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Abstract

In this talk we first introduce the integrable chiral Potts model defined by a
higher-genus solution of the star-triangle (Yang-Baxter) equation. The R-matrix
of this model connects with the asymmetric six-vertex model via a tau2 model
as a cyclic representation in a quantum-group construction. We clarify, using
some yet unpublished work, why the celebrated construction of Bazhanov and
Stroganov fails for even roots-of-unity,† and how to go around it. After that
we discuss some aspects of the Onsager algebra and parafermions for related
quantum chains.

† Why Bazhanov and Stroganov, Jimbo, de Concini and Kac, Grosjean, Maillet and Niccoli,

etc., only treat odd N and how to resolve the problem for even N.
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Part 1: Remarks on sl(m,n) vertex model
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R-Matrix and Yang–Baxter Equation
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Boltzmann Weights and corresponding Yang–Baxter Equation

(= R-matrix) with rapidities p, q, r. Edge states a2, b2, c2 are summed over.
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Nonzero sl(m,n) weights in fundamental representation
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!aa
aa(p, q) = N sinh

�
⌘ + "a(p0 � q0)

� p+aq�a

q+ap�a
,

(a = 1, · · · , N ⌘ m + n);

!ab
ba(p, q) = N Gab sinh

�
p0 � q0

� p+aq�b

q+bp�a
,

(a 6= b, a, b = 1, · · · , N);

!ba
ba(p, q) = N e(p0�q0)sign(a�b) sinh

�
⌘
� p+bq�a

q+bp�a
,

(a 6= b, a, b = 1, · · · , N).

(2N+1)-component rapidities: p = (p�N , · · · , p+N ), q = (q�N , · · · , q+N );
"a = +1 (a = 1, · · ·m), "a = �1 (a = m + 1, · · ·m + n), GabGba = 1.
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Changing the additive rapidities p0 and q0 to multiplicative rapidities x and y,

q ⌘ e2⌘, x = e2q0 , y = e2p0 , N q1/2

2

⇣y
x

⌘1/2
⌘ 1, p±a = q±a ⌘ 1, (a 6= 0),

we get

!aa
aa(p, q) =

( 1� q�1 x
y , if "a = +1, for m di↵erent a-values,

x
y � q�1, if "a = �1, for n di↵erent a-values,

!ab
ba(p, q) = Gab q�1/2

�
1� x

y
�
, =)

( 1� x
y , if a > b,

q�1�1� x
y
�
, if a < b,

!ba
ba(p, q) =

(
(1� q�1)x

y , if a > b,

1� q�1, if a < b.

If ⌘ = n⇡i/N , then q ⌘ e2⌘ = e2n⇡i/N , the root-of-unity case, one may try to find
cyclic representations of quantum groups. The standard choice Gab ⌘ 1 leads to
complications that can be resolved choosing Gab = q±sign(a�b)/2 , (GabGba = 1),
instead. Then any !cd

ab(p, q) is a linear combination of 1, q�1, x
y , q�1 x

y only!
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Part 2: Integrable chiral Potts model
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Integrable chiral Potts model Boltzmann weights

––

p = (ap, bp, cp, dp),

q = (aq, bq, cq, dq).

Boltzmann weights:

Wpq(n)
Wpq(0)

=
nY

j=1

dpbq � apcq!j

bpdq � cpaq!j
,

W pq(n)
W pq(0)

=
nY

j=1

!apdq � dpaq!j

cpbq � bpcq!j
.

Chiral Potts curve:

aN
p + k0bN

p = k dN
p ,

k0aN
p + bN

p = k cN
p ,

k2 + k02 = 1, ! = e2⇡i/N .
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Checkerboard Yang–Baxter Equation vs Star-Triangle Equation
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The Diamond and the Star of Four Boltzmann Weights
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The shading can now be forgotten.

Bazhanov and Stroganov used this
map to relate chiral Potts with the
six-vertex model for N =odd.
J. Stat. Phys. 59, 799–817 (1990).

Baxter, Bazhanov and Perk used
this instead to relate chiral Potts
with the six-vertex model for all N .
The ⌧2 model and six-vertex model
di↵er from Bazhanov–Stroganov’s.
Int. J. Mod. Phys. B 4, 803–870 (1990).
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The Succession of Four Yang–Baxter Equations

=

= =

=

Single rapidity line: spin-1
2 representation of Uq(bsl(2, C)), quantum a�ne SL(2).

Double rapidity line: Two chiral Potts rapidities (p, p0) represent a minimal cyclic
representation of Uq(bsl(2, C)), requiring q to be a root-of-unity, say q = !.
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The three kinds of R-matrices of Boltzmann Weights to be Used

s4s3
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Rt2
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R4CP

Here all �i = 0, 1, corresponding to the spin-1
2 representation.

