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Inverse Semigroups

A semigroup is a set with an associative binary operation ∗.
It generalizes groups as the elements need not have inverses.

We can still introduce inverses to the elements and elevate the
semigroup to an inverse semigroup where for every element x we
have y

x ∗ y ∗ x = x ; y ∗ x ∗ y = y .

x and y are unique inverses to each other.
This structure is still not a group as there is no unique identity
element. We now have partial identities.
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Inverse Semigroups and Quasicrystals (M.V. Lawson et. al
00)



Symmetric Inverse Semigroups (SISs)

A SIS is an analog of the permutation group in semigroup theory.

To construct it we start with a set S = {1, 2, · · · , n} of order n.
Then we consider the set of partial bijections on this set whose
elements form the elements of the SIS, denoted by Snp where p is
the order of the subset where the partial bijections act.
As an example consider S21 . There are four partial functions which
we denote by {x1,1, x1,2, x2,1, x2,2}.
They obey the following composition rule

xi ,j ∗ xk,l = δjkxi ,l .
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Diagrammatica for SISs
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Diagrammatica for S3
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A Matrix Representation

From the algebra of S21 and S31 it is easy to see that the elements
are nothing but the ei ,j matrices that span the space of 2 by 2 and
3 by 3 matrices respectively.

x1,1 =

(
1 0
0 0

)
, x1,2 =

(
0 1
0 0

)
,

x2,1 =

(
0 0
1 0

)
, x2,2 =

(
0 0
0 1

)
, .

This takes us one step closer to SUSY algebras !



A Matrix Representation

From the algebra of S21 and S31 it is easy to see that the elements
are nothing but the ei ,j matrices that span the space of 2 by 2 and
3 by 3 matrices respectively.

x1,1 =

(
1 0
0 0

)
, x1,2 =

(
0 1
0 0

)
,

x2,1 =

(
0 0
1 0

)
, x2,2 =

(
0 0
0 1

)
, .

This takes us one step closer to SUSY algebras !



A Matrix Representation

From the algebra of S21 and S31 it is easy to see that the elements
are nothing but the ei ,j matrices that span the space of 2 by 2 and
3 by 3 matrices respectively.

x1,1 =

(
1 0
0 0

)
, x1,2 =

(
0 1
0 0

)
,

x2,1 =

(
0 0
1 0

)
, x2,2 =

(
0 0
0 1

)
, .

This takes us one step closer to SUSY algebras !



Integrable SUSY Spin Chain



Supersymmetry Algebra in 0 + 1 Dimensions

The SUSY algebra is generated by an operator Q, known as the
supercharge.
It is nilpotent and satisfies the following algebra

{Q,Q†} = H ; Q2 = (Q†)2 = 0.

H is the Hamiltonian and is supersymmetric as

[H,Q] = [H,Q†] = 0

follows trivially from the algebra of the supercharges.
It follows that the spectrum satisfies

E ≥ 0.
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Constructing Supercharges using SISs

In S21 build supercharge as

q = x1,2 ; q† = x2,1.

It introduces a grading of the Hilbert space

I≡ Hb II≡ Hf

|x1,1〉
|x1,2〉

|x2,1〉
|x2,2〉

q†

q
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Supercharges out of SISs...

A more non-trivial supercharge built out of S31 ,

q =
x1,2 + x1,3√

2
; q† =

x2,1 + x3,1√
2

.

I≡ Hb II ⊕ III ≡ Hf

|x1,1〉
|x1,2〉
|x1,3〉

|x2,1〉
|x2,2〉
|x2,3〉

|x3,1〉
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One-Particle SUSY Systems and Witten Index

For the S21 case the Hamiltonian is trivial.

h = {q, q†} = x1,1 + x2,2 = 1!

There are no zero modes and hence Witten index (Tr(−1)F ) is 0 !

The supercharges in this case satisfy the algebra of fermionic
creation and annihilation operators.
But for the S31 case we have

h = M + P = x1,1 +
x2,2 + x3,3 + x2,3 + x3,2

2
.

Now the supercharges satisfy a centrally extended fermion algebra
with

C =
x2,3 + x3,2 − x2,2 − x3,3

2

being the central extension.
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Witten Index for S3
1 System

There are three unpaired “fermionic” zero modes making the
Witten index 3 ! ∣∣z1〉 =

1√
2
|x2,1 − x3,1〉,∣∣z2〉 =

1√
2
|x2,2 − x3,2〉,∣∣z3〉 =

1√
2
|x2,3 − x3,3〉.

