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Many Body System and Frustration

  

U

k

Hamiltonian of a many
body system

H =∑
k

hk k ⊂ U

hk → Πk H → ρk

In the presence of frustration there will be at least one k for which
Πk ≠ ρk

Fk = 1 −Tr(ρk ⋅Πk) ≥ Ek

S. M. Giampaolo et al. Phys. Rev. Lett. 107, 260602 (2011);

U. Marzolino et al. Phys. Rev. A 88, 020301(R) (2013).



Frustration in Classic System

In the classical system,
frustration rises from the
geometry of the system

  

?
Ferromagnetic Couplings Anti-Ferromagnetic Couplings

Touluse Criterion

If there is a close loop for which −1Na = −1 the system is frustrated

G. Toulouse, Commun. Phys. 2, 115 (1977);

J. Vannimenus and G. Toulouse, J. Phys. C 10, L537 (1977).



Frustration in Quantum System

Monogamy of the entanglement
A spin that share a maximal entangled state with a second spin

cannot share entanglement with a third one

Quantum counterpart of classical unfrustrated system are
frustrated

It is possible to generalize the Toulouse criterion to quantum world
When Quantum Touluse criterion (QTC) is verified

there is no contribution of the geometry to the frustration

V. Coffman et al., Phys. Rev. A 61, 052306 (2000);
T. J. Osborne and F. Verstraete, Phys. Rev. Lett. 96, 220503 (2006);

S. M. Giampaolo et al. Phys. Rev. Lett. 107, 260602 (2011).



Strongly and weakly frustrated system

1 Strongly frustrated – Amount of bond that does not satisfy
QTC scales with N

Frustration cannot be removed acting on the boundary
conditions
examples: ANNNI models, Sherrington-Kirkpatrick model

2 Weakly frustrated – Fixed number of bonds that does not
satisfy QTC

Frustration can be removed acting on boundary condition
Difference between odd and even N

Sherrington, D., & Kirkpatrick S. Phys. Rev. Lett. 35 1792 (1975).

Campostrini, et al. Phys. Rev. E 91, 042123 (2015).



Weakly frustrated spin chain

H =
J

2

N

∑
l=1
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)σx

l σ
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σz
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h σz
l

J = 1 Anti-ferromagnetic system J = −1 Ferromagnetic system
PBC σαN+1 = σ

α
1 for α = x , y , z

If J = −1 the Ferromagnetic (F) system satisfy the QTC.

If N is even the Anti-ferromagnetic (AF) system (J = 1)
satisfy the QTC. It is possible to map the AF system in the F
one;

If N is even the AF system does not satisfy the QTC. It is
impossible to map AF system in F system.



Weakly frustrated spin chain

In agreement with this result one expect for odd N different
behaviors for F and AF systems.

However there is no trace in Literature of such difference

We will prove that going at the thermodynamic limit moving on
frustrated N, depending on the Hamiltonian parameters, we may

arrive in a new phase characterized by:

A gapless low energy spectrum

Non degenerate ground state

Absence of order parameter

Violation of the area law without the presence of a divergence
in the Von Neumann entropy



Analytic Case: Weakly frustrated Ising chain

(γ = 1 ,∆ = 0) H = J
N

∑
l=1

σl
xσl+1

x − h
N

∑
l=1

σj
z

1 Jordan Wigner Transformations (JWT) map spins in fermions defined in the
position space

cl =
l−1

∏
k=1

(σz
k)σ

−
l c†

l
=

l−1

∏
k=1

(σz
k)σ

+
l ,

JWT breaks the invariance under spatial translation

J1,N → JM

The M =⊗
N
l=1(c

†
l cl − clc

†
l ) assumes different value in the different sector of

parities

P. Jordan, & E. Wigner, Z. Phys. 47, 631 (1928);

E. Lieb et al. Ann. Phys. 16 407 (1961);



Analytic Case: Weakly frustrated Ising chain

2 Fourier Transform maps fermions in position space in fermions in the
momentum space

bk =
1

√
N

N

∑
l=1

cle
−ıkl ; b†

k
=

1
√
N

N

∑
l=1

c†
l
eıkl

The momenta used depends on the parity. Chosen to restore the invariance
under spatial translation

