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Introduction

Spin chains are important for high energy theory: N. Nekrasov,
S. Sahatashvill. arXiv:0908.4052

K. Costello, E. Witten, M. Yamazaki related Chern-Simons Theory
to Yang-Baxter equation arXiv:1709.09993

C. Herzog described entanglement entropy by holography
arXiv:1605.01404

I will lecture about entanglement in spin chains.



Properties

For massive theories [gap-full Hamiltonians] the area law is valid
Srednicki 1993. In 1D the entropy of a large block of spins
approaches a constant as the size of the block x increases. VBS is
a good example.

For massless theories the entropy can increase without a bound.
For example in CFT

EE ⇠ (c/3) logx

1994 Holzhey, Larsen and Wilczek. This is applicable to XXX
chain of spins 1/2:

HXXX = �
X

j

(1� ~�j+1 · ~�j+2)

Can we change local interaction in order to increase EE ?



Fredkin model

I The model represents a chain of spin k - 1/2 with a fully local
hamiltonian (next nearest neighbour interaction). The spin
1/2 case is particularly simple.

I The model exibits an unusually high level of entanglement for
a local spin chain model.

I The model is Frustration Free, which allows us to obtain an
exact expression for the ground state.

I The ground state of the model is described by Combinatorics
closely related to the Catalan numbers.



Thespin1/2Hamiltonian

Hbulk=
X

j

(1+�
z
j)(1�~�j+1·~�j+2)+(1�~�j·~�j+1)(1��

z
j+2)

IThehamiltonianabovecanberewrittenintermsofthe
FredkingateFijkwhichpermutessitesjandkifsiteiisinthe
state|"i.Itisaninvolutivepermutationmatrix,andassuch
1�Fijkisahermitianprojector.Intermsofthiswehave:

Hbulk=
X

j

(1�Fj,j+1,j+2)+(1��
x
j+2Fj+2,j+1,j�

x
j+2)=

X

j

1�fj

IThefi=Fj,j+1,j+2�x
j+2Fj+2,j+1,j�x

j+2generatea
representationofaninfinitecoxetergroupthatgeneralizesthe
permutationgroup.

IWewillalsostudythemodelwithaddedboundaryterms
H@=|#1ih#1|+|"Nih"N|whichmakethegroundstate
nondegenerate.



The spin 1/2 Hamiltonian: initial remarks

Hbulk =
X

j

(1 + �z
j )(1� ~�j+1 · ~�j+2) + (1� ~�j · ~�j+1)(1� �z

j+2)

I The Hamiltonian is symmetric if we map the lattice site j to
N � j and Sz ! �Sz , if we interpret Sz as spins along the
lattice this is just reflection symmetry.

I The Hamiltonian commutes with Z =
P

j �z
I H is positive semidefinite.

I Without boundary terms, the state |""" · · ·i is a ground state
of every term. The Hamiltonian is unfrustrated.

I In the 1-magnon subspace(all spins except one pointing up
except one) our Hamiltonian reduces to the Heisenberg XXX
Hamiltonian H =

P
j 1� ~�j · ~�j+1. Therefore, the two have

the same spin wave solutions.



Classifying the ground states: view basis states as paths

I Identify basis states with paths on an integer lattice assigning
spin up to a step up and spin down to a step down, ex:
|"#"i = |/\/i,|#"#i = |\/\i.

I This map defines a path uniquely up to a constant shifting of
the height axis, by convention we will set the height of the
lowest point of the path to zero.
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Figure 2: Caption goes here.



Classifying the ground states: rewrite the Hamiltonian

I We rewrite the Hamiltonian in terms of projectors

*1.0*1.0

H  =

+

i

Figure 3: Caption goes here.



Classifying the ground states: Defining an equivalence

relation on paths

I Our strategy is then to define a local equivalence relation on
paths. We say that two paths are equivalent if they are
related by a sequence of the Fredkin moves below.

I The equivalence relation allows us to move a /\ peak to any
point in the path.

I The moves manifestly conserve the lowest point and the
endpoints of the path.
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Figure 4: Caption goes here.



The Schmidt decomposition in spin 1/2

I The ground state |C (N)i has a Schmidt decompositionP
m
p
pm |C0,m(L)i ⌦ |Cm,0(N � L)i.

I The Schmidt coe�cients in our case are given by

pm = |C0,m(L)||C0,m(N�L)|
C(N) which is nonzero for L+m even.

I Using some combinatorics we get

|Ca,b(L)| =
✓

L
L+a+b

2

◆
�
✓

L
L+a+b

2 + 1

◆

for L+ a+ b even, 0  a+ b < L, which we can plug into our
expression.

I Plugging this into the Schmidt coe�cients and approximating
binomials with Gaussians, one gets

ph
h2

Z
exp

✓
�h2

n(l � n)

n

◆



The entanglement entropy in spin 1/2

I The Schmidt rank, is the number of nonzero Schmidt
coe�cients.

I The entanglement entropy is defined as
S =

P
m �pmLog(pm).

I The Schmidt coe�cients themselves are also known as the
entanglement spectrum.

I The Schmidt rank in our case is
⌅
L
2

⇧
.