All ni = 0, · · · , N�1, i.e. ni 2 ZN , corresponding to the cyclic representation.

p

q

q �

ba

d c

e

p �

d c

a

(p,p �)
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The chiral-Potts star shown on the
left is also an IRF model.
In this case: n1 = a�b, n2 = d�c,
n3 = a�d, n4 = b� c, (mod N),
using the old Wu–Kadano↵–Wegner
mapping.
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Part 3: The odd-even N problem in chiral Potts
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The Boltzmann Weights of the Six-Vertex Model
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In the symmetric six-vertex model one has a0 = a, b0 = b, c0 = c. This is not the
best start: Korepanov found a ⌧2 model, but no chiral Potts. Di↵erent gauge
choices lead to di↵erent ⌧2 models that have been connected with chiral Potts.
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The weights of the symmetric six-vertex model can be parametrized as

a = N sin(⌘ + (v � u)), b = N sin(v � u), c = N sin(⌘),

with additive rapidities u and v. There is also a multiplicative parametrization:

q ⌘ e2i⌘, x = e2iu, y = e2iv, C = N q1/2

2i

⇣y
x

⌘1/2
,

so that

a = C
�
1� q�1 x

y
�
, b = C q�1/2

�
1� x

y
�
, c = C

�
1� q�1

�⇣x
y

⌘1/2
.

If ⌘ = n⇡/N , then q ⌘ e2i⌘ = e2n⇡i/N , the root-of-unity case, leading to cyclic
representations of quantum groups.

However, the symmetric gauge is not a good start for the fundamental
representation of sl(2) quantum: The square root

p
x/y makes things ugly and

it is commonly eliminated by a gauge transformation. Up to normalization C:
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Rsym(x, y) =

0

BBBB@

1� x
y q�1 0 0 0

0 (1� x
y ) q�1/2

�x
y
�1/2(1� q�1) 0

0
�x
y
�1/2(1� q�1) (1� x

y ) q�1/2 0
0 0 0 1� x

y q�1

1

CCCCA

The
�x
y
�1/2 and q�1/2 cause complications especially for N even.

RB&S(x, y) =

0

BBB@

1� x
y q�1 0 0 0
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y ) q�1/2 x
y (1� q�1) 0

0 1� q�1 (1� x
y ) q�1/2 0

0 0 0 1� x
y q�1

1

CCCA

The q�1/2 causes complications for N even, as (q�1/2)N = �1 6= 1.

RBBP(x, y) =

0

BBB@

1� x
y q�1 0 0 0
0 1� x

y
x
y (1� q�1) 0

0 1� q�1 (1� x
y )q�1 0

0 0 0 1� x
y q�1

1

CCCA

Only 1, x
y , q�1, and x

y q�1 show up: “smallest linear dimension”.
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Gauge Changes of Six-Vertex Boltzmann Weights
(sl(2) case only, not sl(m,n))

G

G–1G–1

G

G

G–1

G–1

G

G

G–1

G–1

G

(a) (b)
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✓

� 0
0 ��1

◆

A staggered gauge transform (a) with � = q1/8, can be used to connect RB&S

and RBBP in each of two di↵erent ways.
A uniform gauge transform (b) with � = (x/y)1/8 connects Rsym and RB&S.

In the Baxter–Bazhanov–Perk approach there is no di�culty with even
roots of unity. However, gauge transforms to the Bazhanov–Stroganov approach
and then also to the Korepanov symmetric gauge, lead to complications: Two
distinct ⌧2 matrices arise in the R6vR⌧2R⌧2 Yang–Baxter equation, as proposed
before by Korepanov to solve the even root-of-unity problem.
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The Three Di↵erent ⌧2 Versions

=

= =

=

During 1986–1987 Korepanov solved the first line using Rsym, giving one R⌧2 for
N =odd, while for N = even his solution has two di↵erent R⌧2 . But he did not
address the second line, so that he did not find chiral Potts.
See: J. Math. Sc. 85, 1661-1670 (1997), St. Petersburg Math. J. 6:2, 349-364 (1995).

Bazhanov and Stroganov were the first to address the second line starting with
RB&S, the typical choice for the intertwiner of two fundamental representations
of Uq(bsl(2, C)).
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However, to explicitly represent R⌧2 for q = ! ⌘ e2⇡i/N , Bazhanov and
Stroganov introduce

q1 = q(N+1)/2, satisfying qN
1 = 1, q = q�2

1 ,

which can only be done for N =odd: For N =even and q = q±2
1 , have qN

1 = �1,
or such q1 is a 2Nth root of unity, leading to unresolved complications.

There is no such problem with RBBP and its R⌧2 . The two approaches of
B&S and BBP lead to di↵erent q-Pochhammer symbols,

[a; q1]n =
nY

k=1

(a�1qk�1
1 � aq1�k

1 ) versus (a; q)n =
nY

k=1

(1� aqk�1),

and q-integers,

[q1]n =
qn
1 � q�n

1

q1 � q�1
1

versus (q)n =
1� qn

1� q
.

