
Quantum groups, Yang-Baxter maps and

quasi-determinants

Zengo Tsuboi

Osaka City University Advanced Mathematical Institute (additional post member)

28 June 2018

Based on
• Z.T., 1708.06323 [Nucl.Phys.B 926(2018)200-238].

See also,
• V.Bazhanov, S.Sergeev, 1501.06984 [Nucl.Phys.B926(2018) 509-543],

• V.Bazhanov, S.Khoroshkin, S.Sergeev, Z.T. to appear (?)

Zengo Tsuboi ( Osaka City University Advanced Mathematical Institute (additional post member) )Quantum groups, Yang-Baxter maps and quasi-determinants 28 June 2018 1 / 54



Introduction

The Yang-Baxter map [Drinfeld 1990, Veselov 2000] is a map χ defined
on a direct product of two sets

R : χ× χ 7→ χ× χ

and satisfies the set-thoretical Yang-Baxter equation (on χ× χ× χ)

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12.

This is related to discrete classical integrable systems.
(discrete Toda equation, etc.).
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Introduction

Goal
From the point of view of quantum groups, classify all the
Yang-Baxter maps and construct the maps explicitly.

There exists quantum group Uq(g) for each Lie algebra g. Then the
maps will be classified in terms of classification of the quantum
groups.
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Introduction

Method
For any quantum group Uq(g), there exists the universal R-matrix
R ∈ Uq(g)⊗ Uq(g) satisfying the Yang-Baxter equation

R12R13R23 = R23R13R12.

The quantum Yang-Baxter map is define as an adjoint action of the
universal R-matrix [Bazhanov-Sergeev 2015]:

R : Uq(g)⊗ Uq(g) 7→ Uq(g)⊗ Uq(g)

ξ 7→ ξ′ = RξR−1, ξ ∈ Uq(g)⊗ Uq(g).

The classical Yang-Baxter map is give by the quasi-classical limit
q → 1.
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Quantum algebras A = Uq(g)

As an example, we consider g = sl(n) or gl(n).
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Generators of Uq(gl(n))

Ei ,i+1,Ej+1,j ,Ek,k ,

(i , j ∈ {1, 2, . . . , n − 1},
k ∈ {1, 2, . . . , n})
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Relations of Uq(gl(n))

[Ekk ,Eij ] = (δik − δjk)Eij ,

[Ei ,i+1,Ej+1,j ] = δij(q − q−1)(qEii−Ei+1,i+1 − q−Eii+Ei+1,i+1),

[Ei ,i+1,Ej ,j+1] = [Ei+1,i ,Ej+1,j ] = 0 for |i − j | ≥ 2,

and, for i ∈ {1, 2, . . . , n − 2}, the Serre relations

E2
i ,i+1Ei+1,i+2 − (q + q−1)Ei ,i+1Ei+1,i+2Ei ,i+1 + Ei+1,i+2E

2
i ,i+1 = 0,

· · · · · ·
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Additional generators

For i , j ∈ {1, 2, . . . , n} and i ̸= j , we define

Eij = (q − q−1)−1(EikEkj − qEkjEik), Eji = . . . ,

i < k < j .

c =
∑n

j=1 Ejj is a central element of A. The algebra A is isomorphic
to Uq(sl(n)) under the condition c = 0.

• Borel subalgebras
B+: generated by {Eij}
B−: generated by {Eji} for i ≤ j , i , j ∈ {1, 2, . . . , n}
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Co-multiplication

The co-multiplication ∆ is an algebra homomorphism from the
algebra A to its tensor square

∆ : A → A⊗A,

defined by

∆(Ei ,i+1) = Ei ,i+1 ⊗ qEii−Ei+1,i+1 + 1⊗ Ei ,i+1,

∆(Ei+1,i) = Ei+1,i ⊗ 1 + q−Eii+Ei+1,i+1 ⊗ Ei+1,i , i ∈ {1, 2, . . . , n − 1},

∆(Ekk) = Ekk ⊗ 1 + 1⊗ Ekk , k ∈ {1, 2, . . . , n}.

We will also use the opposite co-multiplication ∆′, defined by

∆′ = σ ◦∆,

where σ(a⊗ b) = b⊗ a for any a,b ∈ A.
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Universal R-matrix

The algebra A is a quasi-triangular Hopf algebra. Then there exists
an element
R ∈ A⊗A, which satisfies

∆′(a)R = R∆(a) for all a ∈ A,

(∆⊗ 1)R = R13R23,

(1⊗∆)R = R13R12,

where R12 = R⊗ 1, R23 = 1⊗ R and R13 = (σ ⊗ 1)R23.

