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Y junction model and its fixed points

Numerics (DMRG)

From Y junction to networks
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Junction of two quantum wires

Kane and Fisher: impurities in 1D electron liquid. [1992]

Renormalization of scattering amplitudes depends
on electron-electron interactions in the wires.
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single barrier: total reflection at double barrier: resonant
low energy fixed point for tunnelling (ideal conductance)

repulsive interactions possible by fine tuning



Junction of two spin chains

Eggert and Affleck: impurities in XXZ spin chains. [1992]
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Junction of two spin chains

Eggert and Affleck: impurities in XXZ spin chains. [1992]

7 open chain 7 closed chain
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(analogy with two-channel Kondo effect)

Integrable spin chains with impurities.

[Andrei and Johanesson 1984; Zvyagin and Frahm 1997]



Multiple-wire junctions
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Y junctions (N = 3)

Conductance matrix

Gat1.a # Ga—1,o = chiral junction (a+3=a)

Breaks reflection symmetry (P) as well as time reversal
symmetry (T).
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Y junctions (N = 3)

Conductance matrix

Gat1.a # Ga—1,o = chiral junction (a+3=a)

Breaks reflection symmetry (P) as well as time reversal
symmetry (T).

[deal circulator: Goa—1= (in proper units)
Ga,a+1 =0



Y junction of guantum wires

Tunneling in the presence of a magnetic flux: I

(Oshikawa, Chamon & Affleck 2003: 2006] N
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Stable chiral fixed points with Ga # O for flux ¢ # O,z and

attractive electron-electron interactions in the wires
(Luttinger parameter 1< K <3).




Question

Can we get a chiral fixed point with spin-1/2 XXX chains?

First guess: no!
Antiferromagnetic spin chain
equivalent to spinless fermions
with repulsive interactions.

But maybe it exists at finite coupling...



Why we want to try

C Non-reciprocal absorption

Quantum circulators have been realized in /

~
nanophotonic devices: chiral guantum optics.
[Scheucher et al., Science 2016]
A
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Analogue for antiferromagnetic spintronics?

[Baltz ... Tserkovnyak, RMP 2018]
[Lodahl et al., Nature 2017]
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Quantum circulators have been realized in /

2N
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Analogue for antiferromagnetic spintronics?

[Baltz ... Tserkovnyak, RMP 2018]
[Lodahl et al., Nature 2017]

Relation to chiral spin liquids? ) AXAX

[Kalmeyer & Laughlin 1987; Wen, Wilczek & Zee 1989 X X

[Bauer et al., Nat. Phys. 2014]



Model: Y junction of spin-1/2 Heisenberg chains

Three-spin interaction at the boundary preserves SU(2)

but breaks reflection (P) and time reversal (7) symmetries.
[Buccheri, Egger, R.P. & Ramos, PRB 2018]

a =2 a=1
a 3 )
H=J) > Sa(j)-Salj+1)
a=19>1
JX
+ JyS1(1) - [S2(1) x S3(1)]
JC \_ _J
P:a— —« T:S— —S
a=3

Jx can be realized as a Floguet spin model.

[Claassen, Jiang, Moritz & Devereaux 2017]



Model: Y junction of spin-1/2 Heisenberg chains

Three-spin interaction at the boundary preserves SU(2)

but breaks reflection (P) and time reversal (7) symmetries.
[Buccheri, Egger, R.P. & Ramos, PRB 2018]

Jx can be realized as a Floguet spin model.

[Claassen, Jiang, Moritz & Devereaux 2017]



—ffective field theory for a single Heisenberg chain

Spin-1/2 chain described by CFT with central charge c=1:
SU(2)1 Wess-Zumino-Witten (WZW) model.  [affieck & Haldane 1987]
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+ Spin operator:

Sj = S(z) ~ Jr(x) +Jr(z) + (=1)"n(z)




Y junction at weak coupling

Continuum limit for Jx = O.. \ /
S oy [
Ho=) - /O d [Tho+J70] LT
a=1

Open (O) boundary conditions at x = 0: Jr o(x) = Jp o(—2)

Boundary spin operator: S, (j =1) ~ J1.4(0)
Boundary operators are irrelevant: stable fixed point.