The second forms are the usual ones of basic hypergeometrics.

17



Some N-state Generalization of the Pauli Matrices

X ⌘

0

BBBBBB@

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0

1

CCCCCCA
, Z ⌘

0

BBBBBB@

1 0 0 . . . 0 0
0 ! 0 . . . 0 0
0 0 !2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . !N�2 0
0 0 0 . . . 0 !N�1

1

CCCCCCA
,

Y ⌘

0

BBBBBB@

0 !
1�N

2 0 . . . 0 0
0 0 !

3�N
2 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 !

N�3
2

!
N�1

2 0 0 . . . 0 0

1

CCCCCCA
, ! = e2⇡i/N .
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These matrices—generating a generalized quaternion algebra—are all unitary
and

XN = YN = ZN = 1, Y = !(N�1)/2X�1Z,

ZX = !XZ, YX = !XY, YZ = !ZY.

This is called Weyl algebra, even though it was pioneered by Sylvester in his
paper on quaternions, nonions, sedenions, etc.

When N = 2, ! = �1, so that then X = �x, Y = �y, Z = �z.

We can assign a copy of these operators to a site in a chain:

Zj = 1⌦ 1⌦ · · ·1⌦ Z
jth
⌦ 1 · · ·⌦ 1, Xj = 1⌦ 1⌦ · · ·1⌦ X

jth
⌦ 1 · · ·⌦ 1,

Yj = 1⌦ 1⌦ · · ·1⌦ Y
jth
⌦ 1 · · ·⌦ 1,

so that operators on di↵erent sites commute.

These operators are used to construct the cyclic representations, but:
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Summarizing this part: Many authors end up working with “Pochhammers”

a�1Z�n/2
j � aZn/2

j and a�1X�n/2
j � aXn/2

j ,

starting from the Drinfeld–Jimbo choice of fundamental R-matrix. This leads
to trouble, resolved for odd N choosing

Z1/2
j = Z(N+1)/2

j and X1/2
j = X(N+1)/2

j .

With the more asymmetric R-matrix we only need

1� a2Zn
j and 1� a2Xn

j ,

so that there is no odd-even problem. Also, if one sets up the quantum group
starting with this modified R-matrix, one ends up with the usual Pochhammers
in classical basic hypergeometric functions.
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Part 4: Onsager algebra in quantum chain models
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Cluster Ising and XY model hamiltonians, like

H(c) = �
NX

j=1


Jx�x

j

✓ j+nY

k=j+1

�z
k

◆
�x

j+n+1 + Jy�y
j

✓ j+nY

k=j+1

�z
k

◆
�y

j+n+1 + B�z
j

�
,

should be compared with the Onsager algebra for the 2D Ising model,

An =
NX

j=1

�x
j

✓ j+n�1Y

k=j+1

�z
k

◆
�x

j+n,

Gn =
1
2
i

NX

j=1


�x

j

✓ j+n�1Y

k=j+1

�z
k

◆
�y

j+n + �y
j

✓ j+n�1Y

k=j+1

�z
k

◆
�x

j+n

�
.

As periodicity �↵
j±N = �↵

j , ↵ = x, y, z is assumed, we have

A0 = �
NX

j=1

�z
j , A�n =

NX

j=1

�y
j

✓ j+n�1Y

k=j+1

�z
k

◆
�y

j+n.

Therefore, H(c) = �JxAn+1 � JyA�n�1 + BA0 .
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Onsager derived the following commutation rules:

[Aj , Ak] = 4Gj�k, [Gm, Al] = 2Al+m � 2Al�m, [Gj , Gk] = 0.

From these we also have “Dolan–Grady relations”

[Aj , [Aj , [Aj , Ak]]] = 16[Aj , Ak], [Aj , [Aj , Gk]] = 16Gk.

These relations also apply to the superintegrable chiral Potts chain discovered
by von Gehlen and Rittenberg. However, Onsager’s lattice periodicity relations

An±N = �PAn = �AnP, P ⌘
NY

k=1

�z
k,

G0 = 0, G�n = �Gn, Gn±N = �PGn = �GnP,

An±2N = An, Gn±2N = Gn,

only hold for the 2-state chiral Potts (= Ising) case.
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If we fermionize (following Kaufman, 1949):

�2j�1 =
✓ j�1Y

k=1

�z
k

◆
�x

j , �2j =
✓ j�1Y

k=1

�z
k

◆
�y

j , �z
j = �i�2j�1�2j ,

satisfying
�k�l + �l�k = 2�kl1,

cj =
1
2
(�2j�1 � i�2j), c†j =

1
2
(�2j�1 + i�2j),

the Hamiltonian becomes

H(c) = i
NX

j=1

h
Jx�2j�2j+2n+1 � Jy�2j�1�2j+2n+2 + B�2j�1�2j

i
.