The quantum Yang-Baxter equation follows from these.

R12R13R23 = R23R13R12
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Universal R-matrix

q-exponential function

expq(x) = 1 +
∞∑
k=1

xk

(k)q!
,

(k)q! = (1)q(2)q · · · (k)q, (k)q = (1− qk)/(1− q).

expq(x)
−1 = expq−1(−x).
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Universal R-matrix

If we assume that the universal R-matrix has the form

R = q
∑n

i=1 Eii⊗EiiR,

where R ∈ N+ ⊗N−: N+ and N− are nilpotent sub-algebras
generated by {Eij} and {Eji} for i < j , i , j ∈ {1, 2, . . . , n}
respectively.

Universal R-matrix
The universal is uniquely defined by [Kirillov-Reshetikhin, Rosso,

Levendorskii-Soibelman,....]

R = q
∑n

i=1 Eii⊗Eii

−→∏
i<j expq−2

(
(q − q−1)−1Eij ⊗ Eji

)
,

where the product is taken over the reverse lexicographical order on
(i , j): (i1, j1) ≺ (i2, j2) if i1 > i2, or i1 = i2 and j1 > j2.
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Quantum Yang-Baxter map

Let X = {Eij , q
Ekk}, i ̸= j be the set of generators of A and X(a) be

the corresponding components in A⊗A,

X(1) = {x⊗ 1|x ∈ X}, X(2) = {1⊗ x|x ∈ X}, X = {Eij , q
Ekk}, i ̸= j .

Quantum Yang-Baxter map

R : (X(1),X(2)) 7→ (X̃(1), X̃(2)),

X̃(a) = RX(a)R−1 =
{
Rx(a)R−1|x(a) ∈ X(a)

}
, a = 1, 2.

Note that any elements of X̃(1) commute with those of X̃(2). In
addition, the algebra Ãa generated by the elements of the set X̃(a) is
isomorphic to the algebra A.
=⇒ The tensor product structure is preserved under the map.
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Another universal R-matrix

One can prove that if R12 ∈ B+ ⊗ B− satisfies definition of the
universal R-matrix, then

R∗
12 = R−1

21 ∈ B− ⊗ B+,

also satisfies the def of the universal R-matrix.

R12R13R23 = R23R13R12,

R∗
12R13R23 = R23R13R∗

12,

R∗
12R∗

13R23 = R23R∗
13R∗

12, . . . .
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L-operators

n-dimensional fundamental representation π of A:
π(Ekk) = Ekk , π(Eij) = (q − q−1)Eij , for i ̸= j .
(Eij : n × n matrix unit. )

L− = (π ⊗ 1)R∗ =
n∑

k=1

Ekk ⊗ q−Ekk −
∑
i<j

Eji ⊗ Eijq
−Eii ,

L+ = (π ⊗ 1)R =
n∑

k=1

Ekk ⊗ qEkk +
∑
i<j

Eij ⊗ qEiiEji ,

(L−)kk(L+)kk = 1
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R-matrices

Evaluating further the second space (quantum space) of these
L-operators in the fundamental representation π, we obtain the block
R-matrices

R− = (1⊗ π)L−

=
∑
i ,j

q−δijEii ⊗ Ejj − (q − q−1)
∑
i<j

Eji ⊗ Eij ,

R+ = (1⊗ π)L+

=
∑
i ,j

qδijEii ⊗ Ejj + (q − q−1)
∑
i<j

Eij ⊗ Eji .
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L and R-operators with a spectral parameter

Then we define the spectral parameter dependent L-operator

L(λ) = λL+ − λ−1L−

and the R-matrix

R(λ) = λR+ − λ−1R−.
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Zero curvature representation

R∗
01R∗

02R12 = R12R∗
02R∗

01,

R∗
01R02R12 = R12R02R∗

01,

R01R02R12 = R12R02R01,
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12 ,

R∗
01R02R12 = R12R02R∗
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02 = (R12R∗
02R−1
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01R−1
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R∗
01R02 = (R12R02R−1

12 )(R12R∗
01R−1

12 )
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12 )(R12R01R−1

12 ).

