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Introduction

« We will discuss open string field theory involving the SU(2), WZW model
» A test of OSFT on more complicated background

 OSFT solutions are conjectured to describe boundary states
» We observe transitions between boundary states
» There seem to be interesting ,,selection rules* regarding
conventional (Cardy) boundary states
» They could lead to better understanding of boundary RG flow

* We can search for non-conventional boundary states

« Earlier work by Michishita (hep-th/0105246)



 We work with the traditional bosonic open string field theory with the action
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* We use the level truncation approach
» Numerical approach
» We impose Siegel gauge

* The theory is more complicated than free boson or minimal models
» We cannot reach very high levels
» Lower precision of results
» Still good enough to identify most solutions



SU(2), WZW model

« SU(2) group elements can be parameterized using 3 angles as
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* They are generated by 3 operators: J=, J°
* In SU(2), WZW model, the operators are lifted to currents, which have mode

algebra
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* Primary fields are have a structure following irreducible SU(2) representations
» We label them as |[j,m)
» The range of j 1s restricted by the level R to j =0. ..., 5
» m has the usual range m = —j.....jJ
» The currents act on primary fields as

iy = 0; B30,
Jijlim) = mlj,m),
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» Hilbert space is spanned by states
: R o [
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Boundary states

We distinguish two types of boundary states

* Boundary states which preserve half of the bulk symmetry
» They satisfy gluing conditions

(J2 +Q%(9)J°,)|B) =0
» They are labeled by SU(2) group elements g and half-integer
» For a given g, we find the usual Cardy solution, which is given in terms of S-matrix
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* Symmetry-breaking boundary states
» They genericly satisfy only the Virasoro gluing conditions
» Most of them are not understood



* In OSFT, we impose the following condition
J3|T) =0
> Used for fixing SU(2) symmetry of solutions |¥) — ¢*«3 |T)

* This implies that solutions preserve the J° gluing condition
» Great simplification
» Only the parameter 0 survives
» Its range is now from -w to &t
» Group elements simplify to
- et 0
g = ( 0 (_‘—1'0 )

» Irredicible representations also become diagonal




* Cardy boundary states are associated with SU(2) conjugacy classes
» Conjugacy classes form either points (J=0 or J=k/2)
or 2-spheres on the SU(2) 3-sphere
» Branes which preserve the J? gluing condition

can be nicely visualized as points or lines on a circle P i
» The angle 6 determines rotation of branes / )/ \
» (J,0)-brane 1s the same as (k/2-J,n-0)-brane / / \ \
* The figure shows k=7 case as example K }
» Branes with 6=0 have black color
» Branes with 640 have red color \\ \ //

L



We consider the following observables:

* The energy derived from OSFT action

* Ellwood invariants
» Labeled by bulk primary operators

Ejm = 21i(E[cE¢; m—m V]| ¥ — Uy

» They describe boundary states corresponding to solutions
» The expected values are

EP  _ (_1)j—m,BJj(_,2vimG.

jm

 The first out-of-Siegel equation A4 as a consistency check

Ag = —(()l('_ngbg |(2\IJ + U % \IJ)

Observables




Regular solutions

» Solutions describing Cardy boundary states, which preserve half of the bulk
symmetry

* In these examples, we consider =4 and initial boundary condition J=1I

* There are three groups solutions which satisfy the reality condition
Ej.m - (_1)2jE:"‘

J,—m

* We have reached level 11

* To reduce the amount of data, we show only extrapolations to infinite level
» Maximum order extrapolations using polynolials in 1/L



* First solution
» Based on energy, it represents a %-brane

» The invariant E, , 1s real
= we can determine 6 exactly

» The angle 1s 6=n/4
> All invariants are consistent
with this angle

» It satisfies Ag quite well

» There are 3 more solutions
related by rotations

» No solution for 6=0

Energy Eoo Ag
00 0.9320 0.919 —0.0010
o 0.0003 0.004 0.0001
Exp. 0.930605 0.930605 0
Eyij21/2 Eija_172
00 0.482 +0.487i —0.482 + 0.487i
o 0.002 + 0.002i 0.002 + 0.002i
Exp. 0.5+ 0.5 —0.5 4+ 0.5¢
Eqa Eip Eqy_1
00 —0.009 0.09 —0.009
o 0.004 0.03 0.004
Exp. 0 0 0
Es3/93/2 E3/0.1/2 E3/2-1/2 E30-3/9
0 0.482 — 0.487i 0.59 + 0.54i —0.59 4+ 0.54i —0.482 — 0.487i
o 0.002 + 0.002i 0.12 4 0.05i 0.12 + 0.05¢ 0.002 + 0.002i
Exp. | 0.5—0.5i 0.5 + 0.5 _G5405F ~D5—08i
Es» Ea 4 Eap E>_y E>_»
00 0.919 —0.04 + 0.97i 0.71 —0.04 — 0.97: 0.919
o 0.004 0.08 + 0.07: 0.12 0.08 — 0.07z 0.004
Exp. 0.930605 0.9306057 0.537285 —0.930605:2 0.930605