As �j is not periodic mod 2N , but periodic mod 4N ,

�j±2N = P�j , �j±4N = �j , P =
NY

k=1

(�i�2k�1�2k),

the Hilbert space breaks up into two sectors, on which H(c) acts as either a cyclic
or an anticyclic quadratic fermion operator (Kaufman, 1949).
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Assuming N = (n + 1)N1, we relabel the operators according to

�(p)
2k+1 = �2p+2k(n+1)+1, �(p)

2k+2 = �2p+2k(n+1)+2,

with

p ⌘
�
(n + 1)

⇢
j � 1

2(n + 1)

�⌫
= 0, · · · , n, k ⌘

�
j � 1

2(n + 1)

⌫
= 0, · · · , N1 � 1,

where bxc = floor of x,{x} = fractional part of x, and

�(p)
k �(q)

l + �(q)
l �(p)

k = 2�pq�kl1.

We find

H(c) =
nX

p=0

H(p), H(p) = i
N1X

k=1

h
Jx�(p)

2k �(p)
2k+1 � Jy�(p)

2k�1�
(p)
2k+2 + B�(p)

2k�1�
(p)
2k

i
.
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We can now define

�z(p)
j = �i�(p)

2j�1�
(p)
2j ,

�x(p)
j =

✓ j�1Y

k=1

�z(p)
k

◆
�(p)

2j�1, �y(p)
j =

✓ j�1Y

k=1

�z(p)
k

◆
�(p)

2j ,

so that

H(p) = �
N1X

j=1

h
Jx�x(p)

j �x(p)
j+1 + Jy�y(p)

j �y(p)
j+1 + B�z(p)

j

i
, p = 0, · · · , n.

Thus H(c) is decoupled into n+1 commuting XY chains, with identical couplings
Jx, Jy and field B, thus factorizing exp(�H(c)).† Thus the partition function
and the spin correlations factorize (in the thermodynamic limit for the closed
chain). Some factors may be zero or one.

If B=0 one has 2(n + 1) transverse-field Ising chain factors.

† For the closed chain one has to deal with the odd and even fermion sectors as usual.
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For more details see arXiv:1710.03384. In this talk there is time only for the
simplest case, the N !1 equilibrium bulk correlation functions of H(c),

Z(c)(k) = h�z
j �z

j+ki, M (c)
z = h�z

j i,

in terms of the corresponding Z(k) and Mz for the standard XY chains H(p).
As

�z
j �z

j+k = �z(p1)
k1

�z(p2)
k2

,

with p1 = p2 only if k is a multiple of n + 1, we find

Z(c)
�
k(n + 1)

�
= Z(k), but Z(c)(m) = M2

z , if m 6⌘ 0 mod n + 1.

Now we have only one or two factors remaining, as the other n or n� 1 factors
are trivially equal to one.
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Part 5: Remarks on (free) parafermions
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Chiral Potts Boltzmann Weights and Discrete Fourier

m n

�mn

nm –
�–mn

a

b

p

q

Wpq(a–b)

a

b

p

q

Wpq(a–b)

Here we forget some normalization factors
1/N or 1/

p
N with the discrete Fouriers.

States of internal vertices are summed over.

p = (ap, bp, cp, dp),

q = (aq, bq, cq, dq).

Boltzmann weights:

Wpq(n)
Wpq(0)

=
nY

j=1

dpbq � apcq!j

bpdq � cpaq!j
,

W pq(n)
W pq(0)

=
nY

j=1

!apdq � dpaq!j

cpbq � bpcq!j
.

Chiral Potts curve:

aN
p + k0bN

p = k dN
p ,

k0aN
p + bN

p = k cN
p ,

k2 + k02 = 1, ! = e2⇡i/N .
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q �

q

pa

e

d

n

q �

q

b

c

e�n

p �

Vpqq�(a,d;n) Vp�q�q(–c,–b;n)

–

pa

d

q �

q

b

c

e

p �

Upp�qq�(a,b,c,d)

Upp0qq0(a, b, c, d) =
N�1X

n=0

Vpqq0(a, d;n)Vp0q0q(�c,�b;n),

Vpqq0(a, d;n) =
N�1X

e=0

!neWpq(a� e)W pq0(e� d),

Vp0q0q(�c,�b;n) =
N�1X

e0=0

!�ne0W p0q(b� e0)Wp0q0(e0 � c).
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Note that Vpqq0(a, d;n) appeared before in the Fourier-transformed star-triangle
equation, (both in the discovery and in the proof of the chiral Potts solution),†

Wqq0(a�d)Vpqq0(a, d;n) = R�1
pqq0Vpq0q(a, d;n)cW qq0(n), cW qq0(n) ⌘

N�1X

k=0

!nkW qq0(k).

