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Plan of the talk

» Three Parts

1. Some facts and basic assumptions

2. lllustration by re-derivation of unintegrated vertex operator at first massive level
of open superstring

3. Integrated vertex Operator and Generalization to all massive vertex operators .



Part |

Some Facts and Assumptions



Any string amplitude is of the form

(/1) (5 i () )

Moduli integration

V;, U; are the unintegrated and integrated vertex operators respectively.
b; are b-ghosts inserted by using the p; the Beltrami differential.

In the pure spinor formulation of superstrings, b have A poles that provide
divergences in A\ — 0.

Are there other sources for such divergences? Want to avoid them as much as
possible.

Yes and no.

It depends on how we choose to express our vertex operators.



The unintegrated vertex operators are found by solving for a ghost number 1 and
confromal weight 0 object V' via

QV =0 V~V+QQ

Q is the BRST-charge and Q2 characterize some freedom of choosing V.

€2 can be used to eliminate the unphysical degrees of freedom (d.o.f).

By unphysical d.o.f we mean e.g. superfluous d.o.f that can be eliminated by going
to a special frame of reference.

Is there a procedure that automatically takes care of 2?

Yes. Working exclusively with physical d.o.f, from the very beginning, implicitly
assumes (2 has been taken care of.



v

v
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Consider

DoS =Ta

Above S and T., are some superfields and D, is super-covariant derivative.
Can we strip off D, from S?

Yes, we can
1
5= _ﬁ(W)aﬁDﬂTa

But, only for m? # 0.



Conclusions from slide |

» To avoid A\ poles in V we work the in minimal gauge.
> In the pure spinor formalism no natural way to define integrated vertex operator.

> From the RNS formalism we know U(z) = ¢ dwb(w)V (z) or QU = 9V where 9 is
worldsheet derivative.

> First form uses b ghost explicitly so, can potentially give A\ poles.

» Second form involves V' and @ neither have such poles. We use this relation to
solve for U.

Conclusion from slide Il

We know the physical d.o.f at any mass level from RNS formalism.

Conclusions from slide lll

We saw

1 «@
DoS =Ty = szfﬁ(y) BDgTa

We shall assume this kind of inversion is always possible. Hence, our analysis is valid
for all massive states.
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The Pure Spinor Formalism

The action in the in 10 d flat spacetime (for left movers) [Berkovits, 2000]
1

2mwal

S =

/ P2[ DX X + Padb® + wadX® |
—_— e N——
Matter Ghost
(X™,6) form A = 1 supersapce in 10 d.
To keep spacetime SUSY manifest, we work with supersymmetic momenta

™

1
OX™ + 2 (6v™00)

da

1 1
Pa = SOX" (ym0)a — £ (Ym0)a(07™00)

A satisfies the pure spinor constraint
MYTA=0 Ggge deWa = €m (Y™ Na
Trans

To keep Gauge invariance manifest, instead of w,, we work with

1
J=(w)) and N = C(wy™")



The Pure Spinor Formalism

The vertex operators come in two varieties unintegrated and integrated vertex V/
and U respectively.

The physical states lie in the cohomology of the BRST charge @ with ghost
number 1 and zero conformal weight

szdzxa(z)da(z) - QV=0, V~V+QQ QU=20V

We shall take the vertex operators in the plane wave basis
V= VekX U:=Ue*X

V has conformal weight n and U has conformal weight n + 1 as
[e?*X] = o/k? = —n at n" excited level of open strings.

Important Identity

1
I=:N""X%: (ym)aB — 5 I 1 yGg — a"ygﬂa)\o‘ =0



I. Pure Spinor Formalism - Important OPE’s

» Some OPE’s which we shall require are (V is arbitrary superfield)

/

do(2)dg(w) = 70‘77;’;3Hm(w) +--- where --- are non-singular pieces of OPE.
2(z — w)
da(2)V (W) = — " Do(w) + where, Do = — + Lym geg
z = w e s = — .
@ 20z —w) > = gga T TeB” Om
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1

o’

Unintegrated Vertex Operator at m? =



Construction of Vertex Operators

States are zero weight conformal primary operators lying in the BRST cohomology

Goal: Find an algorithm to compute conformal primary, zero weight operators
appearing at 1st excited level of superstring.