With the fermion number operator F as

F = x2,2 + x3,3.

The “bosons” and “fermions” are denoted by
∣∣f 1,2,3〉 and

∣∣b1,2,3〉.
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Building SUSY Chains - Non-Interacting

Associate local supercharges to sites, qi .
A non-interacting SUSY chain is obtained from

Q =
∑
i

aiθi , ai ∈ C,

θi =
∏

1≤j<i

e iπFjqi =
∏

1≤j<i

(1− 2Fj) qi , i = 1, . . . ,N

{θi , θj} = 0.
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Building SUSY Chains - Interacting

Long-Range Model -
Q = q1 · · · qN .

Short-Range Model -

QI =
N−2∑
i=1

bi ,i+1,i+2 θiθi+1θi+2 , bi ,i+1,i+2 ∈ C.

QII =
N−2∑
i=1

ci ,i+1,i+2 Miθi+1Mi+2 , ci ,i+1,i+2 ∈ C.

QIII =
N−2∑
i=1

di ,i+1,i+2 Piθi+1Pi+2 , di ,i+1,i+2 ∈ C.
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The Local Integrals of Motion (LIOMs)

In all of the examples of the global supercharges we have

[hi ,Q] = 0 ; ∀i ∈ {1, · · ·N}.

Thus these models are integrable with N LIOMs.

The states of the system are filled up by∣∣∣f 1,2,3i

〉
,
∣∣∣b1,2,3i

〉
,
∣∣∣z1,2,3i

〉
which are the local fermions, bosons and zero modes.
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The Witten Index

The Witten Index for these systems is −3N under the grading
operator

W =
N∏
j=1

e iπFj =
N∏
j=1

(1− 2Fj) , W 2 = I.

The index is stable under SUSY preserving perturbations

∆kH =
N∑

i1=1

· · ·
N∑

ik=1

C (i1, · · · , ik)(eα1Mi1 + Pi1) · · · (eαkMik + Pik ).

It is also stable under deformed supercharges

qd =
1√

|a|2 + |b|2
[ax1,2 + bx1,3] .
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Related Work

- (H. Nicolai et. al. 77) has early works on Lattice SUSY and spin
systems before Witten’s SUSY QM.

Q =
∑
i∈Z

a2i−1a
∗
2ia2i+1.

- ( P. Fendley et. al. 03, B. Swingle et. al. 13)

Q =
N∑
i=1

qiM<i>

Choose
Q = QII + θ1M2 + MN−1θN .

More recent works on Lattice SUSY spin systems including
dynamical lattice SUSY systems.
- H.Moriya studies ergodicity and localization in the Nicolai SUSY
many body system in arXiv:1610.09142.
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Examples of Non-Integrable Many-Body SUSY Systems

Another possible grading of S31 is

II ≡ Hb I + III ≡ Hf

x2,1
x2,2
x2,3

x1,1
x1,2
x1,3

x3,1
x3,2
x3,3

q̃†

q̃



Non-Integrable SUSY Systems.....

Choose the supercharge

Q ′ = FQ̃F−1,

with Q̃ is a global supercharge constructed using the new graded
Hilbert space
and F is an invertible element made of the supercharge Q built out
of the original grading.

F = eaQ = 1 + aQ.

Integrability is now broken as there are no longer LIOMs due to the
loss of the unique grading of the local Hilbert spaces.
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Parasupersymmetry from SISs

Supersymmetric systems can be thought of as dynamics on graded
Hilbert spaces.

Parasupercharge satisfies

qr+1 = 0.

where r gives the number of gradings of the Hilbert space. For
r = 2

q2q† + qq†q + q†q2 = 4qH.

Use the SIS, S41

H0 = I + II, H1 = III, H2 = IV.

