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Introduction

There are three main complementary approaches of superstring

field theory.

� �
• WZW-like approach: (Berkovits)

• Approach based on homotopy algebra: (Erler-Konopka-Sachs)

• Approach with an extra free field: (Sen)� �

In this talk, we consider the heterotic string field theory based
on the second approach and show that it correctly reproduces the
tree-level S-matrix calculated by the well-known first-quantized
method. (cf. pioneering work by Konopka)
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Heterotic string field theory with cyclic L∞ structure
(Kunitomo-Sugimoto)

String fields: Φ = ΦNS +ΦR ∈ Hres = HNS(2,−1)
small +HR(2,−1/2)res

small .

Constraints: b−0 Φ = L−
0 Φ = 0 , XY ΦR = ΦR or GG−1Φ = Φ ,

Here,
G = π0 + π1X , G−1 = π0 + π1Y ,

( GG−1 = π0 + π1XY )

where π0 (π1) is the projection onto HNS (HR). X and Y satisfy

XYX = X , [Q,Ξ] = X , ( Ξ = ξ0 + · · · ) .

Symplectic forms: ωs(Φ1 ,Φ2) = ⟨Φ1|c−0 |Φ2⟩

Ω(Φ1 ,Φ2) = ωs(Φ1 ,G−1Φ2) , ωl(Φ1,Φ2) = ωs(ξ0Φ1,Φ2) ,

for Φ1,Φ2 ∈ Hres .

3



Bilinear rep.:

⟨Ω| : Hres ⊗Hres −→ C

∈ ∈

|Φ1⟩ ⊗ |Φ2⟩ 7−→ Ω(Φ1 ,Φ2) ,

Heterotic string products is represented by

multi-linear map: Ln : (Hres)∧n −→ Hres

where H∧n is the space of the symmetrized tensor product:

H∧n ∋ Φ1 ∧ · · · ∧ Φn =
∑
σ

(−1)ϵ(σ)Φσ(1) ⊗ · · · ⊗ Φσ(n) ,

with L1Φ = QΦ and Ln(Φ1 , · · · ,Φn) ∈ Hres (n ≥ 2) .
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If {Ln} satisfy

∑
σ

n∑
m=1

(−1)ϵ(σ)

m!(n−m)!
Ln−m+1(Lm(Φσ(1) , · · · ,Φσ(m)) ,Φσ(m+1) , · · · ,Φσ(n)) = 0 ,

Ω(Φ1 , Ln(Φ2 , · · · ,Φn+1)) = −(−1)|Φ1|Ω(Ln(Φ1 , · · · ,Φn) ,Φn+1) ,

it is called a cyclic L∞ algebra (Hres , Ω , {Ln}) .

If we have such string products with proper ghost and picture numbers,
the action

I =

∞∑
n=0

1

(n+ 2)!
Ω(Φ , Ln+1(Φ , · · · , Φ︸ ︷︷ ︸

n+1

)) ,

is invariant under the gauge tf.

δΦ =
∞∑

n=0

1

n!
Ln+1(Φ , · · · , Φ︸ ︷︷ ︸

n

, Λ) .
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♣ (Assume) bosonic products {L(0)
n } is known, which is an cyclic L∞

algebra with proper ghost number but no picture number.

♣ Heterotic string products {Ln} is constructed by inserting X and/or ξ0
to {L(0)

n } (keeping cyclic L∞ structure) so as to have proper picture number.

Coalgebra representation:

Symmetrized tensor algebra: SH = H∧0 ⊕H∧1 ⊕H∧2 ⊕ · · ·

Coderivation: Ln : SH −→ SH

LnΦ1 ∧ · · · ∧ Φm = 0 , for m < n ,

LnΦ1 ∧ · · · ∧ Φm = Ln(Φ1 ∧ · · · ∧ Φm) , for m = n ,

LnΦ1 ∧ · · · ∧ Φm = (Ln ∧ Im−n)Φ1 ∧ · · · ∧ Φm , for m < n .