In other words: Solve for [V] = 0 with ghost number 1 and [U] = 1 with ghost
number 0 satisfying

QV =0, V~V+QQ QU=0V
constructed out of
Field/Operator H Conformal Weight H Ghost Number

™ 1 0
da 1 0
00« 1 0
N 1 0
J 1 0
AN 0 1




States at the first excited level of open superstring

The first unintegrated massive vertex operator is known [Berkovits-Chandia,2002].

We rederive it is to illustrate our methodology which can be generalized to
construct any vertex operator [S. Chakrabarti thesis].

At this level we have states of mass? = % and they form a supermultiplet with
128 bosonic and 128 ferimonic d.o.f.

The total 128 bosonic d.o.f are captured by a 2nd rank symmetric-traceless tensor
gmn and a three form field by,nyp
gmn aNd brmnp satisfy

gmn = Gnm, nmngmn =0, amgmn =0 = 44
brnp = —bnmp = —bpnm = ~bmpn =0, 0"bmnp =0 = 84

The fermionic d.o.f are captured by a tensor-spinor field 1,

O Yma =0, AP 5 =0 — 128



Construction of Unintegrated Vertex Operator at First Massive level

v

Recall our vertex operators are of the form

V = Veik-X

v

In rest of the talk we drop e*-X and also for simplicity of notation drop the ~ in V'

v

At first excited level we need to solve for

QV =0 with [V] =1, subjectto V ~V +QQ

v

The most general ghost number 1 and conformal weight zero operator is

V. = 9XTAq(X,0) + A280%Bops(X, 0) + dgA*CP, (X, 6)
+ " Ao Hima (X, 0) + JA*Eo (X, 0) + N™" A% Famn (X, 0)

v

The superfields A., Bag, - -+ contain the spacetime fields.



€ can be used to eliminate all the gauge degrees of freedom and restrict the form
of superfields in V' e.g.

Bag =704 Binp 1€, 256 — 120

Berkovits-Chandia showed that if one solves QV = 0 subjectto V ~ V + QQ,
one finds the same states described earlier.

We assume that we already know the spectrum at a given mass level.

Our goal is not to show that pure spinor has same spectrum as that of NSR or GS
formalisms.

Our goal is find a (simple?) algorithm that gives covariant expressions for the
vertex operators.

Our strategy is to work directly with the physical superfields.

In rest of the talk we shall see how do we can do this.



> lts important to note that if we have made complete use of Q2 we shall be left with
just physical fields.

v

Introduce physical superfields corresponding to each physical field such that'

Gmn 0=0 = gmn, anp 0=0 = bm'npa Yna 0=0 = wna

v

We further demand that other conditions satisfied by physical fields are also
satisfied by the corresponding physical superfields. For example for g,,n

9mn = Inm, nmngmn = 07 8’mg’mn =0
- Gmn = Gnm, 1N""Gmn =0, 0"Gmn =0

> For Yma

0" Pma =0, 'Ymaﬁ¢mﬁ =0 = 0" Wina =0, 'Ymaﬁ‘ljmﬁ =0

v

For the 3-form field bnp

OMbmnp =0 = 0" Bmnp =0

1Apparently Rhenomic formulation of supersymmetric theories uses these ideas as pointed out to us by Ashoke
few months back. We thank him for bringing this to notice.



