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Quantum quench

for t < 0 isolated extended system with Hamiltonian H0 is in

ground state

for t > 0 system evolves with Hamiltonian H obtained changing

a coupling at t = 0

which is time evolution of oservables after the quench (i.e. for

t > 0)?
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for t < 0 isolated extended system with Hamiltonian H0 is in

ground state

for t > 0 system evolves with Hamiltonian H obtained changing

a coupling at t = 0

which is time evolution of oservables after the quench (i.e. for

t > 0)?

• problem extensively studied as prototype of non-equilibrium

quantum dynamics

• special interest in 1D following experiments proposing that

integrability allows for lack of relaxation



• the problem proved hard to address theoretically

• post-quench state exactly calculable for transverse field Ising

chain (free fermions), but extremely difficult to find interacting

integrable cases

• how to gain some general insight about the role of integrability

and interaction?



Quenches near a quantum critical point [GD, ’14]

• both before and after the quench the system is close to criti-

cality, so that it is described by a massive quantum field theory

• this allows for a general formulation valid for the different uni-

versality classes of quantum critical behaviour

• there is a sharp notion of integrability (factorization of scat-

tering amplitudes)

• conclusions on integrability hold for lattice cases admitting a

continuum limit (non-integrability in the continuum implies non-

integrability on the lattice)



field theory formulation

consider translation invariant near-critical system in 1D

H0 = pre-quench Hamiltonian

H = H0 + λ
∫

dxΨ = post-quench Hamiltonian

ACFT = action of quantum critical point

A0 = ACFT−g
∫

dt dxϕ(x, t) = action in absence of quench (equi-

librium)

A = A0 − λ
∫∞
0 dt

∫∞
−∞ dxΨ(x, t) = action in presence of the

quench



integrability at equilibrium

QFT provides sharp notion of integrability at equilibrium, within

the particle∗ description

= =

non-trivial integrals of motion generate momentum-dependent

space-time translations ⇒ factorization of any scattering ampli-

tude into the product of two-particle ones

∗particle (or quasi-particle) = elementary excitation associated

to collective near-critical modes



integrable quenches ?

connecting pre- and post-quench theories requires transmission

of energy-momentum through t = 0; non-conservation of energy

also creates particles

factorization for a typical process

=x

t



integrable quenches ?

connecting pre- and post-quench theories requires transmission

of energy-momentum through t = 0; non-conservation of energy

also creates particles

factorization for a typical process

=x

t

S(s) = S(s′) ⇒ S = constant ⇒ S = ±1 by unitarity

⇒ factorization only for free bosons/fermions

• same follows for spin chains whenever continuum limit can be

taken (not the case for Néel state in XXZ)



summarizing: near-critical quenches are exactly solvable (inte-

grable) only if the particles do not interact, both before and after

the quench (mass quench for free particles, Bogoliubov solvable)

in presence of interaction near criticality the theory can only

proceed perturbatively



perturbation theory in λ

A = A0 − λ
∫ ∞

0
dt

∫ ∞

−∞
dxΨ(x, t)

|0〉, |p1, . . . , pn〉 = vacuum and particle states of A0

system is in ground state |0〉 up to t = 0, then quench drives it

into the state

|ψ0〉 = Sλ|0〉 Sλ = T exp
(

−iλ
∫∞
0 dt

∫∞
−∞ dxΨ(x, t)

)

≃ |0〉+λ
∑∞
n=1

2π
n!

∫∞
−∞

∏n
i=1

dpi
2πEpi

δ(
∑n
i=1 pi)

[FΨ
n (p1,...,pn)]

∗
∑n
i=1Epi

|p1, . . . , pn〉

Ep =
√

p2 +M2

FΨ
n (p1, . . . , pn) = 〈0|Ψ(0,0)|p1, . . . , pn〉 form factors of A0



|ψ0〉 ≃ |0〉+λ
∞
∑

n=1

2π

n!