Build parasupercharge

q = x1,3 + x2,3 + x3,4, q† = x3,1 + x3,2 + x4,3.
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Semigroup Fredkin and Motzkin Spin Chains



Motzkin Spin Chain (P. Shor et. al. 2014)

- The local Hilbert space is given by
{u1, u2, · · · , us , 0, d1, d2, · · · , d s}, where u, d and 0 are dubbed
“up”, “down” and “flat” steps respectively.
- The system lives on a 1D chain and we can geometrically
interpret the above steps as being along the (1, 1), (1,−1) and
(1, 0) directions respectively. s denotes the color of the step.
- For a 2n-step/link chain the many body states are 2D paths.
Motzkin walks are paths which start at (0, 0), end at (2n, 0), and
always stays in the positive quadrant.
- The uniform superposition of such paths form the ground state of
the Motzkin spin chain and has a half chain EE

S = 2 log2(s)

√
2σn

π
+

1

2
log2(2πσn) + O(1),

with σ =
√
s

2
√
s+1

and γ is Euler constant.



Local Hilbert Space : Colored Motzkin

| ↑〉

| ↓〉

≡

≡

| ↑k〉

| ↓k〉

≡

≡

| →〉 ≡



Motzkin Spin Chain Hamiltonian : HMotzkin

- The local, frustration free Hamiltonian is built out of projectors
to local equivalence moves∣∣∣Dk

〉
=

1√
2

[∣∣∣0dk
〉
−
∣∣∣dk0

〉]
∣∣∣Uk

〉
=

1√
2

[∣∣∣0uk〉− ∣∣∣uk0
〉]

∣∣∣F k
〉

=
1√
2

[
|00〉 −

∣∣∣ukdk
〉]

Πj ,j+1 =
s∑

k=1

[∣∣∣Dk
〉
j ,j+1

〈
Dk
∣∣∣+
∣∣∣Uk

〉
j ,j+1

〈
Uk
∣∣∣+
∣∣∣F k
〉
j ,j+1

〈
F k
∣∣∣]



Local Equivalences : Colored Motzkin Chain



HMotzkin.....

-The boundary term is

Πboundary =
s∑

k=1

[∣∣∣dk
〉
1

〈
dk
∣∣∣+
∣∣∣uk〉

2n

〈
uk
∣∣∣]

- A color balancing term

Πcross
j ,j+1 =

∑
k 6=i

∣∣∣ukd i
〉
j ,j+1

〈
ukd i

∣∣∣
- Finally

HMotzkin = Πboundary +
2n−1∑
j=1

[
Πj ,j+1 + Πcross

j ,j+1

]
.

This is essentially a spin 1 chain. Model is gapless with gap scaling
as n−c with c ≥ 2.



Fredkin Spin Chain (V. Korepin et. al. 2016)

- The local Hilbert space is spanned by {|↑〉, |↓〉}.
- Geometrically we have only “up” and “down” steps and no “flat”
steps. The “up” step points along (1, 1) and the “down” step
points along (1,−1).
- The states on the global Hilbert space are mapped to 2D Dyck
walks which again start at (0, 0) and end at (2n, 0) without leaving
the first quadrant.
- Notice that this is an uncolored local Hilbert space and the EE
scales as

S =
1

2
log(L) + O(1)



Local Hilbert Space : Colored Fredkin Chain

| ↑〉

| ↓〉

≡

≡

| ↑k〉

| ↓k〉

≡

≡



Fredkin Spin Chain Hamiltonian : HFredkin

- The local, frustration free Hamiltonian is built out of projectors
to local equivalence moves

|Uj〉 =
1√
2

[|↑j , ↑j+1, ↓j+2〉 − |↑j , ↓j+1, ↑j+2〉] ,

|Dj〉 =
1√
2

[|↑j , ↓j+1, ↓j+2〉 − |↓j , ↑j+1, ↓j+2〉] .

Πj , j+1, j+2 = |Uj〉〈Uj |+ |Dj〉〈Dj |
Boundary term is

Hboundary = [|↓1〉〈↓1|+ |↑2n〉〈↑2n|]

HFredkin = Hboundary +
2n−2∑
j=1

Πj , j+1, j+2.

- This is a spin 1
2 chain. Has global U(1) symmetry.



Local Equivalences : Colored Fredkin Chain

∼ ∼

∼ ∼



Colored Fredkin Spin Chain : Hcolored ,Fredkin

- Include s colors to each of the local basis states. The local
equivalence moves now become∣∣∣Uc1, c2, c3

j

〉
=

1√
2

[∣∣∣↑c1j , ↑c2j+1, ↓c3j+2

〉
−
∣∣∣↑c2j , ↓c3j+1, ↑c1j+2

〉]
,∣∣∣Dc1, c2, c3

j

〉
=

1√
2

[∣∣∣↑c2j , ↓c3j+1, ↓c1j+2

〉
−
∣∣∣↓c1j , ↑c2j+1, ↓c3j+2

〉]
.