If q = (aq, bq, cq, dq), q0 = (bq,!2aq, dq, cq), (both on the chiral Potts curve !),
then it is easily checked that

Wqq0(n) = cW qq0(n) = 0, if n 6= 0, 1 mod N,

so that one has the triangularity conditions‡
8
>>><

>>>:

Vpqq0(a, d;n) = 0, if a� d = 0 or 1, but n 6= 0, 1;

Vpq0q(a, d;n) = 0, if n = 0 or 1, but a� d 6= 0, 1;

Upp0qq0(a, b, c, d) = 0, if a� d = 0 or 1, but b� c 6= 0, 1.
† H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang, M.-L. Yan, Phys. Lett. A 123, 219–223

(1987), eq. (19); H. Au-Yang, J.H.H. Perk, Adv. Stud. Pure Math. 4, 57–94 (1989), appendix.
‡ R.J. Baxter, V.V. Bazhanov, J.H.H. Perk, Int. J. Mod. Phys. B 4, 803–870 (1990), eq. (2.26).

(The chiral Potts curve makes it nontrivial. Also, one needs to use the explicit form of Rpqq0 .)
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If one assumes periodic boundary conditions in the horizontal direction, then
the transfer matrix becomes block diagonal: In the first block each spin is 0 or
1 higher than the one above it, giving the ⌧2 model, while in the second block it
is 2, · · · , N � 1 modN higher, resulting in a ⌧N�2 model.

p2j–1

q

q �

sj+1p2j
sj

sj

sj+1
�sj

�
For the first block, one has the “IRF” transfer matrix

⌧2(t)�,�0 =
LY

j=0

Wj(�j ,�j+1,�
0
j+1,�

0
j)

with (�L+1 ⌘ �0, �0L+1 ⌘ �00), and where leaving out
some common factors of the weights at site j, and with
the (q, q0) collapsed to a single variable t, Baxter found

Wj(�j ,�j+1,�j+1,�j) = b2j�1b2j � !�j��j+1+1tc2j�1c2j ,

Wj(�j ,�j+1,�j+1,�j � 1) = �!td2j�1b2j + !�j��j+1+1ta2j�1c2j ,

Wj(�j ,�j+1,�j+1 � 1,�j) = b2j�1d2j � !�j��j+1+1c2j�1a2j ,

Wj(�j ,�j+1,�j+1 � 1,�j � 1) = �!td2j�1d2j + !�j��j+1+1a2j�1a2j .

It is easily checked that these ⌧2(t) commute, even if the pj = (aj , bj , cj , dj) do
not lie on the chiral Potts curve. (But connecting with chiral Potts it is needed.)
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Periodic and Open Transfer Matrices

p2j–1

q

q �

sj+1p2j
sj

sj

sj+1
�sj

�

Repeat this unit L+1 times, with j = 0, · · · , L, to make
the transfer matrix with periodic boundary conditions
and column-dependent rapidities pj .

To get the ⌧2 open boundary condition case, Baxter
made a special choice for p2L and p�1 ⌘ p2L+1, which
a↵ects WL and W0.

Look at these two weights more carefully:

Wj(�j ,�j+1,�j+1,�j) = b2j�1b2j � !�j��j+1+1tc2j�1c2j ,

Wj(�j ,�j+1,�j+1,�j � 1) = �!td2j�1b2j + !�j��j+1+1ta2j�1c2j ,

Wj(�j ,�j+1,�j+1 � 1,�j) = b2j�1d2j � !�j��j+1+1c2j�1a2j ,

Wj(�j ,�j+1,�j+1 � 1,�j � 1) = �!td2j�1d2j + !�j��j+1+1a2j�1a2j .

We see that a lot disappears if we set p2L = (0, b2L, 0, 0) and p�1 = (0, b�1, 0, 0).
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0 1 2 3 4 5 6 72L –1
2L–12L–3

2L–4 2L–2

q

q �

pj , j=

More precisely, setting a�1 = d�1 = c�1 = c2L = a2L = d2L = 0, one finds

W0(�0,�1,�1,�0) = b0, W0(�0,�1,�1,�0 � 1) = 0,
W0(�0,�1,�1 � 1,�0) = d0, W0(�0,�1,�1 � 1,�0 � 1) = 0,
WL(�L,�0,�0,�L) = b2L�1, WL(�L,�0,�0 � 1,�L) = 0,
WL(�L,�0,�0,�L � 1) = �!td2L�1, WL(�L,�0,�0 � 1,�L � 1) = 0.