∫ ∞

−∞

n
∏

i=1

dpi
2πEpi

δ(
n
∑

i=1

pi)
[FΨ
n (p1, . . . , pn)]

∗

∑n
i=1Epi

|p1, . . . , pn〉

• only existing general formula for post-quench state

• post-quench state made of pairs |p,−p〉 only if

FΨ
n (p1, . . . , pn) = 0 for n 6= 2

i.e. A0 free and Ψ quadratic, i.e. mass quench; ”pair structure”

absent in presence of interaction

• present theory provides only analytic framework for quenches

in presence of interaction; form factors exactly known if pre-

quench theory is integrable; first order already non-trivial, exact

for small quenches



one-point functions

δ〈Φ(t)〉 = 〈ψ0|Φ(x, t)|ψ0〉−〈0|Φ(0,0)|0〉+CΦ

≃ λ
∞
∑

n=1

2π

n!

∫ ∞

−∞

n
∏

j=1

dpj

2πEpj

δ(
∑n
j=1 pj)

∑n
j=1Epj

× 2Re{[FΨ
n (p1, . . . , pn)]

∗FΦ
n (p1, . . . , pn) e

−i
∑n
j=1Epjt}+ CΦ

CΦ determined by δ〈Φ(0)〉 = 0 [GD, Viti, ’17]

CΦ ≃ −λ
∞
∑

n=1

2π

n!

∫ ∞

−∞

n
∏

j=1

dpj

2πEpj

δ(
∑n
j=1 pj)

∑n
j=1Epj

× 2Re{[FΨ
n (p1, . . . , pn)]

∗FΦ
n (p1, . . . , pn)}

= −λ
∫

d2x〈Ψ(x,−it)Φ(0,0)〉c ≃ 〈Φ〉
eq
λ − 〈Φ〉

eq
λ=0
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∫ ∞
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n
∏

j=1

dpj

2πEpj

δ(
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n (p1, . . . , pn)]

∗FΦ
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long time behavior

two time scales: 1
M and tλ ∼ 1

λ1/(2−XΨ) ; tλ → ∞ as λ→ 0

perturbative long time regime: 1
M ≪ t≪ tλ

t > tλ unaccessible in principle in presence of interaction
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∑n
j=1Epj

× 2Re{[FΨ
n (p1, . . . , pn)]

∗FΦ
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long time behavior

two time scales: 1
M and tλ ∼ 1

λ1/(2−XΨ) ; tλ → ∞ as λ→ 0

perturbative long time regime: 1
M ≪ t≪ tλ

t > tλ unaccessible in principle in presence of interaction

small momenta dominate for t≫ 1
M

generically, [FΨ
n ]∗FΦ

n ∝
∏

1≤i<k≤n(pi − pk)
2, pj → 0

⇒ δ〈Φ(t)〉 ∼
λ

t(n
2
0−1)/2

AΨ,Φ cos(n0Mt) + CΦ ,
1

M
≪ t≪ tλ

n0 = smallest n for which FΨ
n , F

Φ
n 6= 0, dictated by symmetry



δ〈Φ(t)〉 ∼
λ

t(n
2
0−1)/2

AΨ,Φ cos(n0Mt) + CΦ ,
1

M
≪ t≪ tλ

• n0 = 1 : for several particle species a = 1,2, . . . , k

δ〈Φ(t)〉 ∼ λ
∑

a

2

M2
a
[FΨ

1,a]
∗FΦ

1,a cosMat+ CΦ

undamped oscillations with frequencies equal to masses

• symmetries can give n0 > 1, normally n0 = 2 and t−3/2 damp-

ing

• n0 > 1 without interaction (FΨ
n |free ∝ δn,2)

• undamped oscillations can only arise in presence of interaction;

no role of integrability



Ising chain [GD, Viti, ’17]

at equilibrium :