Evaluating the first space of these (labeled by 0) in the fundamental
representation π, we obtain

Zero curvature representation

L+
1 L+

2 = L̃+
2 L̃+

1 , L−
1 L+

2 = L̃+
2 L̃−

1 , L−
1 L−

2 = L̃−
2 L̃−

1 ,

where L̃±
01 = R12L±

01R−1
12 , L̃±

02 = R12L±
02R−1

12 and we omit the space
index 0.
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Zero curvature representation

The zero curvature representation gives a rational map among
generators for the case Uq(sl(2)) [Bazhanov-Sergeev 2015].

“In this paper we present detailed considerations of the above scheme
on the example of the algebra Uq(sl(2)) leading to discrete Liouville
equations, however the approach is rather general and can be applied
to any quantized Lie algebra. ” [Bazhanov-Sergeev 2015]

However, this optimistic idea soon run into difficulty if we consider
Uq(sl(3)) case. Namely, square roots appear in the map for
Uq(sl(n)), n ≥ 3.
To overcome this difficulty, we will make a change of variables by
twisting the universal R-matrix.
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Twisting universal R-matrices

Twisting [Drinfeld, Reshetikhin]

If F ∈ A⊗A satisfies

(∆⊗ 1)F = F13 F23,

(1⊗∆)F = F13 F12,

F12F13F23 = F23F13F12,

then gauge transformed universal R-matrices

R = F21RF−1
12 q

c⊗c, R∗ = F21R∗F−1
12 q

c⊗c

satisfy the defining relations for the universal R-matrix for the gauge
transformed co-multiplication ∆F (a) = F∆(a)F−1, a ∈ A.

R and R∗ satisfy the same Yang-Baxter relations as R and R∗.
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Twisting the universal R-matrices

F12 = q
∑n

i=1 ωi−1⊗Eii ,
ωi = E11 + · · · + Eii ,

ω0 = 0, ωn = c.
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Twisting L-operators

The gauge transformed L-operators are defined by evaluating the
gauge transformed universal R-matrices.

L− = (π ⊗ 1)(R∗) =
n∑

k=1

Ekk ⊗ q2ωk−1 −
∑
i<j

Eji ⊗ qωi−1+ωj−1Eij ,

L+ = (π ⊗ 1)(R) =
n∑

k=1

Ekk ⊗ q2ωk +
∑
i<j

Eij ⊗ qωi+ωjEji ,

ωi = E11 + · · ·+ Eii .
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Zero curvature representation for twisted

L-operators

The zero-curvature representation for the twisted L-operators has the
same form as the one for the original L-operators

L+
1 L

+
2 = L̃+

2 L̃
+
1 , L−

1 L
+
2 = L̃+

2 L̃
−
1 , L−

1 L
−
2 = L̃−

2 L̃
−
1 .

The set of generators X(a) = {L+(a)
ij ,L−(a)

ji }i≤j for the Yang-Baxter

map R : (X(1),X(2))→ (X̃(1), X̃(2)), (X̃(a) = R12X(a)R−1
12 ) is different:

L+
ij = u

1
2
i u

1
2
j Eji , L−

ji = −u
1
2
i−1u

1
2
j−1Eij for i < j ,

L+
kk = uk L−

kk = uk−1.

(uk := q2ωk = q2(E11+···+Ekk )), L+
kkL

−
kk ̸= 1
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Solving the zero curvature representation

L+
1 L

+
2 = L̃+

2 L̃
+
1 , L−

1 L
+
2 = L̃+

2 L̃
−
1 , L−

1 L
−
2 = L̃−

2 L̃
−
1 ,

To do: write the matrix elements of L̃±
a = (L̃±(a)

ij )ni ,j=1 in terms of

matrix elements of L+
1 ,L

+
2 ,L

−
1 ,L

−
2 .

