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Hyperbolic metric

o There exists a metric with R = —2 on a Riemann surface
(genus g, n punctures) if 2g + n > 3.

O ® -

e The hyperbolic metric is useful in studying string theory
(1980's)
e multi-loop calculations D'Hoker-Phong 86 ...
e superstrings Baranov-Manin-Frolov-Schwarz '87 ...



SFT with hyperbolic metric

e Although we may not need the worldsheet metric to formulate

SFT, it is better to have one for practical calculations.

e The hyperbolic metric, for which enormous results are
available, would be the most convenient choice.

e However, the hyperbolic metric has not been used in SFT until
recently.

e In order to construct SFT, one should decompose the
worldsheet into propagators and vertices.

e Cutting out propagators from hyperbolic surfaces is not so
straightforward.
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String theory with hyperbolic metric

(2, p) minimal strings

(2, p) minimal model + Liouville
~ (& 2,5
hion, = & [ PxE (902 + 1+ 2)0R + e
e Realized as higher critical points of the one matrix model.

e Exactly solvable. (orthogonal polynomial, loop equation)

e Saad et al. have shown that the p — oo limit is equivalent to
the JT gravity.



SFT for minimal strings

We would like to construct an SFT for (2, p) minimal strings in the
limit p — oo, and get an SFT with hyperbolic metric.

e By doing so, we may be able to learn how to deal with the

hyperbolic metric in the critical case.

For (2,3) (c = 0) minimal strings (closed), we formulated an
SFT.
H. Kawai and N.I. '93

It is possible to generalize the (2, 3) case, we construct SFT
for (2, p) minimal strings.
Taking the limit p — oo, we get an SFT with hyperbolic

metric.
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1. SFT for (2,3) strings




SFT for (2,3) strings

Introduce a time coordinate 7 on the worldsheet of ¢ = 0 strings
Kawai-Kawamoto-Mogami-Watabiki '93

7(P) = min {d(P,Q); Q € boundary}
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Time evolution for ¢ = 0 strings
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e Correlation functions
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Hamiltonian
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o w(l)= (/*% + /ilfg)e_”" is the disk amplitude.



Hamiltonian: 3-string interaction

A = 2/d/d/'g?)(l)w(/’)fr(/Jr/’)(l+/’)
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Hamiltonian: 2 string annihilation

A = 2/d/d/’¢“s(/)w(//)ﬁ(/+/’)(/+/’)
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Hamiltonian: kinetic term

A =
4 / didi'w(l + ') 1#(1)I
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SFT for (2,3) strings

With this Hamiltonian,

lim (0] e (k) - 3(In) 10)

T—00

coincide with the correlation functions of (2, 3) string theory.

e The propagator is a cylinder with bifurcating coordinates.
w(l)

e The formulation looks quite like the stochastic quantization in
ordinary QFT.
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2. Stochastic quantization




Stochastic quantization

Correlation functions of a D dim. Euclidean field theory

_ J1dg]eS¥o(xa) - - $(xn)
(00a) - o(xn)) = [1dd] e—15[<z>]

can be calculated by using a D + 1 dim. one with fictitious time 7.

(9(xa) -+ 9(xn)) = lim (0] e~™3(x1) - 3(xn) [0)

[#(x). $(x)]
(x)10) = {0
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H=— [ dPx [“(x) — 55[45]] #(x)
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D +1 — D reduction

~

(9(0a) -+ d(xm)) = lim (0] e ™d(x1)- - () [0)

A = —/de [ﬁ(x) - gg([g] 7(x)

e This system possesses a hidden supersymmetry. Gozzi '83

{Q, Q} = H + fermions

Q= [ dei(ta), Q= [ dxix) [ﬁ(x) B 22([15”

Nakazato et al. '83 ... Kugo-Mitchard '90



Compared with SFT,

~

m (0]e3(x1) - -~ $(xa) 0)
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A = —/de [ﬁ(x) — gg([g] 7t(x)

(@(x1) -~ d(xn))

e The SFT Hamiltonian can be expressed as

A=— / didl’ [ﬁ(/) - 558}'[55]] K(I, 1N

5¢(/)

e This type of Hamiltonian is called the one with kernel K.
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e In principle, the action Sy can be obtained by solving the
above equation.



e The stochastic quantization based on the Langevin equation

9¢(x,7) _ _ 45[¢]

- +nx, T
o7 06(x) lg(x)=6(x,7) .

It is equivalent to the one given here.

e The SFT for the (2, 3) strings are derived from the stochastic
quantization of the matrix model.
Jevicki-Rodrigues '94
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3. SFT for (2, p) strings




SFT for (2, p) strings

e We tried to construct SFT for higher critical points.

e Higher critical points are difficult because the disk amplitude is
more singular for / ~ 0

e One such SFT was proposed by lkehara '95, but it is
impossible to take p — oo limit in his Hamiltonian.

e Studying the formulation carefully, we obtain a Hamiltonian for
which p — oo can be taken.
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SFT for (2, p) strings

I
Il
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e ||l defined kinetic terms can be made finite.
e With this Hamiltonian,

(O e (k) --- d(1n) |0)

coincide with the correlation functions of (2, p) string theory.

lim
T—00
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e By taking the limit p — oo with x = ;~ and taking

o(l) — e o)

() — ex())
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we obtain the SFT for JT gravity with the same form of the

Hamiltonian.
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4. QOutlook




84 Outlook

The stochastic quantization like SFT for (2, p) minimal strings
can be constructed.

The propagator is quite different from the usual ones.

w(l)
e
S— S—

The formulation is a generalization of stochasitic quantization.

It would be possible to do the same for superstrings.
We would like to go on and consider similar formulation for
critical strings.
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