I Our approximate entanglement spectrum is isomorphic to the
Maxwell-Boltzmann speed distribution. This has an entropy
S ⇡ 1

2Log(
L(N�L)

N ) + O(C ). Comparing numerically to exact
values, one gets a constant term of roughly 0.437 bits.{ {L N - L



Spin 3/2 and up: colored Dyck walks

I In spin 3/2 and higher, we can consider colored paths.

I In the case of 3/2, we can for example identify m = 3/2 with
a red up step, m = 1/2 with a blue up step, m = - 1/2 with a
blue down step, and m = -3/2 with a red down step.

I To analyze what happens when we consider colored paths and
why this enables polynomial rather than logaritmic entropy
growth, we need to mention the concept of matched steps
and colored paths.



Spin 3/2 and up: colorings and matchings

I An up step and a down step are matched if the the up step is
of the form (i , j) ! (i , j + 1) and the down step is the first
down step occurring after our up step which is of the form
(i 0, j + 1) ! (i 0 + 1, j). Equivalently, two steps are matched if
the subpath between them is a Dyck path.

I A properly colored path is a colored path such that matched
steps have the same color.
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Figure 7: Caption goes here.



Spin 3/2 and up: colored Fredkin Moves, coloring rules

I Fredkin moves will move peaks along with their colors.
I In addition to the Fredkin moves, we introduce the coloring

rules, which allow us to recolor matched peaks and which
forbid matched pairs from having di↵erent colors.

*5.5*5.5

~

~
~

Figure 8: Caption goes here.



Spin 3/2 and up: colored Fredkin Moves, coloring rules

I The colored Fredkin moves allow us to reduce any path with
colored steps to one where all matched steps are adjacent to
their match. The coloring rules can then be applied to recolor
matched pairs or to exclude invalid path colorings.

I This allows us to define equivalence classes of colored paths
which are defined only by their endpoints, and the colors of
the unmatched steps to their left and right.
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Figure 9: Caption goes here.



Spin 3/2 and up: Hamiltonian

I These rules can be implemented by the following
SU(k)-invariant Hamiltonian of the form H = HF + HX + H@ .
We will look at the three terms in turn.

I HF , which implements the Fredkin moves, can be expressed
using the operators P+

j , P�
j which project onto up/down

steps at sites j without regard for colors, and the cyclic
permutation operators Ci ,j ,k which cyclically permute the sites
i,j,k. It is then defined as:

HF =
N�2X

j=1

P+
j P+

j+1P
�
j+2 + P+

j P�
j+1P

+
j+2�

�P+
j P+

j+1P
�
j+2Cj ,j+1,j+2 � C †

j ,j+1,j+2P
+
j P+

j+1P
�
j+2+

+P+
j P�

j+1P
�
j+2 + P�

j P+
j+1P

�
j+2�

�P+
j P�

j+1P
�
j+2C

†
j ,j+1,j+2 � Cj ,j+1,j+2P

+
j P�

j+1P
�
j+2



Spin 3/2 and up: Hamiltonian

I The matching term HX , is defined using local SU(k)
generators T a

j acting on the color space. Up steps lie in the
fundamental representation of SU(k), while down step colors
lie in its conjugate repesentation.

I The color matching then simply corresponds to projecting the
colors of matched pairs onto SU(k) singlets.

I The Hamiltonian then is symmetric under SU(k), since it
manifestly commutes with generators T a =

P
j T

a
j .

HX =
N�1X

j=1

P+
j P�

j+1

"
X

a

(T a
j + T a

j+1)
2

#

H@ = P�
1 + P+

N



Spin 3/2 and up: Ground state

I The ground state with boundary terms is then the sum of
properly colored Dyck paths.

I The ground states with open boundaries are sums of properly
colored paths, with a fixed coloring of the unmatched pairs.



Spin 3/2 and up: Schmidt decomposition

I The Schmidt coe�cients in our case are closely linked to the
spin 1/2 case.

I Schmidt decomposition looks likeP
m,c

p
qm,c |Cm,c(L)i ⌦ |Cm,c(N � L)i where c sums over all

colorings of the steps matched across the boundary.

I we have qm,c = k�mpm with degeneracy km due the the free
color index.

I The Schmidt rank is thus
P

h k
2h for even half-chain lengths

and
P

h k
2h+1 for odd half-chains.



Spin 3/2 and up: Entanglement entropy

I With the km degeneracy, the entropy can simply be written asP
m �pm log(kmpm) =

P
m �pm[log(pm) +m log(k)]

I The first term is just the spin 1/2 entropy, while the second is
log(k) times the expectation value of the path height, which
scales as O(

p
N)

I We can work out the coe�cients, which eventually gives us
2p
⇡
log(k)

q
2L(N�L)

N .

I However, this last term has an unexpected symmetry.

I It turns out to be shift-invariant...{ {L N - L{ L



Reference

I O. Salberger and V. Korepin, Entangled spin chain,Rev.
Math. Phys. 29(10) (2017) 1750031, 20 pp

I D. E. Kharzeev, E. M. Levin. Deep inelastic scattering as a
probe of entanglement, Phys. Rev. D 95, 114008 (2017)


	Introduction
	The Hamiltonian
	The ground state
	our approach

	spin 3/2

