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1. Introduction



Invitation: 2d percolation

A stat. mech models such as Ising, Q-state Potts model or
percolation can be formulated in terms of random clusters

Percolation: L× L random matrix of 0, 1. Phase transition signaled
by the finite probability of one point being connected to the boundary

No symmetry, however at p = pc configurations are scale
(conformally) invariant! [Langlands-Pouliot-Saint Aubin 92]



Invitation: 2d percolation (see also G. Delfino Ann. Phys. 360

(2015) and Cardy’s book)

Critical exponents obtained from mapping to the Q-color Potts model
(Coulomb Gas) +BPZ (i.e. Conformal Field Theory)

Textbook example:(
prob. to be connected

to the boundary

)
' A(p − pc)

5
36

However (not in textbooks): Let Z the percolation partition
function on a L× L matrix

Z (L) = 1⇒ as a CFT, percolation has zero central charge!

Earlier influential works: Nienhuis, Duplantier-Saluer,
Dotsenko-Fateev (especially for the Q-color Potts model)
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A deeper insight: Cardy formula

Back in 1992, J. Cardy showed how to adapt techniques of Boundary
Conformal Field Theory to percolation (or a c = 0 CFT)
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A result proved by S. Smirnov (Field’s medal) in 2009



Gurarie and Ludwig b number at c = 0

••
φh(x1)φh(x2)

c = 0

Consider a CFT with c = 0 on a
bounded planar domain

Map to the upper half plane and φh(z)
be a boundary field

There is an obvious problem for the OPE at c = 0 if h 6= 0

lim
z→0

φh(z)φh(0) =
1

z2h

1 +
2h

c
z2

stress tensor︷ ︸︸ ︷
T (0) + . . .


Mixing of the null field T (z) with another (logarithmic) field t(z) of
the same dimensions [Gurarie-Ludwig 04]

lim
z→0

φh(z)φh(0) =
1

z2h

[
1 +

h

b
z2(t(0) + log(z)T (0)) + . . .

]
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An useful device: Q-color Potts model [Wu 82]

The Hamiltonian is given by (J > 0)

HQ = −J∑〈x ,y〉 δs(x),s(y), s(x) = 1, . . . ,Q

Graph expansion [Fortuin-Kasteleyn 70], here p = 1− e−J

ZQ =
∑
G ×Q# clusters

p# bonds(1− p)# empty bonds

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Q = 1 corresponds to percolation and Q = 2 to the Ising model. First
order for Q > 4 in 2d.



Connectivities (i.e. geometric correlators)
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•

x1

x2 x3

x4

Mark n points on the boundary
of the domain

How they are partitioned into
clusters?

From solving sum rules for probabilities [Delfino-V. ’11]

# lin. ind. connectivities = # non-singleton non-crossing partitions

Example: n = 4, probabilities of the following configurations

••

• •

x2x1

x4 x3

P(12)(34)

••

• •

x2x1

x4 x3

P(14)(23)

••

• •

x2x1

x4 x3

P(1234)
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Universal ratio R
From the three connectivities we can construct an universal ratio R

R =
P(14)(23)

P(14)(23) + P(12)(23) + P(1234)

R can be measured in Monte
Carlo simulations (and
calculated exactly from CFT)
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)

Q = 1 Percolation

Q = 2 Ising

Q = 3 Potts

Q = 4 Potts

Why only η? From conformal symmetry, R can be calculated in the
UHP (z1 < z2 < z3 < z4)

R = R(η), η =
z21z43

z31z42
, 0 < η < 1

Under a conformal map to a new geometry w = f (z) it does not
change (conformally invariant)
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2. Some CFT details



(Boundary) CFT for the Potts model

Q-color Potts conformal field theory [Dotsenko-Fateev 84]

c = 1− 6

p(p + 1)
and Q = 4 cos2

[
π

p + 1

]

Operators at the boundary have
scaling dimensions [Cardy 89]

hr ,s =
[r(p + 1)− sp]2 − 1
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φ1,2s+1 anchors s clusters at the boundary [Saleur-Duplantier 87]