This means that �0 = �00 and that no weight depends on the value of �0. Also,
�L and �1 are now uncorrelated: Free boundaries with boundary couplings.
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From BBP, we have the functional equations
⌧j+1(t) = ⌧j(t)⌧2(!j�1t)� z(!j�1t)X⌧j�1,

⌧N+1 = z(!t)X⌧N�1 + [↵(�q) + ↵(1/�q)]1,

with X the spin shift operator, XN = 1 and z(t) ⌘ 0 for the open case.‡ Next,
as the weights are linear in t and W0 does not depend on t now, the transfer
matrix ⌧2(t) is a polynomial of degree L,

⌧2(t) =
LX

m=0

(!t)m⌧2,m, ⌧2,0 = ⌧2(0) = A01, A0 ⌘
2L�1Y

`=0

b`.

Therefore, from the functional equations,

⌧2(t)⌧2(!t) · · · ⌧2(!N�1t) = AN
0 1

LY

j=1

(1� rN
j tN ),

which is a polynomial in tN , as this is invariant under t ! !t. Also, 1 is the
unit matrix of dimension NL+1, or NL, as �0 has become irrelevant.

‡ See also R.J. Baxter, J. Stat. Phys. 117 (2004) 1–25 for more discussion.
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The zeros of this polynomial are !krj , (k = 0, · · · , N�1; j = 1, · · · , L), satisfying

s0r
NL
j + s1r

N(L�1)
j + s2r

N(L�2)
j + · · ·+ sL = 0.

Thus Baxter obtained all the eigenvalues of the ⌧2(t) matrix, namely

⌧2(t) = A0

LY

j=1

(1� rj!
1+pj t), 0  pj  N � 1, 1  j  L.

Assuming all b` 6= 0, we can expand

t
d

dt
ln⌧2(t) =

1X

m=1

(!t)mH(m), ⌧2(t) = A0 exp

 1X

m=1

(!t)m

m
H(m)

!

,

giving the higher Hamiltonians H(m) and H = H(1) = A�1
0 ⌧2,1 Consequently,

we also have their NL eigenvalues,

�H(m)|p1, · · · , pLi =
LX

j=1

(rj!
pj )m|p1, · · · , pLi,

with |p1, · · · , pLi denoting the corresponding eigenvector.
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Hamiltonian in Generalized Pauli Matrices

H =�
LX

j=1

LX

k=j

!k�j+(N�1)/2 d2j�2

b2j�2

 
2k�2Y

`=2j�1

a`

b`

!
d2k�1

b2k�1
Zj

 
k�1Y

`=j

X`

!

Y�1
k

+
L�1X

j=1

LX

k=j+1

!k�j�1 c2j�1

b2j�1

 
2k�2Y

`=2j

a`

b`

!
d2k�1

b2k�1
Yj

 
k�1Y

`=j

X`

!

Y�1
k

�
L�1X

j=1

L�1X

k=j

!k�j�(N+1)/2 c2j�1

b2j�1

 
2k�1Y

`=2j

a`

b`

!
c2k

b2k
Yj

 
kY

`=j

X`

!

Z�1
k+1

+
L�1X

j=1

L�1X

k=j

!k�j d2j�2

b2j�2

 
2k�1Y

`=2j�1

a`

b`

!
c2k

b2k
Zj

 
kY

`=j

X`

!

Z�1
k+1.

For the special case N = 2, after rotating Z` ! �x
` , X` ! ��z

` and Y` ! �y
` , we

recognize a generalized XY-model, like the spin-chain Hamiltonian that Suzuki
introduced to commute with the transfer matrix of the dimer model.
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Hamiltonian in Parafermions
We define the basic parafermions as (generalized Jordan–Wigner transform)

 2j�2 =

 
j�1Y

`=1

X`

!

Z�1
j ,  2j�1 =

 
j�1Y

`=1

X`

!

Y�1
j ,  0 = �0 = Z�1

1 ,

for 16 j 6L. From the commutation relations of X, Y and Z, it follows that
 j k = !�1 k j for j < k,  N

j = 1.

The Hamiltonian may be expressed in terms of these parafermions as†

H =�
LX

j=1

LX

m=j

!m�j+(N�1)/2

 
2m�2Y

`=2j�1

a`

b`

!
d2j�2d2m�1

b2j�2b2m�1
 �1

2j�2 2m�1

�
L�1X

j=1

L�1X

m=j

!m�j

"

!�(N+1)/2

 
2m�1Y

`=2j

a`

b`

!
c2j�1c2m

b2j�1b2m
 �1

2j�1 2m

�
 

2m�1Y

`=2j�1

a`

b`

!
d2j�2c2m

b2j�2b2m
 �1

2j�2 2m �
 

2mY

`=2j

a`

b`

!
c2j�1d2m+1

b2j�1b2m+1
 �1

2j�1 2m+1

#

.

† The special Baxter case studied by Fendley follows setting all al’s zero.