* Second solution
» Corresponds to a 0-brane

» Some invariants are real
= 1t has exactly 0=n/2

» Similar properties as the
first solution

» There 1s other solution
with 6=-7t/2

Energy Ep Ag
00 0.537311 0.536 —0.00009
o 0.000008 0.001 0.00008
Exp. 0.537285 0.537285 0
Ev21/2 Eya_1/2
00 0.704: 0.704:
a 0.001: 0.001z
Exp. 0.7071074 0.7071077
Eq4 E1p Fi_1
00 —0.757 —0.761 —0.757
o 0.001 0.011 0.001
Exp. | —0.759836  —0.759836  —0.759836
E3/93/2 E3/2.1/2 E3 172 Egp_3
00 —0.704: —0.69: —0.69i —0.704:
o 0.001: 0.104 0.10¢ 0.001:
Exp. | —0.707107:¢ —0.707107¢ —0.707107¢ —0.707107:
Es 9 Es 4 Esp Ey _4 Ey _o
00 0.536 0.55 0.71 0.55 0.536
a 0.001 0.02 0.1 0.02 0.001
Exp. 0.537285 0.537285 0.537285 0.537285  0.537285




e Third solution
» Slow convergence of invariants

» Probably represents also a O-brane
» Only rough agreement of observables

= there 1s a small chance that
1t 1s an exotic solution

» It has 6=0

» There 1s a second solution with 6=n

Energy Eoo Ag
00 0.580 0.528 —0.0110
o 0.003 0.005 0.0007
Exp. 0.537285 0.537285 0
Ey/9.1/2 Ey/0_172
00 0.657 —0.657
o 0.007 0.007
Exp. 0.707107 —-0.707107
Ey 4 Eio 1.3
00 0.689 —0.56 0.689
o 0.006 0.06 0.006
Exp. 0.759836 —0.759836 0.759836
E3/9.3/2 E3/21/2 Ezp 12 E3p_3/9
00 0.657 —0.5 0.5 —0.657
o 0.007 0.1 0.1 0.007
Exp. 0.707107 —-0.707107 0.707107 —-0.707107
Fs 9 Es Eap Es_4 FEy o
00 0.528 —0.47 0.3 —0.47 0.528
o 0.005 0.42 0.3 0.42 0.007
Exp. 0.537285 —0.537285 0.537285 —0.537285 0.537285




» Solutions at other £ have similar properties

 We can formulate some ,,selection rules® regarding 6
> The best solutions have 6 proportional to /;-J;

0 = +2|J; — Jy|

» Unless J=k/2, branes tend to be on the same
half of the circle as the initial brane
» New branes touch the original one at one point

* The example depicts £=9 with J;=2



 If we consider also solutions with worse convergence, the rule generalizes to
0=+2|i—Jr+1|E, leZ
 Examples depict k=4 and k=9




SL(2,C) solutions

« SL(2,C) group 1s complexification of SU(2) = if we allow complex solutions,
we can see solutions describing SL(2,C) gluing conditions
 We generalize the angle 6 by adding a new parameter p

H— 60— ilog/)
so that
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* Therefore invariants with high m usually have either small or large values

* 0 seems to follow the same rule as before
0 = +2|J; — J|E

* p seems to be generic



O-brane solution at k=2 (level 14)
0=-n/k+i log 2.070

Invariants are not symmetric

=solution does not satisfy reality
conditions

The action is real
= pseudo-real solution

It excites the marginal field, but with

1maginary value

Energy Eo Ag
00 0.707093 0.7076 —0.000016
o 0.000003 0.0001 0.000002
Exp. 0.707107 0.707107 0
E1/2.1/2 Evj9.-1/2
00 —1.744: —0.4051
o 0.0152 0.003:
Exp. | —1.74064: —0.406234i
F11 Eip
00 —3.029 —0.714 —0.163
o 0.030 0.014 0.005
Exp. | —3.02982 —0.707107  —0.165026




Exotic solutions

* There are some solutions that are clearly not Cardy boundary states
= we find unknown boundary states
* Symmetry-breaking boundary states

» They break J*, - gluing conditions
» But they still preserve /% gluing conditions

* Only a small number of well-behaved exotic solutions (compared to free boson)
» They appear mainly on boundary states with high </

* Sometimes there are more solutions with similar properties
» Related by marginal deformations?