k ∈ E+ ∪ E− ∪ 0

E+ = {
2π

N
, . . . ,

N − 3

N
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N − 1

N
π}
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Fermionic Hamiltonian

The result of the two transformations we obtain

H = 1 + P
2

⎛
⎝
H0 + ∑

k∈E+

Hk
⎞
⎠
+ 1 − P

2

⎛
⎝
Hπ + ∑

k∈O+

Hk
⎞
⎠

P =⊗
l=1

(c†
l cl − clc

†
l )

H0 = −(J + h) (b†
0b0 − b0b

†
0) Hπ = −(h − J) (b†

πbπ − bπb
†
π)

Hk = −2εk(b†
kbk + b†

−kb−k − 1) − 2ıδk (b†
kb

†
−k − b−kbk)

δk = J sin(k); εk = J cos(k) + h



Local Hamiltonian with k ≠ 0, π

The ground state of Hk is an even state

∣φk⟩ = αk ∣1k ,1−k⟩ + βk ∣0k ,0−k⟩

αk = ı
εk +

√
ε2
k + δ

2
k√

δ2
k + (εk +

√
ε2
k + δ

2
k)2

; βk =
δk√

δ2
k + (εk +

√
ε2
k + δ

2
k)2

It is separated by a gap

∆E(k) = 2
√
ε2
k + δ

2
k = −2

√
(J cos(k) + h)2 + J2 sin2(k) .

from a two fold degenerate odd subspace

∣1k ,0−k⟩ and ∣0k ,1−k⟩



Local Hamiltonian with k = 0, π

The parity of the ground state of these two local Hamiltonian
depends on h and J

k = 0

h < −J → ∣10⟩ odd state

h > −J → ∣00⟩ even state

∆E(0) = 2∣j + h∣

k = π

h > J → ∣1π⟩ odd state

h < J → ∣0π⟩ even state

∆E(π) = 2∣j − h∣

The energetic gap ∆E(k) is a continuous function in k = 0 and
k = π



AFM chain (J = 1) with h > 0 Odd sector

h > 1 ∣ψ(>)
a,o ⟩ = ∣1π⟩⊗ (⊗

k∈O+

∣φk⟩)

Gap in the Thermodynamic Limit = 2(h − 1)

0 < h < 1 ∣ψ(<)
a,o ⟩ = ∣0π⟩⊗ (⊗

k∈O+

∣φk⟩)

This state has the wrong parity. Cannot be accepted
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Similar results hold also for the even sector
The system becomes gapless in thermodynamic limit for ∣h∣ < 1



AFM Gap and degeneracy
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The gap between even and
odd sector does not close.
The ground state is non
degenerate in
Thermodynamic limit

The ground state stay unique even in the thermodynamic limit
Both these two results are in contrast with the results obtained for
Ferromagnetic system

E. Lieb et al. Ann. Phys. 16 407 (1961);
E. Barouch et al. Phys. Rev. A 2 1075 (1970);



Fermionic Correlation Functions (Fermionic C.F.)

Fermionic Operators

Al = c†
l + cl =

l−1

⊗
k=1

(σzk)⊗ σ
x
l Bl = ı(cl − c†

l ) =
l−1

⊗
k=1

(σzk)⊗ σ
y
l

All spin correlator can be written in terms of operator Al and Bl

Because no superposition of the ground state ⟨Al⟩ = ⟨Bl⟩ = 0

⟨AlAl+r ⟩ = ⟨BlBl+r ⟩ = δr ,0 ⟨AlBl+r ⟩ = ıGA(r)

⟨⋅⟩ expectation value on the ground state
G. C. Wick, Phys. Rev. 80, 268 (1950);



Fermionic Correlation functions (h > 0)

G
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N

If we take the thermodynamic limit of GA(r) we obtain the usual fermionic C.F. GF (r)



Spin Correlation functions

Is the right thing to do? NO!

we are interested in spin correlation function.
Hence the right way is:

1 determine the expression of the correlation functions for a
finite size system

2 make the thermodynamic limit

Two different families of spin correlation functions

Local spin C.F.
expressed in terms of a number
of fermionic c.f. that does not

scale with N
same behavior of ferromagnetic

models

Non-Local spin C.F.
expressed in terms of a number

of fermionic c.f. that scales
with N

????