E11 E12 E130 E22 E23
0 0 E33

F11 0 0
F21 F22 0
F31 F32 F33

 =

=

 1 0 0

L−(1)
21 u(1)

1 0

L−(1)
31 L−(1)

32 u(1)
2

u(2)
1 L+(2)

12 L+(2)
13

0 u(2)
2 L+(2)

23

0 0 1


=

ũ(2)
1 L̃+(2)

12 L̃+(2)
13

0 ũ(2)
2 L̃+(2)

23

0 0 1

 1 0 0

L̃−(1)
21 ũ(1)

1 0

L̃−(1)
31 L̃−(1)

32 ũ(1)
2

 ,
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Solution

ũ(1)
i =

−→∏
i
k=1H−1

k u(1)
k u(2)

k ,

ũ(2)
i = Hi

←−∏
i−1
k=1(u

(1)
k u(2)

k )−1Hk for 1 ≤ i ≤ n,

L̃−(1)
ij =

(−→∏
i−1
k=1H

−1
k u(1)

k u(2)
k

)
Fij for 1 ≤ j < i ≤ n,

L̃+(2)
ij = EijHj

←−∏
j−1
k=1(u

(1)
k u(2)

k )−1Hk for 1 ≤ i < j ≤ n.

quasi-determinants for the matrix J = L−
1 L

+
2 ,

Hi = |Ji ,...,ni ,...,n|ii , Eij = |Ji ,j+1,...,n
j ,j+1,...,n|ij |J

j ,...,n
j ,...,n|

−1
jj ,

Fji = |Jj ,...,nj ,...,n|
−1
jj |J

j ,j+1,...,n
i ,j+1,...,n|ji .
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Solution

L+
1 L

+
2 = L̃+

2 L̃
+
1 , L−

1 L
+
2 = L̃+

2 L̃
−
1 , L−

1 L
−
2 = L̃−

2 L̃
−
1 ,

The other solutions L̃+
1 , L̃

−
2 can be obtained by substituting L̃+

2 , L̃
−
1

into the first and the third zero curvature relations.

L̃+
1 = (L̃+

2 )
−1L+

1 L
+
2 . L̃−

2 = L−
1 L

−
2 (L̃

−
1 )

−1.
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quasi-determinants [Gelfand, Retakh]

• N × N matrix whose matrix elements aij are elements of an
associative algebra (not necessary commutative algebra):

A = A1,2,...,N
1,2,...,N =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN,1 aN,2 · · · aN,N

 ,

• m × n sub matrix:

Ai1,i2,...,im
j1,j1,...,jn

=


ai1,j1 ai1,j2 · · · ai1,jn
ai2,j1 ai2,j2 · · · ai2,jn
...

...
. . .

...
aim,j1 aim,j2 · · · aim,jn

 ,

{i1, i2, . . . , im}, {j1, j2, . . . , jn} ⊂ I = {1, 2, . . . ,N}.
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quasi-determinants [Gelfand, Retakh]

In general, there are N2 quasi-determinants for a N × N matrix A.

(i , j)-quasi-determinant of A is denoted as |A|ij .

In case all the quasi-determinants of A are not zero, the inverse
matrix of A can be expressed in terms of them:

A−1 = (|A|−1
ji )1≤i ,j≤N .

If all the matrix elements of A are commutative, then they reduce to

|A|ij = (−1)i+j detA/ detA1,...,î ,...N

1,...,ĵ ,...N
.

=⇒ Quasi-determinants are non-commutative analogues of ratios of
determinants (rather than non-commutative analogues of determinants).
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quasi-determinants [Gelfand, Retakh]

• For a 1× 1-sub-matrix Ai
j = (aij) of A = A1,2,...,N

1,2,...,N ,

(i , j)-th quasi-determinant is defined by |Ai
j |ij = aij .

• (i , j)-th quasi-determinant of the submatrix Ai1,i2,...,im
j1,j2,...,jm

of A is
recursively defined by

|Ai1,...,im
j1,...,jm

|ij = aij −
∑

k∈{j1,j2,...,jm}\{j},
l∈{i1,i2,...,im}\{i}

aik(|Ai1,...,î ,...,im
j1,...,ĵ ,...,jm

|lk)−1alj ,

where {i1, i2, . . . , im}, {j1, j2, . . . , jm} ⊂ {1, . . . ,N}; m ≥ 2;
i ∈ {i1, i2, . . . , im}, j ∈ {j1, j2, . . . , jm}.
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quasi-Plücker coordinates [Gelfand, Retakh]

• Left quasi-Plücker coordinates of m × N matrix A1,2,...,m
1,2,...,N

q
j1,j2,...,jm−1

ij (A1,2,...,m
1,2,...,N ) = (|A1,2,...,m

i ,j1,...,jm−1
|si)−1|A1,2,...,m

j ,j1,...,jm−1
|sj ,

s ∈ {1, 2, . . . ,m}; m < N , i , j , j1, j2, . . . , jm−1 ∈ {1, 2, . . . ,N},
i /∈ {j1, j2, . . . , jm−1}. This does not depend on s.