HIsing = −J
∞
∑

j=−∞

[σxj σ
x
j+1+hzσ

z
j+hxσ

x
j ]

↓

AIsing = ACFT−h̃z

∫

d2xσz(x)−hx

∫

d2x σx(x)

hx

hz
~

z=h −10
paramagneticferromagnetic

• integrability near criticality: either h̃z or hx equal zero
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at equilibrium :

HIsing = −J
∞
∑

j=−∞

[σxj σ
x
j+1+hzσ

z
j+hxσ

x
j ]

↓

AIsing = ACFT−h̃z

∫

d2xσz(x)−hx

∫

d2x σx(x)

hx

hz
~

z=h −10
paramagneticferromagnetic

• integrability near criticality: either h̃z or hx equal zero

• particle spectrum:

– depends on η = h̃z/|hx|8/15

[McCoy, Wu, ’78]

– free fermions at hx = 0

– 8 stable particles at h̃z = 0

[Zamolodchikov, ’88]; heavier 5 decay

for h̃z however small [GD et al, ’06]

η2
oo

hx

hz
~

3

# of stable particles

η4

0

η3

4
2

1

1

8



quenches :

starting from integrable directions we know the form factors and

everything is analytic; six different cases

hx

hz
~0

III
IIIVI

IV

V

quench ϕ Ψ n0(σx) # of frequencies

I σz (para) σz × 1
II σz (ferro) σz 2 1
III σz (para) σx 1 1
IV σx σx 1 8
V σx σz 1 8
VI σz (ferro) σx 2 1



quenches I & II: free cases, comparable with other analytic ap-

proaches

quench ϕ Ψ n0(σx) # of frequencies

I σz (para) σz × 1
II σz (ferro) σz 2 1

hx

hz
~0

III
IIIVI

IV

V

limδM→0 δ〈σ
x(t)〉M/(δM〈σx(0)〉)

2 4 6 8 10
mt

0.05

0.10

0.15

〈σx〉II exhibits t−3/2 damping and Xσx = 1/8 asymptotic; repro-

duced by large t expansion of [Essler, Schuricht, ’12] with δM → 0



quench III:

quench ϕ Ψ n0(σx) # of frequencies

III σz (para) σx 1 1

hx

hz
~0

III
IIIVI

IV

V

interaction allows for undamped oscillations:

〈σx(t)〉 ∼ hx
2
M2 |F

σx
1 |2 (cosMt− 1)

amplitude, frequency and offset of oscillations confirmed by nu-
merical data of [Rakovszki, Mestyan, Collura, Kormos, Takacs, ’16]:

0 5 10 15 20
t imeM t

0.0

0.1

0.2

0.3

h
(t
)i
/
M

1/
8

M0 = 0.50M

M0 = 0.75M

M0 = 1.00M

M0 = 1.25M

M0 = 1.50M





quenches IV & V:

quench ϕ Ψ n0(σx) # of frequencies

IV σx σx 1 8
V σx σz 1 8

hx

hz
~0

III
IIIVI

IV

V

δ〈σx(t)〉 ∼ λ
8
∑

a=1

2

M2
a
[FΨ

1,a]
∗Fσ

x

1,a cosMat+ Cσx

analytic formulae for undamped oscillations accurately confirmed

by numerical data of [Hodsagi, Kormos, Takacs, ’18]:

TCSA Post- quench Pert

0 5 10 15 20 25 30
- 1.0620

- 1.0618

- 1.0616

- 1.0614

- 1.0612

- 1.0610

t

〈
(t
)〉

TCSA Perturbative PerturbativeDE

0 5 10 15 20 25
- 1.0638

- 1.0636

- 1.0634

- 1.0632

- 1.0630

- 1.0628

- 1.0626

t

〈σ
(t
)〉

quench IV quench V



quench VI :

quench ϕ Ψ n0(σx) # of frequencies

VI σz (ferro) σx 2 1

hx

hz
~0

III
IIIVI

IV

V

first order result expected to hold for hx small enough, but no

data available for comparison in this regime

for larger hx confinement prevails,

as visible in data of [Kormos, Collura,

Takacs, Calabrese, ’16]

