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The problem



In arXiv:1907.07688, Balthazar, Rodriguez and Yin (BRY)
computed the D-instanton induced scattering amplitude in two
dimensional string theory

— time + ¢=25 Liouville theory as the world-sheet matter theory

In this theory closed string ‘tachyons’ are massless particles

They analyzed the scattering amplitude of closed string
tachyons induced by a single D-instanton

— and compared this with the result obtained from a dual matrix
model description



For 1—1 scattering the leading contribution comes from the
product of two disk one point functions.

OO

Result:
8w Ne /9 §(w;y + wp) sinh(r|ws|) sinh(r|wa|)

N: An overall normalization constant
ds: string coupling constant

—w1,ws: energies of incoming / outgoing ‘tachyons’



At the next order, there are three contributions.
1. Two point function on the disk.

G 3)
1 2

N4

Result:
87 Ne /% g¢ 6(wy + wa) sinh(r|wy|) sinh(r|wa|) f(w1, w2)

f(w1, w2) is a known function that will be described later.



2. Product of disk one point function and annulus one point

function.

Result:

81 Ne "% gq 5(w; + wa) sinh(r|wi|) sinh(r|wa|) {g(wr) + 9(w2)}

d(w) is a known function that will be described below.



3. Product of two disk one point functions and the zero point
function on a surface of Euler number —1

— disk with two holes or torus with one hole.

OO

Result:

87 Ne /% gs 6(wy + wa) sinh(r|wy|) sinh(r|wg|) C

C: a real constant that can in principle be computed.



BRY compared the string theory result with the matrix model
results for imaginary wq, ws and found remarkable agreement.

Divergences in the open string channel forced them to express
the result in terms of two unknown constants which had to be
adjusted to fit the data.

These (and more) constants can be fixed from first principles
using insights from string field theory

— discussed earlier and will not be discussed any further in this
talk.



The same f,g,C can also be used to compute 1 — n amplitude.

String theory result to first subleading order:

n+1
2"2 7 Ne /9 gs 5(wr + -+ +wny) [ [ sinh(rlwil)
i=1

1+9s > f(wjwk)+9s Y 9(w)+Cds
i<k i
Matrix model result for the same amplitude:

n+1
227 Ne "% gs 5wt + - + wnyr) | [ sinh(r|wil)
i=1

|:1 —igs iwi (1 — iﬂwi coth(wwi)>]
j=1

i=1

with N = —1/(872) 10



Equality of string theory and matrix model results require:

n+1 n+1 n n

Z fwj, wk) + Zg(wj) +C = —iZwi (1 - wai coth(mui)>
j<k=1 =1 =1 i=1
forwy,- - ,wn >0, wnp1=—-—w1—-—wn

String theory results for f(wy, w2) and g(w):

1 1
(01, 2) T SR (e sinh(rloa) Jo &Y

ye/2(1 —y)lmee(1 4 Y) 2V 2(i)V e, 2(iY))uke

(w) =2 2;/00« " i (i) (=27 g, (2xit) o
I =2 simniw) o &Sy MY Grorin

<V|w|/2(27TX)>A .

01(z|7) is the odd Jacobi theta function and 0] (z|7) = 9,01 (z|7).

<V|w1 \/2(i)v\w2 1/2(iy))p: two point function on the upper half plane of a pair of primaries in the c=25
Liouville theory, carrying momenta |w¢|/2 and |wg|/2, inserted at i and iy.

<V‘w‘/2(27rx))A: one point function of the Liouville primary of momentum |w|/2 on an annulus described
by 0 < Re(w) < 7, w = w + 2 i t, with the vertex operator inserted at Re(w) = 27x. 1



n+1 n-+1 n n
> fwjw) + Y _g(w) +C =—i> w <1 =) coth(wwi)>
j=1 j=1

j<k=1 i=1

The integrands of f(wy,w2) and g(w) are manifestly real.
How can the above relation hold?

This is a generic problem in the world-sheet description of string
amplitudes.

World-sheet description always gives formally real amplitudes.

Whenever an amplitude is supposed to develop imaginary part,
the world-sheet expression diverges.

Sundborg; Amano, Tsuchiya; D’Hoker, Phong; Berera; Witten; - - -
f and g also diverge fromy — 1 and t — 0 regions respectively

— divergences in the closed string channel. 12



The solution



Strategy:

1. Understand the origin of the divergences using (closed) string
field theory.

2. Rectify them.

The world-sheet divergences always arise from the Schwinger
parameter representation of the propagator:

(K2 + m2)~" = /OC

J0
q’s become world-sheet variables like y etc. after appropriate
redefinition and the integral diverges for k? + m? < 0.

1
efs(szrmz)ds _ / dq qk2+m271’ g=eS
J0

Therefore we use the replacement rule:

1
/ dgq® ' = (a —ie)™!
0

Note: The —ic is included since the propagator is (k> + m? — i¢)~!

14



1
/ dgq® ! = (a —ie)!
J0
For generic o, this rule is not sensitive to parameter redefinition.
If we define new variable
q=h(q)=aq+bg’+ - < q=h(),

express the integral as

and then apply the replacement rule on q integral after
expanding the integrand in powers of g, we get the same result.