Next we expand all the unfixed superfields appearing in the unintegrated vertex
operator as linear combination of the physical superfields Grin, Bmnp; ¥ma

Lets take an example

Fomn = a1 k[mllln]a +az k° (Wc[m\pn])a

To see if we have not missed anything we can do a rest frame analysis
Faoi — 16 ®9 =16 128
Famn -
Foij = 16 ®36 =16 128 @ 432
Hence, Fomn is reducible to the following irreps.
16 128 + 16 ¢ 128 ¢ 432

Thus, we have two physically relevant irreps 128 and we keep them.

We throw away the unphysical d.o.f.



We repeat this procedure for An, B, g, C%, Eq and Hyp, o as well.

Its absolutely trivial to see that A, and E, must vanish. Berkovits-Chandia find
same conclusion after gauge fixing.

We denote by a; the coefficients that relate superfields in V t0 Grn, Bmnp, Yma-

QV produces terms that contain the supercovariant derivatives

DaHmou DaBﬁcry Dacﬁ

o

DaFﬁmn

But, all such terms are expressible in terms of the supercovariant derivatives of
the physical superfields

DaGmn7 Daanp and Daqjmﬂ
e.g.
DoFgmn = a1 kijmDa¥y)s + a2 k* (Ysim) 5” Da¥n)o

How do we determine Do Gimn, Do Bmnp and DoV, 3?7



Determination of the supercovariant derivative of physical superfields is our next
major step.

We employ the same strategy to write these in terms of physical superfields e.g.

Da‘l/m,ﬁ = bl'}’;BGsm + '}’;tﬁu (b2k[SBtu]m + b3k'mBstu) + b4(77:tuv)a[3kthuv

Similarly for Do Gmn and Do Bmnp.
This introduces a fresh set of undermined constants {b; }.
Once again the e.o.m obtained by QV = 0 will determine these.

There is one further complication that introduces a third set of undetermined
coefficients we collectively denote by {c;}.



Not all of the operators in QV are independent e.qg.
1
Ig = N A% (Ym)ap — iJAa'YgB — o/'ygﬁa)\a =0
can be used to express some operators in terms of others.

Notice that /77 is carries ghost number 1 and conformal weight 1.

Ig generates constraints at various ghost number and conformal weights e.g.

1 5a/ o’
NN Mg, — 5”\“)\6%137 - TAQ@AB%BW - z/\W/\B (M%78, =0
is at ghost number 2 and conformal weight 1.

This can be written as

= — N AN (4097 [9) s Ky + TN (V00 0) s S

vway
+o/>\°‘8)\’8 |:2'Yvwzys77$tK1t;wzy + 16’7;05st ] =0

QE wrys

Relevant for this talk.



We can re-express the Lagrange multiplier superfield in terms of the phsysical
superfields

Krnnpqr =cC1 k’mk[anqr] +c2 nm[anqT]

Now we have expressed all unknown superfields and differential relations in terms
of the physical superfield.

Now we solve for

QV+K=0

We can now freely set the coefficients of each of the basis operators to zero
because of the Lagrange multipliers.

Now we get a set of algebraic equation involving the {a;, b;, c; }.

Solving these linear set of equations determines all the superfields appearing in
the vertex operators, the Lagrange multipliers and the Differential relations in
terms of the physical superfields.



Result - Unintegrated Vertex

We find that the unintegrated vertex operator is writable as

V =:80PABog i +:dgA®CE i 4+ TI™ A Hppe : + : N A Famy,
where,
Bap = (""")apBmnp i CH=O""")Cmnpg ; Hma =—T72¥ma

1

Cmnpq = Ea[mBnpq] i Famn = (7a[mHn]a + aq('yq[m)aﬁHn]ﬁ)

00| =

This agrees with Berkovits-Chandia.

This complete the general methodology and is applicable for construction of the
integrated vertex operators.

We point out some important new features that arise.
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Integrated Vertex Operator and Generalization



Construction of the Integrated Vertex Operator

»> Having obtained V, we can determine the corresponding integrated vertex
operator by
QU -9V =0 ghost no. 1 and cnf. weight 2.