Then we can consider coderivation L =
∑∞

n=0Ln+1 . The L∞ algebra is
represented by a (degree odd) coderivation L satisfying

[L ,L ] = 0 .
(
[ , ] : graded commutator

)
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Construction of L:

Consider coderivations B(s, t) and λ(s, t):

B(s, t) =

∞∑
m,n,r=0

smtnB
(n)
m+n+r+1|2r , (degree odd) ,

λ(s, t) =

∞∑
m,n,r=0

smtnλ
(n+1)
m+n+r+2|2r , (degree even) ,

where m : ‘picture no. deficit’, (n) : picture no. and 2r : cyclic Ramond no.(
cyclic Ramond no. = no. of Ramond inputs+ no. of Ramond output.

)
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Construct them by (cyclically) inserting X0 and/or ξ0 to L
(0)
n so as to satisfy

the differential eqs.

∂tBn+2(s, t) = [Q,λn+2(s, t)] +

n−1∑
m=0

(
Bm+2(s, t)

(
π(s)π1λn−m+1(s, t) ∧ Im+1

)
− λm+2(s, t)

(
π(s)π1Bn−m+1(s, t) ∧ Im+1

))
, (1a)

∂sBn+2(s, t) = [η,λn+2(s, t)] −
n−1∑
m=0

(
Bm+2(s, t)

(
tπ

1
1λn−m+1(s, t) ∧ Im+1

)
− λm+2(s, t)

(
tπ

1
1Bn−m+1(s, t) ∧ Im+1

))
, (1b)

with the initial condition

B(s, 0) =

∞∑
m,r=0

smL
(0)
m+r+1|2r .
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Then B(s, t) satisfies

[Q,Bn+2(s, t)] = −
n−1∑
m=0

Bm+2(s, t)
(
π(s)π1Bn−m+1(s, t) ∧ Im+1

)
, (2a)

[η,Bn+2(s, t)] =

n−1∑
m=0

Bm+2(s, t)
(
tπ1

1Bn−m+1(s, t) ∧ Im+1

)
, (2b)

where π(s) = π0 + sπ1 .

From B(s, t) , we obtain a cyclic L∞ algebra (Hlarge, ωl,D −C) with

D −C = Q− η +B , with B = B(0, 1) = B2 +B3 · · · .

It can be decomposed into two independent L∞ algebras in Hlarge

π1D = π1Q+ π0
1B , π1C = π1η − π1

1B ,

[D,D] = [C,C] = [D,C] = 0 .
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Then, we transform them by using the cohomomorphism

π1F̂
−1

= π1ISH − Ξπ1
1B .

to another pair of the L∞ algebras by the similarity tf.

π1F̂
−1

DF̂ = π1Q+ Gπ1BF̂ ≡ π1L ,

π1F̂
−1

CF̂ = π1η ,

which satisfy
[η ,η ] = [L ,L ] = [η ,L ] = 0 .

We can show that (Hres , Ω , L) is the cyclic L∞ algebra representing the
heterotic string products.

For later use, we denote

L = Q+Lint , π1Lint = Gπ1BF̂ ≡ Gπ1l .
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Tree-level S-matrix

Remove the ghost no. restriction and take Siegel-Ramond gauge:

b+0 ΦNS = β0ΦR = 0 , (ΦNS +ΦR ∈ Hres
SR)

Tree-level S-matrix (generating function): (Jevicki-Lee)

S[Φ0] = I[Φcl(Φ0)] ,

where Φcl(Φ0) is a classical sol. determined as a function of the homogeneous
sol. Φ0 obtained as follows.

Rewrite the EoM (diff. eq.) to the integral eq. (Note 1)

Φ = Φ0 −Q+π1Lint(e
∧Φ) , Q+ =

b+0
L+
0

(1− P0) , (3)

where P0 is the proj. op. onto the on-shell sub-space H0 (∋ Φ0):

P0 : Hres
SR → H0 = {Φ ∈ Hres

SR | L+
0 ΦNS = GΦR = 0} .
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Q+ satisfyingn QQ+ + Q+Q + P0 = 1 is called the contracting homotopy
operator.