Divergent part of (w1, w2) (from closed string channel):

1
sinh(|w:|) sinh(r|wz])

oo 1
/ dP/ dy(1_y)—1+2P2—(w1+w2)2/22—2P2+(w1+w2)2/2
0 0
C(|w1|/2, |wz|/2,P) sinh(27P),

C(P4, P2, P3): the three point functions of Liouville primaries,
carrying momenta P4, P> and Ps.



Divergent part of f(w1, w2) (from closed string channel):

1 2 2 2 2
dP d —142P% —(w1+w2)°/2 2—2P +(w1+w2)?/2
sinh(x|or |) sinh(z|wz)) / / y(

C(|lw1|/2, |w2|/2,P) sinh(27P),

Call g=1-y and replace:

/ dy 1+2P (UJ1 +UJ2 / dq q—1+2P (UJ1 +w2) /2
— (w1 + wz) /2 —
This gives
1 /oo dP 1 2—2P2+(w1+w2)2/2
sinh(r|ws|) sinh(r|w2)) 2P2 — (1 + wp)?2/2 — e

C(|w1l/2, |w2|/2,P) sinh(27P),

— finite, but has both real and imaginary parts! 17



Divergent part of g(w):

v a0 N . _
sinh(r|w|) " /0 dP1/0 dP, C(|w|/2, P, P) sinh(27P;) sinh(27P,)
t1t2 w2

t1+t2 4

/ dt4 / dt, (t1 + tz)_1/2 exp [—t1 P$ -t P% +
0 0
t1, 2 are related to (t,x) via:

t4 227T(1—X)/t, t2=47TX/t

Integration over t;, t; diverges at large t¢,t, for w > 2(P¢ + P»)




Consider the integral:

1 1

o0
|:/ di
e MW D)2+ P2—ic 302+ P2 —ic

— has poles at & = £(2P2 — i€), w £ (2P4 — ie)

— can be evaluated to give a finite integral



I /°° d 1 1
= w
o —},(w—&)2+P$—ie —},&2+P§—ie
Schwinger parameter representation:
|:/ dt1/ dtz/ A5 exp—ts {4 (o — D) + 3} —tof — 42 + PR
0 0 —o00

Wick rotate . — iu and carry out the u-integral using Gaussian
integration

_ o o ) .
I = 2i dt dta(t; +t2) V2exp | —w? — t;P? — t,P3
ﬁ/o 1'/0 2(1 2) p 4(t1+t2)w 17 22

— diverges for w > 2(P¢ + Py)

Replace world-sheet expressions of this kind by the top
expression which has no divergence!

This procedure is robust, i.e. does not change under
reparametrization of the t;’s. 20



Divergent part of g(w):

1w / dP1/ dP; C(|w|/2, P4, P2) sinh(27P4) sinh(27P3)
sinh(r|w|) 0 0
o o ity w?
—-1/2 o 2 2 12w
/0 dt, /0 dt, (t1 + tz) exp [ tP]—tPs+ Lttt 4

%.;77_1/2/ dP1/ dP; C(|w|/2, P4, P2) sinh(27P4) sinh(27P3)
sinh(7|w|) 0 0
1 1

]
~: — d~ -
2lﬁ/ Y w02+ P — 12+ PE Qe

— has finite real and imaginary parts!

21



Pole positions in the & plane:

—2P5 +ie x X w— 2Pq +ie

x 2Py —le  x w+2P¢ — e

We can evaluate this by rotating the contour to be along the
imaginary axis, picking up the residue at w — 2P4 + ie.

1 —1/2 [¥ w ] ]
— / dP4 / dP;y C(|w]|/2, Py, P2) sinh(27P4) sinh(27P3)
sinh(w|w|) 0 0

1 1

1 "o
—— du —  real
2w /700 Tu+iw)2 +P? 1u2+P3

1 w/2 w 1 4
+7/ dP / dP, C(|w|/2, Py, Py) sinh(27Py) sinh(27Py) — i
sinh(x|w]) Jo 1), P2 CUIwI/2. Py, Py)sinh(2rPy) sinh( 2)P1 (2Py 1 2P; — w — ic)(2Py — 2Py + @)

22



This procedure gives manifestly finite f(wy, w2) and g(w).

Furthermore, from these expressions one can get analytic
expressions for the imaginary parts of f and g.

1. .
fimaginary(w1 , LU2) = > 17wt wsz {COth(T(UJ1) + COth(T(UJz)} 5|gn(w1 + wz)

i 1
gimaginary(w) = %T |0J‘ {w COth(ﬂ'w) — 71'}

These exactly reproduce the matrix model result for 1 — n
tachyon scattering amplitude which is purely imaginary!

Note: If we had just wanted the imaginary parts, they could be
found using Cutkosky rules of string field theory. Pius, AS.

23



With the imaginary parts out of the way, the agreement between
the matrix model and string theory results would require

n-+1 n+1
Z freal(wj,wk) + Z greal(CUj) -+ C =0
j<k=1 j=1
forwy,- - ,wn >0, wnp1=—-—w1—- - —wn

— can be verified numerically in principle for real w;’s.
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