0 5 10 15 20 25 30

0.95

0.96

0.97

0.98

0.99

1

L = 8

L = 10

L = 12

L = 14

iTEBD

t

⟨σ
x
⟩

h = 0.5 → h = 0.25zz

h
X

= 0.1



Spatial correlations and the light cone

• some analytic calculations exhibited light cone post-quench dy-

namics: correlations between two points separated by a distance

r develop only after a time tr ∝ r

• heuristic explanation [Calabrese, Cardy, ’06]: quench produces pairs

of particles with opposite momenta travelling classically and

without scattering with maximal velocity vmax ⇒ tr = r/2vmax

t

r

• followed a belief that light cone is related to “pair structure”

and non-interacting particles (or integrability)

• even experiments were performed in this perspective [Cheneau et al, ’12]



first principle derivation [GD, ’18]

we showed that the post-quench state has the pair structure only
in absence of interaction; more generally

|ψ0〉 =

∞
∑

n=0

∫ ∞

−∞

n
∏

i=1

dpi δ(

n
∑

i=1

pi) fn(p1, . . . ,pn) |p1, . . . ,pn〉

〈ψ0|Φ(x, t)Φ(0, t)|ψ0〉 =

∞
∑

n1,n2,m=0

∫ n1
∏

i=1

dpi

n2
∏

j=1

dp′
j

m
∏

k=1

dqk f
∗
n2
(p′

1, . . . ,p
′
n2
) fn1

(p1, . . . ,pn1
)

× FΦ
n2,m(p

′
1, . . . ,p

′
n2
|q1, . . . ,qm)F

Φ
m,n1

(q1, . . . ,qm|p1, . . . ,pn1
)

× δ(

n1
∑

i=1

pi) δ(

n2
∑

j=1

p′
j) e

−i ϕ(x,t)

...
...

...Φ Φ

FΦ
m,n(q1, . . . ,qm|p1, . . . ,pn) = 〈q1, . . . ,qm|Φ(0,0)|p1, . . . ,pn〉

ϕ(x, t) = x ·
∑m

k=1 qk + t
(

∑n1

i=1Epi −
∑n2

j=1Ep′
j

)

for r = |x| large, e−i ϕ(x,t) rapidly oscillates unless ∇qkϕ = 0



due to disconnected pieces

FΦ
m,n(q1, . . . ,qm|p1, . . . ,pn) = 〈q1, . . . ,qm|Φ(0,0)|p1, . . . ,pn〉connected

+δ(q1 − p1)〈q2, . . . ,qm|Φ(0,0)|p2, . . . ,pn〉connected + · · ·

a term like
...

...Φ Φ

produces the phase x·q+t
(

Eq +
∑n1−1

i=2 Epi +E−q−(p2+···+pn1−1) −
∑n2

j=1Ep′
j

)

stationary if x = −Vt

V = vq + vq+p2+···+pn−1
vp ≡ ∇pEp =

p
√

p2 +M2

|V| ∈ (0,2) =⇒ t >
|x|

2

• same condition for all terms allowing stationarity

⇒ light cone requires no assumpution on quantum state or in-

teraction



Summary

• we formulated the theory of quantum quenches from ground

state in presence of interaction near criticality

• it is perturbative, since interaction is incompatible with known

notion of solvability in QFT (factorization)

• time scale tλ emerges beyond which time evolution cannot be

determined (tλ → ∞ as λ→ 0)

• long time behavior (up to tλ) of one-point functions determined

in general

• undamped oscillations exist, require interaction and are not

related to integrability; perfect agreement with numerics

• light cone spreading of correlations derived from first principles,

requires no assumption on quantum state or interaction