38



The Fendley–Baxter Suggestion
Define recursively

�0 = Z�1
1 , �j+1 = (!�1 � 1)�1(H�j � �jH), (j > 0),

Using �0 =  0, it is straightforward to show that

�1 =
d0

b0

"
LX

m=1

!m+(N�1)/2

 
2m�2Y

`=1

a`

b`

!
d2m�1

b2m�1
 2m�1 �

L�1X

m=1

!m

 
2m�1Y

`=1

a`

b`

!
c2m

b2m
 2m

#

,

which is rather complicated. Nevertheless, we can easily show
�0�1 = !�1�1�0.

Based on numerical evidence, Baxter found that the infinite sequence of the
�j truncates, as he conjectured that the � matrices satisfy the equation

s0�NL+j + s1�N(L�1)+j + · · ·+ sL�j = 0, for j = 0,
with the same coe�cients s` as defined earlier in
⌧2(t)⌧2(!t) · · · ⌧2(!N�1t) = (s0t

NL + s1t
N(L�1) + s2t

N(L�2) + · · ·+ sL)1.

If the conjecture holds for j = 0, then by recurrence also for all j > 0. It has
been proved using using the partially Fourier transformed vertex model weights
S(pf). (See section 4 of H. Au-Yang and J.H.H. Perk, J. Phys. A 47 (2014) 315002.)
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q �

q

pa

e

d

n

Vpqq�(a,d;n)

q �

q

b

c

e�n

p �

Vp�q�q(–c,–b;n)

–
q �

q

p
a

e n

c

e�n�

p �

S(pf)
p�q�q(a,n,c,n�)

–

q �

q

p
a

b

c

d

p �

Sp�pq�q(a,b,c,d)

The partial Fourier gauge
transform (pf) cancels out
in the row-to-row transfer
matrix, giving the diamond:
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As before we set q = (aq, bq, cq, dq), q0 = (bq,!2aq, dq, cq), so that S(pf) becomes
L⌧2 , a ⌧2 R-matrix with �1,2 = 0, 1 and n1,2 = 0, 1, · · · , N � 1.

s1
n1

n2

s2

Lt2
As standard in quantum inverse scattering we construct the monodromy matrix
using L + 1 copies for j = 0, · · · , L, summing over the states on internal edges:

M0,L(t), where Mm,n(t) ⌘
nY

j=m

Lj(t) =
✓

Am,n(t) Bm,n(t)
Cm,n(t) Dm,n(t)

◆
.

After setting a�1 = d�1 = c�1 = c2L = a2L = d2L = 0 again, L0 =
✓

1 0
0 0

◆
,

and so that ⌧2(t) = A1,L(t) for the open boundary case on sites 1, · · · , L.
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The Monodromy Matrices by Recurrence

Mm,n(t) = Mm,k(t)Mk+1,n(t) =
✓

Am,n(t) Bm,n(t)
Cm,n(t) Dm,n(t)

◆
,

Mj,j(t) = Lj(t) =
✓

Aj,j(t) Bj,j(t)
Cj,j(t) Dj,j(t)

◆
,

8
>>>><

>>>>:

Lj(0, 0) = Aj,j(t) = b2j�2b2j�1 � !td2j�2d2j�1Xj ,

Lj(0, 1) = Bj,j(t) = (�!t)Zj(b2j�2c2j�1 � d2j�2a2j�1Xj),

Lj(1, 0) = Cj,j(t) = Z�1
j (c2j�2b2j�1 � !a2j�2d2j�1Xj),

Lj(1, 1) = Dj,j(t) = !a2j�2a2j�1Xj � !tc2j�2c2j�1,

⌧2(t) = A1,L(t) , Am,n(t) = Am,k(t)Ak+1,n(t) + Bm,k(t)Ck+1,n(t).

The technical proofs of Baxter’s conjecture just mentioned and the next one
use this recurrence and the Yang–Baxter equation for the monodromy matrices
R6v(t, t0)Mm,n(t)Mm,n(t) = Mm,n(t0)Mm,n(t)R6v(t, t0). For the details we
refer to our paper,⇤ as it would take too much time to explain it here.

⇤ H. Au-Yang and J.H.H. Perk, J. Phys. A 47 (2014) 315002.
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Rewriting Baxter’s First Conjecture
We have just outlined what we needed to show that the recurrence

�0 = Z�1
1 , �j+1 = (!�1 � 1)�1(H�j � �jH), (j > 0),

closes through

s0�NL+j + s1�N(L�1)+j + · · ·+ sL�j = 0, for j = 0.

