz by requiring

1. The ansatz solves QV=0.

2. The ansatz are consistent with the definitions of the physical 
superfields.

3. All the ansatz are mutually consistent.

• This completes the construction of unintegrated vertex at n-th mass 
level.

• How do we know this works?
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• How do we know this works?

1. Reproduces Berkovits-Chandia vertex for n= 1 and their rest 
frame analysis.  Consistency check!

20



• How do we know this works?

1. Reproduces Berkovits-Chandia vertex for n= 1 and their rest 
frame analysis.  Consistency check!

2. Gives the complete covariant θ expansion of BC vertex.

21



• How do we know this works?

1. Reproduces Berkovits-Chandia vertex for n= 1 and their rest 
frame analysis.  Consistency check!

2. Gives the complete covariant θ expansion of BC vertex.

3. Readily extended to integrated vertex which was constructed for 
the first time for n=1 .   (see Sitender’s talk right after this!)

22



• How do we know this works?

1. Reproduces Berkovits-Chandia vertex for n= 1 and their rest 
frame analysis.  Consistency check!

2. Gives the complete covariant θ expansion of BC vertex.

3. Readily extended to integrated vertex which was constructed for 
the first time for n=1 .   (see Sitender’s talk right after this!)

4. For 1st massive states, this vertex gives same result as RNS.
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θ - expansion
• After fixing the unknown coefficients, we get

• Schematically these gives a set of recursion relations which can be 
leveraged to get the θ expansion
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θ - expansion
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Tree level amplitudes in PS
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• N-point amplitudes

• Factorizes in two parts

• The PSS measure is normalized as



Tree level amplitudes in PS
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• We need to evaluate                            subjected to                              .

• Each unintegrated vertex is at ghost no. 1, so                            is 
automatic.

• We need to just θ expand all 3 vertices and keep only those terms 
from the product which has 5 θ’s.

• Taking into account all such terms and incorporating plane wave part, 
we get the full answer.



Equivalence to RNS for massive states

• We now have all the ingredients to compute scattering amplitudes of 
massless and 1st massive states using PS formalism.

• This allows us to directly compare them with corresponding RNS 
formalism and establish explicit equivalence.

• Consider all massless-massless-massive 3-point functions for a fixed 
order.

• Let the relative normalization be defined as 

• We keep                   and keep the relative normalization            in RNS 
vertex operators.  
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PS = RNS
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Summary & Outlook
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• We have given a systematic procedure to construct massive vertices in PS 
formalism that also gives the covariant θ expansion to all orders.

• We have explicitly shown the equivalence between RNS & PS amplitudes for 1st

massive states.

• Can this construction be adapted to construct massive vertices in AdS
backgrounds?

• N-point amplitudes for massive states? Higher Loop level? 

[Schlotterer’s Talk]

• First principle derivation of this prescription? Off-shell states in PS? 



SFT Website
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• Please check out the following website 

http://string-field-theory.org

• Associated Zulip chat page

https://sft.zulipchat.com

• Comments, suggestions, questions… - Harold Erbin & S.C

http://string-field-theory.org/
https://sft.zulipchat.com/


Thank you for listening 
& 

Stay Safe!

36


