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1. Introduction




Invitation: 2d percolation

@ A stat. mech models such as Ising, Q-state Potts model or
percolation can be formulated in terms of random clusters

@ Percolation: L x L random matrix of 0, 1. Phase transition signaled
by the finite probability of one point being connected to the boundary

@ No symmetry, however at p = p. configurations are scale
(conformally) invariant! [Langlands-Pouliot-Saint Aubin 92]



Invitation: 2d percolation (see also G. Delfino Ann. Phys. 360
(2015) and Cardy’s book)

o Critical exponents obtained from mapping to the Q-color Potts model
(Coulomb Gas) +BPZ (i.e. Conformal Field Theory)

o Textbook example:

prob. to be connected
to the boundary

) = Ao poy
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@ However (not in textbooks): Let Z the percolation partition
function on a L x L matrix

Z(L) =1= as a CFT, percolation has zero central charge!

@ Earlier influential works: Nienhuis, Duplantier-Saluer,
Dotsenko-Fateev (especially for the Q-color Potts model)



A deeper insight: Cardy formula

@ Back in 1992, J. Cardy showed how to adapt techniques of Boundary
Conformal Field Theory to percolation (or a ¢ =0 CFT)

Vertical crossing

m(m) =35k 2R (3.3, 4.m) 5 n = F(L/R)

@ A result proved by S. Smirnov (Field's medal) in 2009



Gurarie and Ludwig 6 number at ¢ =0

¢h(X2 ¢h(X1)

@ Consider a CFT with c=0o0n a
bounded planar domain

@ Map to the upper half plane and ¢p(z)
be a boundary field



Gurarie and Ludwig 6 number at ¢ =0

Pn(x2) _ dn(x)

@ Consider a CFT with c=0o0n a
bounded planar domain

@ Map to the upper half plane and ¢p(z)
be a boundary field

@ There is an obvious problem for the OPE at c=0if h# 0

stress tensor
lim én(2)én(0) = — 14272 T(©@) +
lim én(2)6(0) = 37 |1+ 2

@ Mixing of the null field T(z) with another (logarithmic) field t(z) of
the same dimensions [Gurarie-Ludwig 04]

1

lim 64(2)64(0) = 37 1+ 222(£(0) + Iog()T(O) + ..



An useful device: Q-color Potts model [wu 82]

@ The Hamiltonian is given by (J > 0)

HQ = _JZ(X,y> 5s(x),s(y)a S(X) =1,...,Q

@ Graph expansion [Fortuin-Kasteleyn 70], here p =1 — e~/

p# bonds(]_ it p)# empty bonds

ZQ — Zg . —\I—Q < Q# clusters

\\/

@ @ =1 corresponds to percolation and @ = 2 to the Ising model. First
order for @ > 4 in 2d.



Connectivities (i.e. geometric correlators)

X2 0 X3
X1 \ @ Mark n points on the boundary
—1 of the domain
- @ How they are partitioned into
X4 clusters?

@ From solving sum rules for probabilities [Delfino-V. '11]

# lin. ind. connectivities = # non-singleton non-crossing partitions



Connectivities (i.e. geometric correlators)

X2 0 X3
X1 \ @ Mark n points on the boundary
—1 of the domain
- @ How they are partitioned into
X4 clusters?

@ From solving sum rules for probabilities [Delfino-V. '11]

# lin. ind. connectivities = # non-singleton non-crossing partitions

@ Example: n = 4, probabilities of the following configurations
X1 X2 X1 X2 X1 X2

P(14)(23) i ||

X4 X3 Xa X3 Xa X3



Universal ratio R

@ From the three connectivities we can construct an universal ratio R

P
R (14)(23)

- P(1a)(23) + P(12)(23) + P(1234)

@ R can be measured in Monte
Carlo simulations (and
calculated exactly from CFT)
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Universal ratio R
@ From the three connectivities we can construct an universal ratio R

1.0 — Q = 1 Percolation

R— Pays) o] 2 0T e
Paay23) + P2)23) + Pa2za)y | = Q =4 Potts i

@ R can be measured in Monte
Carlo simulations (and 02
calculated exactly from CFT) 00
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@ Why only n? From conformal symmetry, R can be calculated in the
UHP (21 < zZp<z3< 24)
221243

R:R(n)a n= 2312427 0<n<l1

@ Under a conformal map to a new geometry w = f(z) it does not
change (conformally invariant)



2. Some CFT details




(Boundary) CFT for the Potts model

@ -color Potts conformal field theory [Dotsenko-Fateev 84]

c=1

and Q = 4cos? [L]

~p(p+1) p+1



(Boundary) CFT for the Potts model

@ -color Potts conformal field theory [Dotsenko-Fateev 84]

c=1—-—"
p(p+1)

@ Operators at the boundary have
scaling dimensions [Cardy 89]

[r(p+1) —sp]* -1
4p(p+1)

hr,s —

and Q = 4cos? [L]

p+1

Q=2 Zylsing

[e)]
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(Boundary) CFT for the Potts model