0H =C1 Y J1,a(0) - Jpat1(0) + CoIr1(0) - [JL,2(0) x IL3(0)] + ...

dimension 2 dimension 3



Y junction at strong coupling

For Jx » J, start by diagonalizing Jy >0

boundary interaction:
Hy=Jyx  x=3581(1) - [S2(1) x S3(1)]

Low-energy states form an effective pseudospin 1/2:
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—ffective Hamiltonian at strong coupling

Projection onto low-energy subspace gives \ /

0. “

“impurity spin” coupled to three chains. ?\
é ) J Simp
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Kondo coupling is marginally relevant: ¢ =1n(Ag/A)
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Flow to strong coupling: three-channel Kondo fixed point (K).

Can be described by boundary CFT. [Cardy; Affleck and Ludwig]



Boundary CFT approach

Conformally invariant boundary condition for Kondo fixed
point obtained by fusion with spin-1/2 primary of WZW
model representing the sum of spin currents.

Conformal embedding for two chains: central charge:

[SU(Z)l x SU(2), — SU(2), x Isingj =Sty
—_— — 2 2

[Eggert and Affleck] total spin  “flavor”
For three chains: [Buccheri, Egger, R.P. & Ramos, PRB 2018]
[SU(Q)1 x SU(2); x SU(2); — SU(2), X Z:(BSU c =

belongs to family of Z:(:,p)CFTs with W3 algebra <J

6
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[Zamolodchikov & Fateev 1987; Fateev & Lukyanov 1988; Affleck, Oshikawa & Saleur 2001]



Stability of the Kondo fixed point

Operator content from partition function Zas on the
cylinder (even-length chains).

A=A, + Ay ,
AB s=0(A, =0) s=1(A, = 2/5) -'
00 0,2(x2) 3/5(x2),8/5 A , |B
—» KK 0,3/5(x2),8/5,2(x2) 0,3/5(x2),8/5,2(x2) :
CC 0,1/2(x3),2(x2) 1/10(x3),3/5(%x2),8/5
KO 3/5(%x2),8/5 0,3/5(%x2),8/5,2(x2)

/3 symmetry (cyclic permutation of chains) rules out relevant
perturbation and stabilizes three-channel Kondo fixed point.

Boundary operators:  §H =C{J_1-¢; + CoQ2 + ...

(irrelevant!) dimension 7/5  dimension 8/5



Looking for a critical point

P and T symmetries are restored at stable fixed points.

N 7

chiral FP?




Imposing chiral boundary conditions

N,/
SU(2) invariant chiral fixed points (C):
( JR,a(ZB) :JL,ail(_Qj) ]

Boundary CFT: fusion with Zz-charged fields in 75 sector.

AB s=0(As; =0) s=1(As =2/5)

0]0) 0,2(x2) 3/5(x2),8/5

KK 0,3/5(x2),8/5,2(x2) 0,3/5(%x2),8/5,2(x2)
—» CC 0,1/2(x3),2(x2)  1/10(x3),3/5(x2),8/5

KO 3/5(x2),8/5 0,3/5(x2),8/5,2(%x2)




Imposing chiral boundary conditions

N,/
SU(2) invariant chiral fixed points (C):
( JR,a(ZU) :JL,ail(_Qj) J

Boundary CFT: fusion with Zz-charged fields in 75 sector.

Relevant perturbation: 6H = X1 ) cos {v/7 [¢1,a(0) = ¢r,a+1(0)]}

C point requires fine tuning 41=0; magnetization switches
from integer to half-integer values (cf. double barrier).

1 >C nez, AM<0
St ~ —— d a:c a — Ug o) — ’
tot \/Eza:/o 'CE( rL, YR, ) { n—|—%, A >0



A check: boundary entropy

L
an:mj Flng + ... L > vp
6v [

[Affleck, Ludwig 1991]

Critical point must have the highest “ground state
degeneracy” g because g decreases under the
renormalization group flow (g-theorem).