This then obviously holds for all j also. We can now rewrite

�jH�H�j = (1� !�1)�j+1 = (1� !�1)
NL�1X

k=0

hjk�k = (1� !�1)(H · �)j ,

where (j = 0, · · · , NL� 1) and

hij = �i,j�1, (06 i < NL� 1),
hNL�1,mN = �sL�m/s0, (06m < L), hNL�1,j = 0, (j 6= 0mod N).
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Baxter’s Second Conjecture
Baxter next conjectured:

t⌫j = µj�1,

where
µj ⌘ �j⌧2(t)� ⌧2(t)�j , ⌫j ⌘ !�j⌧2(t)� ⌧2(t)�j .

We have proved this with the same tools in the paper just cited. Again the
details are too technical to present.

Using �j+1 = (H · �)j , we find
µj = �j⌧2(t)� ⌧2(t)�j = t⌫j+1 = !t (H · �)j ⌧2(t)� t ⌧2(t) (H · �)j ,

or
�� ⌧2(t)� ⌧2(t)�1 = !tH · �� tH · ⌧2(t)� ⌧2(t)�1,

or

⌧2(t)� ⌧2(t)�1 =
1� !tH
1� tH

· � ,

first written down by Baxter. With this we can prove Baxter’s final conjecture.
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Diagonalization of Matrix H by a Vandermonde

H =

0

BBBBBBBBBBB@

0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
0 0 0 0 1 · · · 0 0
...

...
...

...
. . . . . .

...
...

0 0 0 0 0
. . . 1 0

0 0 0 0 0 · · · 0 1
⇤ ⇤ ⇤ ⇤ ⇤ · · · 0 0

1

CCCCCCCCCCCA

= P ·Hd ·P�1,

with in the last row hNL�1,mN = �sL�m/s0, (06m < L), and 0 otherwise.

The eigenvalues are given by
P

sk�N(L�k) = 0, i.e. �Nj+i+1 = rj!i seen before,
and P is the Vandermonde matrix with columns (�m)k, (k = 0, · · · , NL�1).

To deal with the inverse, we used Prony’s 1795 result

fm(z) =
NLY

n=1,n6=m

z � �n

�m � �n
=

NL�1X

k=0

(P�1)mkzk, satisfying fm(�n) = �mn.
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Cyclic Raising Operators and Projection Operators
Baxter defined the candidate free parafermion operators

b�i ⌘
NL�1X

j=0

P�1
ij �j , Hb�j � b�jH = (!�1 � 1)�j

b�j .

Generalizing Fendley, we also introduce the projection operators

P!p,k = �
L�1X

`=0

N�1X

q=0

P�1
Nk+p,`N+qH

(`N+q).

Multiplying both sides with the Vandermonde, we find

H(m) = �
LX

k=1

N�1X

p=0

(rk!p)mP!p,k,

which all commute, so that

[P!p,k,P!q,`] = 0.
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Remember

H(m)|n1, n2, · · · , nLi = �
LX

k=1

(rk!nk)m |n1, n2, · · · , nLi,

so that we must have

P!p,k|n1, n2, · · · , nLi = �p,nk |n1, n2, · · · , nLi,

from which the projection operator properties follow:

P2
!p,k = P!p,k, P!p,kP!q,k = �p,qP!p,k,

N�1X

p=0

P!p,k = 1.

Also,

⌧2(t) = A0

LY

k=1

N�1Y

p=0

(1� rk!1+ptP!p,k) = A0

LY

k=1

 

1� !t
N�1X

p=0

rk!p P!p,k

!

,

as this produces the correct eigenvalues seen before.
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Proof of Commutation Relation of Cyclic Raising Operators
From

Hb�j � b�jH = (!�1 � 1)�j
b�j , H = H(1) = �

LX

k=1

N�1X

p=0

(rk!p)P!p,k,

we find
LX

k=1

N�1X

p=0

(rk!p)[P!p,k
b�N`+q � b�N`+qP!p,k] = r`(!q�1 � !q)b�N`+q.

This implies the relation,

[P!p,k
b�N`+q � b�N`+qP!p,k] = �k,`(�p,q�1 � �p,q)b�N`+q.

We used

⌧2(t) b� ⌧2(t)�1 =
1� !tHd

1� tHd
·b� , (1�r`!

q t)⌧2(t)b�N`+q = (1�r`!
q+1 t)b�N`+q⌧2(t),

implying that b�N`+q only acts on the n` in |n1, · · · , nLi.
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From this we can also conclude

b�Nk+p
b�Nk+p0 = 0, if p0 6= p� 1mod N.

Finally, we could prove the third conjecture of Baxter,

(rk!p � rk0!
p0+1)b�Nk+p

b�Nk0+p0 + (rk0!
p0 � rk!p+1)b�Nk0+p0

b�Nk+p = 0,

which gives the commutation relation between these operators. We can now
create all the basis states by acting on |0, 0, · · · , 0i.

The eigenstates of the ⌧2 model are useful—and have been used—as a starting
point to study the chiral Potts model, the first model found with rapidities
(spectral parameters) on a curve of high genus.

Thank you!
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