Local spin correlation functions

Example: C.F. along z between two spins at distance R

⟨σzl σ
z
l+R⟩ = ⟨σzl ⟩

2
F −

cz1 (h)
R2

(h
2

J2
)
R

+
4⟨σzl ⟩

2
F

N
[1 + cz2 (h)(−1)R ∣h

J
∣ ]

cz1 (h) and cz2 (h) do not depend on R or N

Exponential decay to saturation ( correlation length ξ = − 1
lnh2/J2 )

Perfect agreement with the usual solutions

E. Barouch & B. M. McCoy, Phys. Rev. A 3 786 (1971).



Non-Local spin correlation functions

Example: C.F. along x between two spins at distance R

⟨σxl σ
x
l+R⟩ = (−1)R (1 − h2

J2
)

1/4 ⎡⎢⎢⎢⎢⎣
1 + cx(h)

R2
(h

2
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)
R ⎤⎥⎥⎥⎥⎦

(1 − 2R

N
)

cx(h) does not depend on R or N

Polynomial decay of the Non-Local Spin C.F.

mx = lim
N→∞

√
⟨σxl σ

x
l+N−1

2

⟩ = 0

Absence of ordered phase!!

J.-J. Dong, & P. Li, Mod. Phys. Lett. B 31, 1750061 (2017)



Von Neumann Entropy

We consider a bipartition of the chain:

a subsystem α made by R contiguous spins;

The rest of the system β made by N − R spins.

ρα(R) = Trβ ∣GS⟩⟨GS ∣

Von Neumann Entropy is defined as

Sα(R) = −Tr [ρα(R) lnρα(R)]



Area Law: Main Results

Gapped Models
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Two different Universal behavior

G. Vidal et al. Phys. Rev. Lett. 90, 227902 (2003)
V. E. Korepin Phys. Rev. Lett. 92, 096402 (2004)
P. Calabrese & J. Cardy, JSTAT 0406, P002 (2004)



Entopy in weakly frustrated models

Weakly frustrated models
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No Plateau

Non Universal behavior

For small R close to transition appears a logarithmic universal
behavior

Violation of the area law!!!



Entopy in weakly frustrated models

Weakly frustrated models
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Relevance of the geometric frustration

Evaluation of the effect of the geometric frustration
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∆ = 0 a) h = 0.9 b) h = 0.1

∆ = 0.1 c) h = 0.8 d) h = 2.0

S. M. Giampaolo et al. Phys. Rev. Lett. 107, 260602 (2011);

U. Marzolino et al. Phys. Rev. A 88, 020301(R) (2013).



Conclusion

Quantum spin chains with a weak frustration:

develop a new quantum phase of matter, which present a mixture of correlation
functions: some decaying exponentially and some decaying algebraically.

The power-law correlations are very slowly decaying, since the relevant
parameter is x = R

N
.

Show violation of the area law with an algebraic growth with subsystem size,
which does not lead to a divergence of the EE with large systems

As for non critial system the total amount of entanglement is finite, but,
similarly to critical systems, the entanglement is distributed through the whole
chain, with the possibility of distilling Bell-pairs with arbitrary distance (possible
QI applications).

Such behavior seams not to be affected by the integrability of the model

Further application: Generalization of the results (2D, spin greater than 1/2);
Different kind of interactions (cluster, Dzyaloshinskii-Moriya) other measures of
the entanglement, applications



Workshop in Zagreb

https://maqp.irb.hr