» The first exotic solution appears at k=3 and J=%

» Complex at levels levels 2,3

> Real from level 4

» Highly symmetric

» Satisfies out-of-Siegel equations

* There 1s a similar solution in M(5,6)
because SU(2);=M(5,6)xU(1)
» We can predict values of observables

» Corresponding boundary state
should be possible to find analytically

Energy Ey Ag
00 1.05624 1.054 —0.00014
o — 0.001 -
Exp. 1.05605 1.05605 0
Evp1/2  Eyp_1y2
00 0.006 —0.006
o 0.016 0.016
Exp. 0 0
Ey Eip Ey 1
00 —0.006 1.31 —0.006
o 0.016 0.03 0.016
Exp. 0 1.34332 0
E303/2 Ezj1/2 E3/a 172 Ezp_3/0
00 —1.054 0.006 —0.006 1.054
o 0.001 0.016 0.016 0.001
Exp. 1.05605 0 0 1.05605




* Two exotic solutions at k=6 with similar properties

Energy Eop Ag
00 1.07149 1.0713 —0.000036
o 0.00002 0.0011 0.000003
Evpape By
00 0 0
E14 Erp Ey 1
00 0.0003 1.667 0.0003
o 0.0004 0.005 0.0004
Ez;p32  Esp12 Ezp 172 Espe_3)2
00 0 0 0 0
Es9 Es, Fap Es 1 Es o
oo | —0.0003 —0.02 1.66 —0.02 —0.0003
o 0.0004 0.06 0.19 0.06 0.0004
Esjas/2  Espazg Es/9.1/2 Esjp_1/2  Es;p_3/5 Espa_s/
00 0 0 0 0 0 0
E33 FE35 E3 1 E3p E3 _4 E3_o E3 _3
oo | —1.0713 —0.001 0.03 0.93 0.03 —0.001 —1.0713
o 0.0011 0.046 0.65 0.79 0.65 0.046 0.0011




Energy Eop Ag

1.07149 1.0718 0.0000241

0.00006 0.0003 0.0000008

Evp0172 Eypp-1/9

0 0

Ey11 FE10 Ey 1
—0.012 1.665 —0.001

0.021 0.009 0.013

Esjps2  E3p1/2 E3/0 1/ Es/2 _3/2

0 0 0 0

Es2 E9 1 Es0 Es 1 Eo 2

0.007 —0.05 1.61 —0.06 0.05

0.051 0.09 0.25 0.16 0.08

Esjo5/2  Esia3/0 Es/21/2 Esip_12  Esa_3/0  Esp_s5)2

0 0 0 0 0 0

Es33 FE3» F31 Es E3 1 E3 _9 E3_3
—-9.2 0.04 0.5 1.0 —0.3 —0.12 —0.26

0.3 0.20 | ). 1.2 1.0 0.28 0.25
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* Both have energy around 1.07149

* Most invariants (except E;_3) are the same within errors

« Many invariants are exactly or asymptotically zero

* The first solution is real, the second only pseudo-real
* The second solution has asymmetric invariants
It 1s similar to SL(2,C) solutions

 Its boundary state can be probably reached by (complex) marginal deformation
of the first one
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Summary and discussion

* We find real solutions reprenting Cardy boundary states
» These solutions follow ,,selection rules® regarding 6
0==22|J; - Jr+1|T, leZ
» Are there similar rules for BCFT results?

* Can we reach other 6?
» A promising approach seems to be to fix the value of the marginal field
» Combination of relevant and marginal deformations
» Not yet clear how much of the moduli space is covered
» Work in progress

* We also find pseudo-real solutions reprenting SL(2,C) boundary states
» These solution follow ,,selection rules® for 6
» The other parameter p seems to be generic



24

* For k>3 we find exotic solutions which describe boundary states breaking the
current symmetry

* The number of these solutions is much smaller than in free boson on torus
» Low number of relevant operators?
» Do exotic boundary states typically have too high energy?
» The condition .]g’|\I!) — () could be too restrictive
» The SU(2) symmetry could be fixed just using Z, subgroups of SU(2)
» That would require a different ansatz for string field and new numerical algorithms

» Some of the exotic solutions we found could be related to analytic results
» 0105038, 0705.1068