• Commutative case (ratios of Plücker coordinates)

q
j1,j2,...,jm−1

ij (A1,2,...,m
1,2,...,N ) = det(A1,2,...,m

i ,j1,...,jm−1
)−1 det(A1,2,...,m

j ,j1,...,jm−1
).

• Right quasi-Plücker coordinates
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quasi-Plücker coordinates [Gelfand, Retakh]

Quasi-Plücker coordinates also satisfy quasi-Plücker relations, which
reduce to Plücker relations in case all the matrix elements are
commutative.

=⇒ useful in non-commutative soliton theory:
non-Abelian Hirota-Miwa equation, non-Abelian Toda equation, etc.
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Zero-curvature relation and quasi-Plücker coordinates

The solution of the zero-curvature relation can be rewritten in terms
of quasi-Plücker coordinates of a block matrix:

M =

(
0 L−(1)L−(2)

L+(1)L+(2) L−(1)L+(2)

)
=

(
0 L−(1)L−(2)

L+(1)L+(2) J

)
,

Define a sub-matrix

Mī1,ī2,...,īa,k1,k2,...,kc
j̄1,j̄2,...,j̄b,l1,l2,...,ld

=

(
0 (L−(1)L−(2))ī1,ī2,...,īal1,l2,...,ld

(L+(1)L+(2))k1,k2,...,kc
j̄1,j̄2,...,j̄b

(L−(1)L+(2))k1,k2,...,kcl1,l2,...,ld

)
,

ī1, ī2, . . . , īa, k1, k2, . . . , kc , j̄1, j̄2, . . . , j̄b, l1, l2, . . . , ld ∈ {1, 2, . . . , n}.
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Mī1,ī2,...,īa,k1,k2,...,kc
j̄1,j̄2,...,j̄b,l1,l2,...,ld

=

(
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Zero-curvature relation and quasi-Plücker coordinates

For 1 ≤ i ≤ j ≤ n,

L̃
+(1)
ij =

(−→∏
i−1
k=1q

k+1,k+2,...,n

k k̄
(Mk,k+1,...,n

1̄,2̄,...,n̄,1,2,...,n
)

)
qi+1,i+2,...,n

i j̄
(Mi ,i+1,...,n

1̄,2̄,...,n̄,1,2,...,n
),

(and similar formulas for L̃−(1)
ji , L̃

+(2)
ij , L̃

−(2)
ji ) solve the zero-curvature

relation.

A solution of a set theoretical (quantum) Yang-Baxter equation is
obtained in terms of quasi-Plücker coordinates over a matrix
composed of L-operators.
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Heisenberg-Weyl realization (Minimal

representation)

The Heisenberg-Weyl algebra Wq

uiwj = q2δijwjui , uiuj = ujui , wiwj = wjwi .

Homomorphism from Uq(sl(n)) to Wq (minimal rep.)

L+
i ,i = ui , L+

i ,j = w−1
i w−1

i+1 · · ·w
−1
j−1(uj − κuj−1),

L−
i ,i = ui−1, L−

j ,i = κ−1wiwi+1 · · ·wj−1(−ui + κui−1), i < j ,

where κ ∈ C.

This realizes a representation which has neither a highest weight nor
a lowest weight.
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Asymptoric representation

For ξ ∈ C \ {0},

τξ : ui → ui , wi → ξwi

gives an automorphism of Wq.

Taking note on this fact, we will take
the limits κ→ 0,∞.
L+,0
i ,j = limκ→0 L

+
i ,j :

L+,0
i ,i = ui , L+,0

i ,j = w−1
i w−1

i+1 · · ·w
−1
j−1uj , i < j .

L+,∞
i ,j = limκ→∞ τκ(L

+
i ,j):

L+,∞
i ,i = ui , L+,∞

i ,i+1 = −w
−1
i ui , otherwise L+,∞

i ,j = 0.
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Factorization of L-operators

Factorization of L+ for minimal rep.

L+,0
1 τκ−1(L+,∞

2 ) = U+ L+,

(κ→ 0)(κ→∞) = (diagonal)(minimal rep.)

Factorization of L− for minimal rep.