Connectivities from CFT
φ1,3(x2)φ1,3(x1)

φ1,3(x4) φ1,3(x3)

••

• •

= α

••

• •

x2x1

x4 x3

+β

••

• •

x2x1

x4 x3

+γ

••

• •

x2x1

x4 x3

We then consider the four-point function of φ1,3 on the UHP (call
h1,3 = h)

〈φ1,3(z1)φ1,3(z2)φ1,3(z3)φ1,3(z4)〉H =
1

(z12z34)2h

conf. block︷ ︸︸ ︷
G (η)

(1− η)2h

The function G (η) solves a third order ODE [BPZ 83]
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Frobenius series vs Conformal blocks
The differential equation for G (η) is (h = h1,3)

6(1− h)h2(−1 + 2η)G (η) +
[
(2(−1 + η)η − 3h

(
1− 5η + 5η2

)
+

h2
(
3− 19η + 19η2

)]
G ′(η) + (−1 + η)η

[
(−2 + 4h + 4η − 8hη)G ′′(η)+

(−1 + η)ηG ′′′(η)
]

= 0.

The 3d space of solutions is spanned by

1.Frobenius series
Gρ(η) =

∑N
k=1 akη

ρ+k

2.Conformal
blocks

[Al. Zam 87]

3. Geometric
connectivities

P(12)(34), P(14)(23), P(1234)

The exponent ρ corresponds to the leading singularity produced in the
OPE when z1 → z2 (care when roots are separated by integers!)

no cluster︷︸︸︷
ρ

one clust.︷ ︸︸ ︷
(ρ− h1,3)

two clust.︷ ︸︸ ︷
(ρ− h1,5) = 0
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Conformal Blocks vs Connectivities
Remember that we want to calculate

R =
P(14)(23)

P(14)(23) + P(12)(34) + P(1234)

x1 → x2

x4 x3

•

• •

P(14)(23)

Num.→ conf. block of φ1,5

••

• •

x2x1

x4 x3

α

β

α

β duality transf.

Den.→

linear comb. of φ1,5 and
identity conf. blocks

symm. under x1 ↔ x3


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3. Results



Percolation (Q = 1 or c = 0)

We have both Frobenius series up to 105 coefficients and closed
forms

RQ=1(η) = A1
G2(η)

G0(η)
, A1 =

37/6πΓ
(

5
9

)
Γ
(

8
9

)
Γ
(

7
3

)
4 cos(13π/18)Γ

(
−2

9

)
Γ
(

1
6

)
Γ
(

11
6

) .
Where the numerator (i.e. the φ1,5 conformal block) is expressed
through a (rather complicated) 3F2

The denominator is the regularized identity conformal block at c = 0

G0(η) = − 8
45 log(η)G2(η) +

(
1− 2

3η + 119
225η

2 + 152
2025η

3 + o(η3)
)
.

The coefficient of the logarithm is according to Gurarie and Ludwig

h2

b

h= 1
3−→ b = −5

8
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Monte Carlo vs CFT for percolation

0.00 0.25 0.50 0.75 1.00

η

0.0

0.2

0.4

0.6

0.8

1.0
R
Q

=
1
(η

)

CFT

L = 33

L = 65

L = 129

L = 257

0.00 0.25 0.50 0.75 1.00
η

10−1

10−3

10−5|R
M
C

Q
=

1
(η

)
−
R
C
F
T

Q
=

1
(η

)|

Figure: Simulations on a triangular lattice



Ising (Q = 2 or c = 1/2)

We have a more explicit result [Gori-V. 17]

RQ=2(η) = A2

∫ η
0 g(η′)

where g contains elliptic integrals of first and second kind
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Q=3 (c = 4/5) and Q=4 (c = 1)
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Summary

Exact CFT results for four-point boundary connectivities in the
Q-color Potts model

Explicit logarithmic singularities at c = 0 (percolation) and c = 1/2
(Ising)

First correlation function at c = 0 where Gurarie and Ludwig b
number appears explicitly

Thank you!