Open: go =1

1 5
Kondo: gk = +2f ~ 1.618

Chiral: gc = 2 (same as double barrier/resonant level)




Three-spin correlations

Ga(e) = (S1(2) - [Sa(x) x Ss(a)])

At the chiral fixed point:

Gs(z) ~ (—1)* <6iﬁ[90L1 (2)—pr2(=)] givrlprz(2)+ers(—=)] ,—ivTers(®)+er (—90)]>

Gg(ﬂ?) N (_1)x

3/2

At O and K points, apply first-order perturbation theory in
the irrelevant chiral operator (scaling dimension A):

(_1)%‘ Open: A =3

A+1 8
o Kondo: A:g

Gg(aj) ~




Numerics: pinpointing the critical point

Density matrix renormalization group (DMRG) for Y junctions

with open boundary atj = L. [Guo and White 2006]
Finite-size gap:  E, = Ey(S¢,, = 1) — Ep(S¢,, = 0)
4_ --------------- _
OO boundary conditions | e N
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E,=7v/L o y \
S 2f PN _
KO boundary conditions =20 \ ¢ T” 34361
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Numerics: large-distance decay of correlations

exponents:
Jy/J L=40 L=60 L =80 Extrap. Expected
0.4 3.56 3.51 3.49 3.45 3.5 Open
3.11 1.89 1.79 1.74 1.59 1.5 Chiral
8 2.31 2.22 2.18 2.08 2.1 Kondo
0.00GE . =04 ]
0.004 ® J,=3.11 1

T 0.002} A K=8.0
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~0.004} ]
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Spin conductance

Kubo formula;

w—0+ Wil

+00
G, = — lim —/ dT/ dx (T J%(y, 7)J2 (2, 0))
Spin current operator:  J, (2, 7) = Jr.o(2) — JL.o(2)

At the SU(2)-symmetric chiral fixed point, conductance is
maximally asymmetric: ideal guantum spin circulator.

2
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Numerical result for the spin conductance

Using conformal symmetry,
conductance can be calculated
from static correlations on strip
with the same boundary

condition at both ends.
[Rahmani et al. 2010]

DMRG for finite chains:

conductance peak at critical |

value of Jy.

[Buccheri, Egger, R.P. & Ramos, in preparation]
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From Y junction to networks: uniform chirality

JRr,a(0) = J1,a41(0)
) K JX>OW ﬁJX>O

1 2

Gabriel Ferraz

Finite spin gap in the bulk
and gapless edge states
(chiral SU((2)1 WZW model):
Kalmeyer-Laughlin chiral
spin liquid. [Kameyer & Laughiin 1987]

Cf. coupled-chain constructions.

[Gorohovsky, R.P. & Sela 2015]
[Huang ... Chamon & Mudry 2016]



From Y junction to networks: uniform chirality

Gabriel Ferraz

) Tra(0) = 31 01(0)

\ Jy, >0 V ﬁ Jy, >0
1 /\ 2

Finite spin gap in the bulk L =0, Fgap ~ Jy

and gapless edge states
(chiral SU((2)1 WZW model):
Kalmeyer-Laughlin chiral
Spiﬂ ||C]U|d [Kalmeyer & Laughlin 1987]

, , cf. numerical evidence for

[Gorohovsky, R.P. & Sela 2015] the kagome lattice
[Huang ... Chamon & Mudry 2016] [Bauer et al. 2014]



From Y junction to networks: staggered chirality

) K‘ JR,a(O) — JL,aj:l(O)

Gapless 1D modes in the

bulk: gapless chiral spin
liquid"?

Sliding Luttinger liquid
equivalent to a spinon Fermi
surface state.

[R.P. and Bieri, SciPost 2018]




Conclusions

A chiral fixed point of Heisenberg spin chains is found
at a critical point separating a decoupled-chain fixed
point at weak coupling from a three-channel Kondo
fixed point at strong coupling.

At the chiral fixed point we have an ideal spin circulator,
which may serve as a building block for network
constructions of chiral spin liquids.

[Buccheri, Egger, R.P. & Ramos, PRB 2018]