L−,∞
1 τκ−1(L−,0

2 ) = U− L−,

(κ→∞)(κ→ 0) = (diagonal)(minimal rep.)
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Factorization of an R-operator

L±,0 and L±,∞ give homomorphisms from B∓ to Wq.

Evaluate the universal R-matrix R ∈ B+ ⊗ B− by these
homomorphisms.

Factorization of the universal R-matrix for minimal rep.

Rmin,min
13 = (‘trivial’ R)R0,0

14 R
0,∞
13 R∞,0

24 R∞,∞
23 (‘trivial’ R)

[cf. affine case: Meneghelli-Teschner 2015]
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Discrete quantum evolution system [cf. Bazhanov-Sergeev 2015]

Quantum Yang-Baxter map gives an automorphism

R : A1 ⊗A2 7→ R(A1 ⊗A2)R
−1 ≃ A1 ⊗A2 (Ai ≃ A).

Based on this map, we define a discrete quantum evolution system
for the algebra of observables

O = A1 ⊗A2 ⊗ · · · ⊗ A2N−1 ⊗A2N , N ≥ 1.

Řij = σij◦Rij , S : (X(1),X(2), . . . ,X(2N)) 7→ (X(2),X(3), . . . ,X(1)),

X(i) : set of the generators of Ai .

The operator

U = S ◦
(
Ř12 ◦ Ř34 ◦ · · · ◦ Ř2n−1,2n

)
gives one step of discrete time evolution (t → t + 1), which is an
automorphism of O: U(O) ≃ O.
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Commuting integrals of motion

Transfer matrices are generating function of integrals of motion.

T(λ) = Tr0
(
L01(λ)L

+
02 · · ·L0,2N−1(λ)L

+
0,2N

)
,

T(λ) = Tr0
(
L−
01L02(λ) · · ·L−

0,2N−1L0,2N(λ)
)

U(T(λ)) = T(λ), U(T(λ)) = T(λ)

T(λ) = λN
N∑
j=0

λ−2jGj , T(λ) = λ−N
N∑
j=0

λ2jGj .

[Gi ,Gj ] = [Gi ,Gj ] = [Gi ,Gj ] = 0.
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Commuting integrals of motion

Transfer matrices are generating function of integrals of motion.

T(λ) = Tr0
(
L01(λ)L

+
02 · · ·L0,2N−1(λ)L

+
0,2N

)
,

T(λ) = Tr0
(
L−
01L02(λ) · · ·L−

0,2N−1L0,2N(λ)
)

U(T(λ)) = T(λ), U(T(λ)) = T(λ)

T(λ) = λN
N∑
j=0
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Quasi-classical limit

Quasi-classical limit

q = eπib
2

, b→ 0,

Uq(gl(n))→ P(gl(n))

qEii → ki , and Eij → eij for i ̸= j ,

Poisson brakets,

[ , ]→ 2πib2{ , }, b→ 0,
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Poisson algebra P(gl(n))

{kl , eij} =
δil − δjl

2
eijkl , {ki , kj} = 0,

{ei ,i+1, ej+1,j} = δij(kik
−1
i+1 − k−1

i ki+1),

{ei ,i+1, ej ,j+1} = {ei+1,i , ej+1,j} = 0 for |i − j | ≥ 2,

Serre relations,

{ei ,i+1, {ei ,i+1, ei+1,i+2}} −
1

4
e2i ,i+1ei+1,i+2 = 0, . . .

Other generators,

eij = {eik , ekj} −
1

2
ekjeik , eji = . . . ,

i < k < j .
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Quasi-classical expansion of the universal R-matrix

The universal R-matrix is singular in the limit b→ 0.

R =
∏
i<j

(1− eij ⊗ eji)
− 1

2

×exp

(
1

iπb2

(
2
∑
i≥j

log ki ⊗ log kj +
1

2

∑
i<j

Li2(eij ⊗ eji)

))
(1+O(b2)),

Li2(x) = −
∫ x

0

log(1− t)

t
dt.
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Classical Yang-Baxter map

Although the quasi-classical limit of the universal R-matrix becomes
singular, its adjoint action ξ ∈ A⊗A → RξR−1 ∈ A⊗A is well
defined. Thus the q → 1 limit of the quantum Yang-Baxter map is
well defined.

R = lim
q→1
R
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Zero-curvature representation

The zero-curvature representation for the classical case has the same
as the quantum case.