@ Q-color Potts conformal field theory [Dotsenko-Fateev 84]

c=1

——— and Q =4cos? [L]
p(p+1) p+

Q=2 Zylsing
"""""" 1]
2
@ Operators at the boundary have Is ]
scaling dimensions [Cardy 89] _19_:
5 1
2 2
[rf(p+1)—sp*—1  [---—-;-1---7--- '
hrs = 5
’ 4p(p+1) 616
6 |
5 T

¢1,2s+1 anchors s clusters at the boundary [Saleur-Duplantier 87]



Connectivities from CFT

013(x2)

X1 X2 X1 X2 X1 X2

Xy X3 Xg X3 Xg X3
</51,3(X4 ¢1,3(X3)

@ We then consider the four-point function of ¢; 3 on the UHP (call
hi3 = h)



Connectivities from CFT

013(x2)

X1 X2 X1 X2 X1 X2
2 i @ 3 @
X4 X3 X4 X3 X4 X3

(/51,3(X4 ¢1,3(X3)

@ We then consider the four-point function of ¢; 3 on the UHP (call
hi3 = h)

conf. block

1 G(n)
(z12234)2" (1 —7)2h

(¢1,3(21)P1,3(22)P1,3(23)P1,3(24) ) =

@ The function G(7n) solves a third order ODE [BPZ 83]



Frobenius series vs Conformal blocks
@ The differential equation for G(n) is (h = hy 3)

6(1 — h)h*(—1 + 21)G(n)
h? (3 197+ 199%)] G'(n)

[(2(=1+n)n —3h (1 —5n+57%) +
(=1+n)n [(—2+4h+ 4y — 8mm)G" (n)+
(=14 n)nG"(n)] = 0.

_|_
+

@ The 3d space of solutions is spanned by

1.Frobenius series 2.Conformal 3. Geometric
Gp(ﬁ) = SN aenptk blocks connectivities

[Al. Zam 87] P12)3a), Paay(23), Pa23a)
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@ The 3d space of solutions is spanned by

2.Conformal 3. Geometric
blocks connectivities

[Al. Zam 87] P12)3a), Paay(23), Pa23a)

1.Frobenius series
N
Gp(n) = Zk:l aknp+k

@ The exponent p corresponds to the leading singularity produced in the
OPE when z; — z (care when roots are separated by integers!)

no cluster ©Nne clust.  two clust.

N ——
p- (p—hg3)(p—Mms)=0



Conformal Blocks vs Connectivities
@ Remember that we want to calculate

P
R (14)(23)

Paa)23) + P12)(34) + P(1234)



Conformal Blocks vs Connectivities
@ Remember that we want to calculate

P P(14)(23)
P(1ay(23) + P(12)(34) + P(1239)
Xy = X2 x Y x
B duality transf. I5;
Xg X3 Xa T X3
Num. — conf. block of ¢15 linear comb. of ¢ 5 and
Den. — identity conf. blocks

symm. under x; <+ X3



3. Results




Percolation (Q =1 or ¢ = 0)

@ We have both Frobenius series up to 10° coefficients and closed
forms

Ga(1) _ T E)r ()

(8
Ro=1(n) = Al(;() ' 4cos(137/18)T (- %9) r)ris)
)

@ Where the numerator (i.e. the ¢1 5 conformal block) is expressed
through a (rather complicated) 3



Percolation (Q =1 or ¢ = 0)

@ We have both Frobenius series up to 10° coefficients and closed
forms

Gln) T EIE()
G ™ acos(i3n/10) (3) T ()1 (8]
)

Re=1(n) = A1 ——%

@ Where the numerator (i.e. the ¢1 5 conformal block) is expressed
through a (rather complicated) 3F>

@ The denominator is the regularized identity conformal block at ¢ =0

Go(1) = — g5 log(n) Ga2(n) + (1 — 50 + 3387° + sgasn” + 0(11%)) -
@ The coefficient of the logarithm is according to Gurarie and Ludwig

h? h=1
— 3 b=—
b

(ee][¢)]



Monte Carlo vs CFT for percolation
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Figure: Simulations on a triangular lattice
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Ising (Q =2 or c =1/2)

@ We have a more explicit result [Gori-V. 17]

Ro=2(n) = A2 [, &(n')

@ where g contains elliptic integrals of first and second kind

= 107!
107 £y
S . . .
0s] 11 o Logarithmic singularity
= | forn—1
5 06] ] v
e | @ Collision between ¢1 5
0.00

and null vector at level
two of ¢1’3




Q=3 (c =4/5) and Q=4 (c = 1)
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@ Exact value for Rg—3
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@ Exact value for Rg—4

2
( . )
1—n+7n?



Summary

@ Exact CFT results for four-point boundary connectivities in the
Q-color Potts model

@ Explicit logarithmic singularities at ¢ = 0 (percolation) and ¢ = 1/2
(Ising)

@ First correlation function at ¢ = 0 where Gurarie and Ludwig b
number appears explicitly

Thank you!




