EXPECTED IMPACT OF COVID-19 OUT-BREAK IN A MAJOR METROPOLITAN AREA IN BRAZIL

THE CASE OF BRASÍLIA – FEDERAL DISTRICT (DF)

Tarcísio Marciano da Rocha Filho

NAEED - INTERNATIONAL CENTER FOR CONDENSED MATTER PHYSICS AND PHYSICS INSTITUTE - UNIVERSITY OF BRASÍLIA

marciano@deimos.fis.unb.br

COVID 19 - MODELING INFECTION DYNAMICS VIRTUAL MEETING/IIP - APRIL, 16 2020

Description
Susceptible individual in age group <i>i</i> .
Exposed individuals (non-infectious).
Symptomatic infected individuals.
Asymptomatic infected individuals.
Hospitalized individuals.
Recovered individuals.

ψ	Recovery rate from hospital	1/17.5 days ⁻¹
P _{sc}	Prop. of severe and critical cases	18%
μ cov	Fatality for detected cases	1%(0.4%, 2.9%)
θ_i	Fatality for hospit. individuals	μ_{COV}/P_{sc} overall
ζi	Hospitalization probability	5.8% symp. overall
σ^{-1}	Inverse of the incubation time	5.0 (4.2, 6.0) days ⁻¹
γ^{-1}	Inverse of infectiousness time	1.61 (0.35, 3.23) days ⁻¹
ζi	Hospitalization probability	o.8% overall
Ro	Basic reproduction number	3.0 (2.5, 3.5)
$ au_1$	time from 1st symptom to hospital.	3.3 (2.7, 4.0)
τ_2	time from 1st symptom to death	15.0 (12.8, 17.5)
χ	Proportion of non detected cases	86.2%(81.6%, 89.8%)
ξ	Asymp. infectiousness w.r.t. symp.	55%(46%,65%)

MODEL DIAGRAM

MODEL EQUATIONS

$$\frac{dS_i}{dt} = -\lambda_i S_i$$

$$\frac{dE_i}{dt} = \lambda S_i - \sigma E_i,$$

$$\frac{dI_i}{dt} = (1 - \chi)\sigma E_i - \gamma I_i - \zeta_i \sigma E_1 (t - \tau_1),$$

$$\frac{dA_i}{dt} = \chi \sigma E_i - \gamma A_i,$$

$$\frac{dH_i}{dt} = -\psi H_i + \zeta_i \sigma E_i (t - \tau_1) - \theta \zeta_i \lambda_i E_i (t - \tau_2),$$

$$\frac{dR_i}{dt} = \gamma I_i + \gamma A_i + \psi H_i,$$
(1)

Force of infection:

$$\lambda_i = \sum_{j=1}^M \beta_{i,j} \frac{l_j}{n_i}.$$

Basic reproduction number and effective reproduction number:

$$R_{o} = \sum_{j=1}^{M} n_{j} R_{o}^{(j)}, \quad R_{o}^{(j)} = \sum_{i=1}^{M} \beta_{ij} / \gamma.$$
$$R_{e} = \sum_{j=1}^{M} S_{j} R_{o}^{(j)}, \quad R_{e}^{(j)} = \sum_{i=1}^{M} \beta_{ij} / \gamma.$$
$$\beta_{ii} = \rho_{i} C_{ii}.$$

 $C_{ij} \rightarrow$ Average number of contacts of an individual of age group *j* with any individual of group *i*.

 $\rho_i \rightarrow$ Probability of a susceptible individual of group *i* being infected by any infected individual during a contact.

Official number of cases for Brasília – 2/26 to 3/13

- Only severe and critical cases have been tested (\approx 18%).
- Despite the high number of non reported symptomatic cases (estimated \approx 10-fold), we expect that up to March, 12 they are a constant proportion of the real numbers.
- Estimated total population in the Federal District: 3 Million.

THE BASIC REPRODUCTION NUMBER

$R_{\rm O}$ from model fitting

As the total number of cases is small, we used the model without age-stratification to fit R_o.

- From 2/26 to $3/12 \rightarrow R_0 = 3.58$.
- From 2/26 to 3/10 $\rightarrow R_0 = 3.45$.
- From 2/26 to $3/14 \rightarrow R_0 = 3.19$.

TREND WITH NO ISOLATION

- Total number of ICUs: 1700.
- Total number of infirmary beds (Non-ICUs): 6700;
- Expected ICUs required: 2400–3000.
- Expected non-ICU beds: 7300–9000.
- Most ICU beds are (80%) on the private sector.
- ICU occupancy is usually never below 60%.

TRENDS WITH ISOLATION

- February, 26 to March, 11 \rightarrow no isolation.
- \blacksquare March, 12 to March, 30 \rightarrow 40% reduction in contacts.
- March, 31 to April, $4 \rightarrow 37\%$ reduction in contacts.
- April, 5 to April, $27 \rightarrow 70\%$ reduction in contacts.
- April, 28 to February, $25 \rightarrow 30\%$ reduction in contacts.

END OF ISOLATION AFTER ONE YEAR

- Alternate isolation periods with a partial return of social contacts.
- Strict isolation of elders: 70 years of age and more.
- From April, 27 alternate 1 month with isolation (75% reduction of contacts) to a mild return of social contacts (30% reduction) for the people younger than 70 years old, for approximately 16 total time.

CONCLUDING REMARKS AND PERS-PECTIVES

- Up to the current knowledge on SARS-CoV-2, the control of the Pandemics is going to take a lot of time and effort.
- Isolation reduces the death toll by avoiding to overwhelm hospital facilities.
- The economic impact is certainly much higher than usually announced.
- Differente models for the dynamics of COVID-19 can help shed some light on different options for the long term control of the disease.
- A possible strategy to reduce the long-term economic impact: alternate isolation and relative return to normality (with reduction of contacts), with special attention to the elders.

- No real return to normality is possible, unless with an efficient vaccine and/or a effective pharmaceutical therapy.
- The result of the partial end of isolation in some countries may lead to important insights for other countries.
- With more data it is possible to obtain the transmission matrix β_{i,j} using an estimation of the contact matrix (ongoing for the Federal District) and fitting the probability of transmission for each contact.
- The number of deaths is a proxy for the number of symptomatic cases, and can be used to fit the model.

THANK YOU FOR YOUR ATTENTION!