Eq. (3) can be solved in closed form using coalgebra rep. as function of Φ0 :

Φcl(Φ0) = π1(Î +HLint)
−1P̂ (e∧Φ0) ,

where H , P̂ and Î are ops. acting on SHres defined by

H =

∞∑
r,s=0

1

(r + s + 1)!
Q

+ ∧ (I1)∧r ∧ (P0)
∧s

P̂ =

∞∑
n=0

Pn =

∞∑
n=0

1

n!
(P0)

∧n
, Î =

∞∑
n=0

In =

∞∑
n=0

1

n!
(I1)∧n

.

They satisfy

HQ + QH + P̂ = Î ,

HP̂ = P̂H = HH = 0 , [Q, P̂ ] = 0 .

Putting Φcl(Φ0) to the action I , we obtain the tree-level S-matrix.
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Here, we express the tree-level S-matrix by multilinear map:

⟨S| = ⟨Ω|P0 ⊗ π1S : H0 ⊗ SH0 → C ,

S = P̂Lint(Î +HLint)
−1P̂ ,

which provides total S-matrix in the BRST formulation including unphysical
states. (It is also obtained by HPT.)

The physical S-matrix is obtained by projecting it to the physical subspace:

⟨Sphys| = ⟨S|Pphys ⊗ P̂ phys ,

where Pphys is the proj. op. onto the physical subspace,

Pphys : H0 → Hphys = Ker(Q̃)/Im(Q̃) ,

and P̂ phys =
∑∞

n=0
1
n!(Pphys)

∧n . Unitarity of Sphys is guaranteed by

[Q,S] = 0 .
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The S-matrix element of (n + 3)-string scattering is further expanded to
those with different no. of external Ramond states (= cyclic Ramond no.):

⟨S| =

∞∑
n=0

⟨Sn+3| =

∞∑
n=0

[n+3
2 ]∑

r=0

⟨S(n−r+1)
n+3 |2r .

For example, four-string scattering elements are

⟨S4| = ⟨S(2)
4 |0 + ⟨S(1)

4 |2 + ⟨S(0)
4 |4 .

The 1st, 2nd and 3rd terms represent the S-matrix elements of four-NS,
two-NS-two-R and four-R scattering, respectively.
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Evaluation of S-matrix

Since π1Lint = Gπ1l , ⟨S| is also written as
(
⟨Ω| = ⟨ωl|(ξ0 ⊗ G−1)

)

⟨S| =

∞∑
n=0

⟨Sn+3| =

∞∑
n=0

⟨ωl|ξ0P0 ⊗ P0π1Σn+2 ,

π1Σ = π1l(Î +HLint)
−1P̂ . (4)

with Σn+2 = Σπn+2 . We can write (4) by using B in the form of the
(classical) Dyson-Schwinger eq.

π1Σn+2 =

n∑
m=0

π1Bm+2

(
1

(m+ 2)!

(
P0π1−(Q+G−Ξπ1)π1Σ

)∧(m+2)
)
πn+2 .

Since Σl+2 with l ≥ n do not contribute in the r.h.s. we can recursively
determine Σn+2 from Σ2 = B2P2 .
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We extend it to the generating function with two parameters as

π1Σn+2(s, t) =

n∑
m=0

π1Bm+2(s, t)

(
1

(m+ 2)!

(
P0π1−∆(s, t)π1Σ(s, t)

)∧(m+2)
)
,

with Bm+2(s, t) = B(s, t)πm+2 and

∆(s, t) = Q+(π0 + (tX + s)π1)− tΞπ1 .