» U is the only unknown in the above equation and we can employ the method we
used to solve for V.

> Most of the subtleties appear in three kinds of identities at this level.

1. Follows from I by taking world-sheet partial derivatives and composition with other
weight one operators.

2. New kinds of constraints true by reordering of operators appear e.g.

’

(o3
dad dgde = —— 0l v.,
s+ ds D) Yap
3. It happens that there are some coefficients that are not fixed by above procedure. This

only means that the corresponding operator vanishes identically e.g.
N™" NP9, Grg = 0.

> After taking care of all these we find



U = HI™M"Fmn: + :0MdoF,% : + :1I"M00%Gma

4 (I NPIF g
+ 1dadgK®P i + :1da00PF% : + 1 da NG, 1 + 1 00%00° Hop :
+ :00*N™"Hmna : + : N NPIGpnpg :

where,
Foun, :—gamn , FY = ?({)aﬂarw,w , Gma = —42/2\1%@
Finpg = %Bmpq - %%Gq]m S —ﬁ Ty BT
Gmnpq = ﬁa[mBn]pq + ﬁ%Bq]mn - ga[pa[mcw

[S.P.K, S. Chakrabarti and M. Verma - 2018 ]



Generalization to all vertex operators

> We first construct the unintegrated vertex operator and then using this solve for
the corresponding integrated operator.

> Steps for Unintegrated vertex operator construction

STEP | Identify the fields that capture particle content at the given mass level and
introduce superfields whose 6 independent component are these field e.g. fora f4

Fa(X™,0) := fa(X™) + faa, (X™)0 + -+ faay 607t - 071

STEP Il Constrain the superfields to satisfy all the constraints that the
cooresponding fields satisfy e.g. if fa = s

impose
=

8m¢mo¢ =0 0" Wima =0

impose

TP =0 T P, =0

STEP lll Ansatz for unintegrated vertex operator:
V=Y Bss*
A

where, B4 are the basis operators at conformal weight n and ghost number 1.



STEP 1V a Find out all of the constraints at the required mass level and ghost number
by taking OPE’s with the original constraint identity

1
I:'= :N™"X": (Ym)ap — 5 JXNY tvpp — a’ygﬁa,\" =0
STEP IV b Find out all the constraints that are true by trivial reordering of operators eg.
Oé/
dadB + dﬁda = —?81'[7,,,7;”5
STEP IV ¢ Drop terms that are identically zero that appear in the equation eg.
N NPI, ,Grg =0

STEP V Introduce the Lagrange multiplier superfields K 4. Use group decomposition
to write the superfields S4 appearing in V" and them as general linear combination of
physical superfields introduced in STEP |

Sa=Y capFp , Ka=) dapFp
B B



II. Construction of the Vertex Operators

STEP VI Compute QV'. This will give rise to terms of the form
DaSa

where, D,, is the supercovariant derivative. By making use of group theory
decomposition write

DaSa =Y 9gannFp
B

STEP VIl Solve QV = 0 respecting the constraints by method of elimination or
Lagrange multipliers. This determines c4, d4 and g.4 g and we have constructed our
unintegrated vertex operator.

> Now we are ready for the construction of the integrated vertex operator.

» We need to follow the same steps but this time we need to solve for
QU =90V

» The solution to the above equation gives the integrated vertex operator.



Applications

As a by product of this procedure we are able to get relationship between the
physical superfields that can be easily used to perform 6 expansion and hence do
amplitude computations [Subhroneel’s talk].

We also used the integrated vertex operator to compute the mass renormalization
at one loop for stable non-BPS the massive states at first excited level in Heterotic
strings [to appear - in collaboration with Mritunjay].

The above result matches with the one obtained earlier using RNS formalism
[Ashoke]

Can use the integrated vertex operator to perform computations at tree level and
one loop level to see if structural relations/identities found in the case of massless
case hold true (O. Schlotterer’s Talk).
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