ℓ+1 ℓ+2 = ℓ̃
+

2 ℓ̃
+

1 , ℓ−1 ℓ+2 = ℓ̃
+

2 ℓ̃
−
1 , ℓ−1 ℓ−2 = ℓ̃

−
2 ℓ̃

−
1 ,

However, the matrix elements of the L-operators ℓ±a are commutative.
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Solution of the zero-curvature representation

One can obtain the solution by taking the limit q → 1. In particular,
the solution is written in terms of ratios of product of minor
determinants (Plücker coordinates) of a single matrix.(

0 ℓ−1 ℓ
−
2

ℓ+1 ℓ
+
2 ℓ−1 ℓ

+
2

)
=

(
0 ℓ−1 ℓ

−
2

ℓ+1 ℓ
+
2 J

)
.
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Example for P(sl(3))

ũ
(1)
1 =

J22 J23
J32 J33

(u
(1)
2 u

(2)
2 )−1

, ũ
(1)
2 = J33,

ℓ̃
(1)
12 =

(ℓ+1 ℓ+2 )12 J12 J13
(ℓ+1 ℓ+2 )22 J22 J23

0 J32 J33

(u
(1)
1 u

(2)
1 u

(1)
2 u

(2)
2 )−1

, ℓ̃
(1)
23 =

(ℓ+1 ℓ+2 )23 J23
1 J33

(u
(1)
2 u

(2)
2 )−1

,

ℓ̃
(1)
13 =

(ℓ+1 ℓ+2 )13 J12 J13
(ℓ+1 ℓ+2 )23 J22 J23

1 J32 J33

(u
(1)
1 u

(2)
1 u

(1)
2 u

(2)
2 )−1

, ℓ̃
(1)
31 = J31, ℓ̃

(1)
32 = J32,

ℓ̃
(1)
21 =

J21 J23
J31 J33

(u
(1)
2 u

(2)
2 )−1

, ũ
(2)
1 =

u
(1)
1 u

(2)
1 u

(1)
2 u

(2)
2

J22 J23
J32 J33

, ũ
(2)
2 =

u
(1)
2 u

(2)
2

J33
,

ℓ̃
(2)
12 =

J12 J13
J32 J33

u
(1)
2 u

(2)
2

J22 J23
J32 J33

J33

, ℓ̃
(2)
13 =

J13

J33
, ℓ̃

(2)
23 =

J23

J33
, ℓ̃

(2)
21 =

(ℓ−1 ℓ−2 )21 (ℓ−1 ℓ−2 )22 0
J21 J22 J23
J31 J32 J33

J22 J23
J32 J33

,

ℓ̃
(2)
31 =

(ℓ−1 ℓ−2 )31 (ℓ−1 ℓ−2 )32 (ℓ−1 ℓ−2 )33
J21 J22 J23
J31 J32 J33

J22 J23
J32 J33

, ℓ̃
(2)
32 =

(ℓ−1 ℓ−2 )32 (ℓ−1 ℓ−2 )33
J32 J33

u
(1)
2 u

(2)
2

J33
J22 J23
J32 J33

.
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Quasi-classical limit for the minimal representatioin

The Heisenberg-Weyl algebra Wq reduces to the classical
Heisenberg-Weyl algebra W in the quasi-classical limit.

{ui ,wj} = δijwjui , {ui , uj} = {wi ,wj} = 0.

Minimal representation

(homomorphism from P(sl(n)) to W .)

ℓ+i ,i = ui , ℓ+i ,j = w−1
i w−1

i+1 · · ·w
−1
j−1(uj − κuj−1),

ℓ−i ,i = ui−1, ℓ−j ,i = κ−1wiwi+1 · · ·wj−1(−ui + κui−1), i < j .
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Solution of the zero-curvature relation for classical

minimal rep

For instance, for n = 3 case, we explicitly obtain

ũ
(1)
1 =

(
κ1w

(2)
2 (κ1u

(1)
1 u

(2)
2 w

(2)
1 − w

(1)
1 (κ1 − u

(1)
1 )(κ2u

(2)
1 − u

(2)
2 ))−

κ2u
(2)
1 w

(1)
1 w

(1)
2 (κ1 − u

(1)
1 )(κ2u

(2)
2 − 1)