Bj ,j+1 =
∣∣∣↑c1j , ↓c2j+1

〉〈
↑c1j , ↓c2j+1

∣∣∣
Cj ,j+1 = Π

1√
2
[|↑c1j , ↓c1j+1〉−|↑c2j , ↓c2j+1〉].

S ∼ 2√
π

log(s)

√
(n + r)(n − r)

n
+ +

1

2
ln

(n + r)(n − r)

n
+ O(1).



A Modification of the Motzkin Spin Chain (F.Sugino, PP,
2017)

- Change the local Hilbert space to {|xa,b〉; a, b ∈ {1, 2, 3}}. The
“up” steps pointing along (1, 1) occur when a < b, “down” steps
pointing along (1,−1) occur when a > b and the “flat” steps
pointing along (1, 0) occur when a = b. These new indices can be
thought of as arrow indices or more mathematically they are known
as semigroup indices.
- This introduces different kinds of paths, fully connected, partially
connected and disconnected paths.
- The maximum heights reached in a path is now smaller.



Different Kinds of Paths

1 1 1

1 1 1

1 1 1 1 1 1

2 2 2

2 2 2 2

2 2 2 2 2 2

3

3 3



Maximum Heights

1 100 22 33 44 55

|u〉

|u〉

|u〉

|u〉

|u〉
hmax = 5 hmax = 3

1

12

23

3



∼

∼

∼

∼

∼ ∼

+1
2

xa,b xa,b

xa,b xa,b

xa,a

xa,a

xb,b

xb,b

x1,1 x1,1

x2,2 x2,2

x1,2

x1,2

x1,3

x1,3

x1,3

x2,1

x2,1

x3,1

x3,1

x3,1

x2,3

x2,3

x3,2

x3,2

a < b , a, b ∈ {1, 2, 3}

a > b , a, b ∈ {1, 2, 3}



Projectors to the Modified Local Equivalence Moves

Uj ,j+1 =
3∑

a,b=1;a<b

Π
1√
2

[∣∣∣(xa,b)j ,(xb,b)j+1

〉
−
∣∣∣(xa,a)j ,(xa,b)j+1

〉]
,

Dj ,j+1 =
3∑

a,b=1;a>b

Π
1√
2

[∣∣∣(xa,b)j ,(xb,b)j+1

〉
−
∣∣∣(xa,a)j ,(xa,b)j+1

〉]
,

Fj ,j+1 = Π

√
2
3 [|(x1,1)j ,(x1,1)j+1〉− 1

2(|(x1,2)j ,(x2,1)j+1〉+|(x1,3)j ,(x3,1)j+1〉)]

+Π
1√
2
[|(x2,2)j ,(x2,2)j+1〉−|(x2,3)j ,(x3,2)j+1〉],

Wj ,j+1 = Π
1√
2
[|(x1,2)j ,(x2,1)j+1〉−|(x1,3)j ,(x3,1)j+1〉]

+µΠ
1√
2
[|(x3,1)j ,(x1,3)j+1〉−|(x3,2)j ,(x2,3)j+1〉].



Boundary, Balancing and Bulk, Disconnected Terms

Hleft = Π|(x2,1)1〉 + Π|(x3,1)1〉 + Π|(x3,2)1〉,
Hright = Π|(x1,2)n〉 + Π|(x1,3)n〉 + Π|(x2,3)n〉.

Bj ,j+1 = Π|(x1,3)j ,(x3,2)j+1〉 + Π|(x2,3)j ,(x3,1)j+1〉.

Hbulk, disconnected =
n−1∑
j=1

3∑
a,b,c,d=1;b 6=c

Π

∣∣∣(xa,b)j ,(xc,d)
j+1

〉
.

HS31 ,Motzkin = Hleft +Hright +Hbulk +λ
2n−1∑
j=1

Bj ,j+1+Hbulk, disconnected .



Ground States

-This system has a ground state degeneracy (GSD) of 5 given by
the equivalence classes, {11}, {12}, {21}, {22} and {33}.
- We can use techniques from enumerative combinatorics to
compute the normalization of these states.