Here, ∆(s, t) is determined so that [η,Σ] = [Q,Σ] = 0 are preserved:

[η,Σ(s, t)] = [Q,Σ(s, t)] = 0 ,

and Σ(0, 1) = Σ . ∆(s, t) satisfies

∂s∆(s, t) = −{η,Q+Ξ} , ∂t∆(s, t) = −{Q,Q+Ξ} .
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Then, using Eqs.(1) and (2), we can show that

∂sΣ(s, t) = [η,ρ(s, t)] , ∂tΣ(s, t) = [Q,ρ(s, t)] ,

with a fixed ρ(s, t) (Note 2). Further, if we introduce an operation
O◦ (O = ξ0 or X0) on coderivation Dn defined by

π1O ◦ Dn =
1

n + 1

(
ODn + (−1)

|O||D|
Dn(Oπ1 ∧ In−1)

)
.

we find the relation

∂tΣ(s, t)−X0 ◦ ∂sΣ(s, t) = [Q, [η,T (s, t)]] , (5)

with T (s, t) = ξ0 ◦ ρ(s, t) holds . From (5) we have

∂t⟨Sn+3(s, t)| = ∂s⟨Sn+3(s, t)|X0 + · · · ,

for ⟨S(s, t)| , where dots represents the terms vanishing on Hphys and

⟨Sn+3(s, t)|X0 = ⟨Sn+3(s, t)|(X0 ⊗ In+2 + I1 ⊗X0 ∧ In+1) .
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Repeatedly using (6), we can find that

⟨Sphys
n+3 | =

n+1∑
p=0

⟨Sphys(0)
n+3 |2(n−p+1)(X0)

p . (6)

Here, ⟨Sphys(0)
n+3 | is the part of physical S-matrix element integrated over the

whole moduli space (or added up all the possible Feynman diagrams) without
inserting the PCOs. (Note 3)

Hence, the r.h.s. of (6) is independent of the position X0 inserted, and
nothing but the tree-level physical S-matrix obtained in the 1st-quantized
method.
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Summary

⋄ We have shown that the tree-level physical S-matrix of the heterotic string
field theory agrees with that in the 1-st quantized formulation.

♣ Similarly, we can show that the tree-level physical S-matrices of the type
II and the open superstring field theories also agree with those in the 1-st
quantized formulation.

♠ Extension to the loop-level: Loop L∞ (BV) algebra,　LSZ reduction
formula, unitarity, Heisenberg rep., asymptotic fields, and so on.
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Appendix

Note 1: Expanding the ghost zero-mode, the sates in Hres has the form

Hres ∋ Φ =
(
ϕNS − c+0 ψNS

)
+
(
ϕR − 1

2
(γ0 + 2c+0 G)ψR

)
.

EoMs are obtained by projecting π1L(e∧Φ) = 0 onto ψ-component.

NS : L+
0 (Φcl)NS + b+0 π

0
1Lint(e

∧(Φcl)NS) = 0 ,

R : G(Φcl)R +
b+0
2G

π1
1Lint(e

∧(Φcl)R) = 0 .

They can be rewritten as the form of integral eq. ((1− P0) is ommitted.)

Φ = Φ0 −
b+0
L+
0

π1L(e∧Φ) .
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Note 2: ρ(s, t) is determined by solving the recursion relation

π1ρn+2(s, t)

=

n∑
m=0

π1λm+2(s, t)
(
Dm+2(s, t)

)
Pn+2πn+2

−
n−1∑
m=0

π1Bm+2(s, t)

(
Dm+1(s, t) ∧

(
∆(s, t)π1ρ(s, t) + Q

+
Ξπ

1
1Σ(s, t)

))
Pn+2πn+2 ,

with ρ2(s, t) = λ2(s, t)P2π2 , where

DM(s, t) =
1

M !

(
P0π1 −∆(s, t)π1Σ(s, t)

)∧M

.
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Note 3:

For example, (one of the ) two-NS-two-Ramond scattering S-matrix element

⟨Sphys(0)
4 |20 is written as

⟨Sphys(0)
4 |20

= ⟨ωs|
(
Pphysπ

1

⊗ π1
1

(
L

(0)
2 |20 −L

(0)
2 |20

b+0
L+
0

L
(0)
2 |00 −L

(0)
2 |20

b+0
L+
0

L
(0)
2 |20

))
Pphysπ3

×
(
X0 ⊗ I3 + I1 ⊗X0 ∧ I2

)2
.
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