)
(κ21u

(2)
2 w

(2)
1 w

(2)
2 )−1,

(and similar relations for ũ
(1)
2 , ũ

(2)
1 , ũ

(2)
2 , w̃

(1)
1 , w̃

(1)
2 , w̃

(2)
1 , w̃

(2)
2 )
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Solution of the zero-curvature relation for classical

minimal rep

Rewriting this type of formula, we obtain the following relations for
P(sl(n)).

u
(1)
i = κ1

(
i−1∏
k=1

w̃
(2)
k

w
(2)
k

)
w

(1)
i − w̃

(2)
i

w
(1)
i − κ1w

(2)
i

,

(and similar eqs. for u
(2)
i , ũ

(1)
i , ũ

(2)
i ), i ∈ {1, 2, . . . , n − 1}.
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Symplectic form

Under these relations, the following function

Φ =
n−1∑
i=1

2∑
a=1

(
log ũ

(a)
i d log w̃

(a)
i − log u

(a)
i d logw

(a)
i

)
becomes a closed form:

dΦ =
n−1∑
i=1

2∑
a=1

(
d log ũ

(a)
i ∧ d log w̃

(a)
i − d log u

(a)
i ∧ d logw

(a)
i

)
= 0.

This is also an exact form (Φ = dL):

L = 2
∑
k<i

log
w̃

(1)
i

w
(1)
i

log
w̃

(2)
k

w
(2)
k

+
n−1∑
i=1

log
w̃

(1)
i

κ2w
(1)
i

log
w̃

(2)
i

w
(2)
i

+
n−1∑
i=1

{
−Li2

(
κ2w̃

(1)
i

w̃
(2)
i

)
+ Li2

(
κ2w̃

(1)
i

κ1w
(2)
i

)
+ · · · − Li2

(
κ1w

(2)
i

κ2w̃
(1)
i

)}
.
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(a)
i d log w̃

(a)
i − log u

(a)
i d logw

(a)
i

)
becomes a closed form:

dΦ =
n−1∑
i=1

2∑
a=1

(
d log ũ
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w
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log
w̃
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i

w
(2)
i
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−Li2

(
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(1)
i

w̃
(2)
i

)
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(
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i
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Discrete solition equations for P(sl(n))

We consider the map on O = A1 ⊗A2 ⊗ · · · ⊗ A2N−1 ⊗A2N for
q → 1
( u2m+1,t+1

i = U(u2m−1,t
i ), u2m,t+1

i = U(u2m,t
i ), m = 1, . . . ,N ;

i = 1, . . . , n − 1).

u2m−1,t
i = κ1

(
i−1∏
k=1

w 2m,t+1
k

w 2m,t
k

)
w 2m−1,t
i − w 2m,t+1

i

w 2m−1,t
i − κ1w

2m,t
i

(and similar eqs. for u2m,t
i , u2m+1,t+1

i , u2m,t+1
i ).
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Discrete solition equations for P(sl(n))

The consistency condition produces the following equations

(
i−1∏
k=1

w2m+2,t+2
k

w2m+2,t+1
k

)
w2m+1,t+1
i − w2m+2,t+2

i

w2m+1,t+1
i − κ1w

2m+2,t+1
i

=

(
i−1∏
k=1

w2m,t+1
k

w2m,t
k

)
w2m+1,t+1
i − κ−1

2 w2m,t+1
i

w2m+1,t+1
i − κ1κ

−1
2 w2m,t

i

,

(and one similar eq.)

These equations reduce to a discrete Liouville equation for P(sl(2))
[Bazhanov-Sergeev 2015].

We expected that P(sl(n)) case corresponds to discrete Toda field
equations. However, the equations seem to be something more
complicated.
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Summary

Quantum Yang-Baxter maps are defined in terms of adjoint
action of the univeral R-matrix [Bazhanov-Sergeev 2015].

Solving the zero-curvature representation, we obtained the
quantum Yang-Baxter map for Uq(sl(n)). It is expressed as a
product of quasi-Plücker coordinates over a matrix (written in
terms of L-operators, which are image of the universal
R-matrix). Twisting of the universal R-matrix was essential for
the rationality of the map.

Classical Yang-Baxter maps are derived through the
quasiclassical limit.

Discrete integrable systems (soliton equations) follow from
Yang-Baxter maps.

Conjecture [Bazhanov-Sergeev 2015]: all the discrete integrable
equations could be derived in this way.
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