+ +

+

x1,1 x1,2

x1,3x1,3

x2,1

x3,1 x3,2

Pn−1, 1→1 Pn−2−i, 1→1

Pn−2−i, 1→1 Pn−2−i, 2→1

Pi, 2→2

Pi, 3→3 Pi, 3→3



Quantum Phase Transition

λ0

µ

Sn = O(1)

S
n
∝

lo
g
(n
)



Colored S3
1 Motzkin Chain

- We introduce a color degree of freedom to each of the basis

states,
∣∣∣xka,b〉, k ∈ {1, 2}.

Hbalanced = µ

n∑
i=1

Cj +
n−1∑
j=1

[
Uj ,j+1 + Dj ,j+1 + F balanced

j ,j+1

+W balanced
j ,j+1 + Rbalanced

j ,j+1 + Hleft + Hright

]
with new equivalence moves

Cj =
3∑

a=1

Π
1√
2
[|(x1a,a)j〉−|(x2a,a)j〉],

Rbalanced
j ,j+1 =

3∑
a,b,c=1; b>a,c

[
Π|(x1a,b)j ,(x2b,c )j+1〉 + Π|(x2a,b)j ,(x1b,c )j+1〉] .



Quantum Phase Transition

HS31 , colored Motzkin = Hbalanced + Hbulk,disconnected .

SA, 1→1 = (2 ln 2)

√
2σn

π
+

1

2
ln n +

1

2
ln(2πσ) + γ − 1

2
+ ln

3

21/3

+(terms vanishing as n→∞)

Sn ∝ log(n) Sn ∝ √
n

µ
µ = 0



Modified Fredkin Chain (F.Sugino, PP, V.Korepin, 2018)

∼

∼

∼ ∼

1 1 1

1 1 1

1 1 1 1 1

2 2 2 2

2 2 2 2

2

2

3

3

3 3 3 3 3



Modified Fredkin Chain Hamiltonian

Uj ,j+1,j+2 = Π
1√
2
[|(x1,2)j ,(x2,3)j+1,(x3,2)j+2〉−|(x1,2)j ,(x2,1)j+1,(x1,2)j+2〉]

Dj ,j+1,j+2 = Π
1√
2
[|(x2,3)j ,(x3,2)j+1,(x2,1)j+2〉−|(x2,1)j ,(x1,2)j+1,(x2,1)j+2〉]

Wj ,j+1 = Π
1√
2
[|(x1,2)j ,(x2,1)j+1〉−|(x1,3)j ,(x3,1)j+1〉]

+λ1Π
1√
2
[|(x3,1)j ,(x1,3)j+1〉−|(x3,2)j ,(x2,3)j+1〉],

HF = Hleft+Hbulk, connected+Hright+λ2

n−1∑
j=1

Bj ,j+1+Hbulk, disconnected .



Quantum Phase Transition

-The GSD is 4, we no longer have the {33} equivalence class.
λ1 = λ2 = 0 is a special phase where there is an extensive GSD in
each equivalence class.
- When λ1, λ2 > 0 the Hamiltonian is no longer frustration free
and is not shown in the figure.

0

λ1

λ2

S
n
∝

lo
g
n

Sn = O(1)



Excitations

- There are three kinds of excitations in these systems, fully
connected, partially connected and disconnected excitations.
- The partially connected excitations are localized both in the low
energy and high energy sector.

|x2,3〉i 〈x1,2|B|Pn, 1→1〉 =

hmax,i∑
h=0

[∣∣∣P(0→h)
i−1, 1→1

〉
⊗ |x2,3〉i ⊗

∣∣∣P(h+1→0)
n−i , 2→1

〉]
.



Partially Connected Excitations

A low energy example

1 1 1 1 1 1 1 1

2 2 23 3 3

+

A high energy example

r n− r

Pn−r, 1→1

1 1 1 1

2 2 2 2



Localization

- The partially connected excitations are localized as can be seen
by computing connected 2-point correlation functions.

〈pce|θi (t)θj(0)|pce〉 − 〈pce|θi (t)|pce〉〈pce|θj(0)|pce〉 = 0,

θi (0) = |xa1,b1〉i 〈xa2,b2 |, a1 6= a2 and b1 6= b2,

θi (0) =
∑
a,b

ka,b|xa,b〉i 〈xa,b|, a, b ∈ {1, 2, 3}.



Thank you !
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