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1980 (von Klitzing et al.) 
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Haldane phase 1983 (Haldane) 1986 (Buyers et al.) 

Chern insulator 1988 (Haldane) 2013 (Chang et al.) 

QSHE 2005 (Kane, Mele) 2007 (König et al.) 
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Weyl semimetal 2011 (Wan et al.) 2015 (Xu et al.) 
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Platforms for novel quantum criticality? 

•  Topological surface states = novel gapless fermionic vacua with 
“anomalous” character (can only exist on boundary) 

•  Possibility of novel “boundary” quantum critical phenomena impossible (or 
hard) to realize in “bulk” systems? 

•  Focus on semimetal-superconductor transition on surface of 3D TI: 
odd number of 2D Dirac fermions with U(1) and T symmetries 



Outline 

•  Warm-up: boson superconductor-insulator transition (SC-I) vs Dirac 
fermion superconductor-semimetal transition (SC-SM) 

•  Superconductivity with one Dirac cone (Sb2Te3?) 

•  Superconductivity with three Dirac cones (SmB6?) 



SC-I transition of bosons 



Josephson junction array 

•  SC islands coupled via Cooper pair tunneling 
•  Assume                           : no low-energy fermions 



(Al junctions) 

Geerligs et al., PRL ‘89 

van der Zant, PRB ‘96 



(Al junctions) 

Geerligs et al., PRL ‘89 

van der Zant, PRB ‘96 

•  also Bose-Hubbard model with 87Rb atoms 
(Spielman et al., PRL ‘07; Endres et al., Nature ‘12)  



Landau-Ginzburg theory 

•  Coarse-grained description: order parameter = bosonic Cooper pair 
field 



Quantum critical point 

•  QCP is strongly coupled: O(2) 
Wilson-Fisher fixed point (3DXY) 

 
•  Emergent Lorentz invariance 



QCP: optical conductivity 

•  Universal quantum critical conductivity in 
d=2 (Damle, Sachdev, PRB ‘97):	

•  T=0 optical conductivity is frequency-
independent: universal constant 

•  For boson SC-I transition: no exact result, long history – response function 
of a strongly correlated system with no quasiparticles! (Fisher, Grinstein, 
Girvin, PRL ‘90; Fazio, Zappalà, PRB ‘96; Šmakov, Sørensen, PRL ‘05…) 

•  QMC + holography + conformal bootstrap (Katz et al., PRB ‘14; Gazit et al., 
PRL ‘14; Witczak-Krempa et al., Nat. Phys. ‘14; Kos et al., JHEP ‘15): 



SC-SM transition of Dirac fermions 



SM-SC transition of 2D Dirac fermions 

•  Pairing instability of single 2D Dirac 
fermion: 3D TI surface 

•  Consider chemical potential at Dirac point: vanishing DOS implies QCP 
(Roy, Juričić, Herbut, PRB ‘13; Nandkishore, JM, Huse, Sondhi, PRB ’13) 



•  JJA on surface of TI 

Route #1: Josephson engineering 

Ponte and Lee, NJP ‘14 

•  Pairs of Dirac electrons tunnel to SC 
island and vice-versa 



•  Low-energy theory has bosons and fermions (pair-breaking effects) 

Landau-Ginzburg theory 



Route #2: Intrinsic SC? 

•  Anisotropic (2D) 
diamagnetic screening: 
surface SC 



Semimetal-superconductor QCP 
•  QCP has an emergent (2+1)D supersymmetry: N=2 Wess-Zumino model 

(Grover, Sheng, Vishwanath, Science ‘14; Ponte, Lee, NJP ‘14) 

L = i ̄�µ@µ + |@µ�|2 + r|�|2 + h2|�|4 + h(�⇤ T i�y + h.c.)



SUSY QCP: critical exponents 
•  Strongly coupled QCP: anomalous dimensions exactly known from SUSY 

(Aharony et al., NPB ‘97) 

•  Correlation length exponent: 
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QCP: optical conductivity 

•  e.g., graphene = free Dirac CFT: 



QCP: optical conductivity 

•  e.g., graphene = free Dirac CFT: 



QCP: optical conductivity 

•  e.g., graphene = free Dirac CFT: 

QCP = strongly interacting 
Dirac fermions + Cooper pairs! 



SUSY QCP: optical conductivity 

•  Optical conductivity at the strongly correlated Dirac SM-SC QCP can be 
calculated exactly using SUSY: 

Witczak-Krempa and JM, PRL ’16 

•  Reason: 2-point function of stress 
tensor can be computed from 
partition function of N=2 WZ model 
on “squashed” S3 (Closset et al., 
JHEP ’13; Nishioka, Yonekura, 
JHEP ‘13) 

•  U(1) current and stress tensor 
belong to the same SUSY multiplet 



SUSY QCP: shear viscosity 

•  Optical conductivity and dynamical shear viscosity are related by SUSY: 
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Witczak-Krempa and JM, PRL ’16 



SUSY QCP: entanglement entropy 

•  2-point function of stress tensor also determines corner entanglement entropy 

Casini, Huerta, Leitao, NPB ‘09 

Witczak-Krempa and JM, PRL ’16 



From one to three 
•  3D TI surface has odd # of Dirac cones: consider 

system with 3 cones 
•  (111) surface of cubic crystal has C3v symmetry 
•  Four TRI points in surface BZ:       , and three       

points related by C3 rotations 
�̄ M̄
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M̄M̄
�̄

k
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ky

•  (111) surface of SmB6 (Ye, Allen, Sun, arXiv ’13; Baruselli, Vojta, PRB ‘14) 
and YbB6 (Weng et al., PRL ’14) should host 3 degenerate Dirac cones at       
points 

M̄

Baruselli and Vojta, PRB ‘16 Weng et al., PRL ‘14 

SmB6 
(111) 

K̄



Pairing: intra- vs intervalley 

•  Consider pairing instabilities for chemical 
potential at the Dirac point 

•  2 possibilities: intravalley or intervalley pairing 

•  Intravalley pairing (                            , etc.) has Q = 0 crystal momentum: 
uniform SC 
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S.-K. Jian, C.-H. Lin, JM, H. Yao, arXiv ’16, to appear in PRL 
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•  Consider pairing instabilities for chemical 
potential at the Dirac point 

•  2 possibilities: intravalley or intervalley pairing 

 1

 2 3

•  Intravalley pairing (                            , etc.) has Q = 0 crystal momentum: 
uniform SC 

•  Intervalley pairing (                            , etc.) has Q1, Q2, Q3 ≠ 0 momentum: 
pair-density-wave (PDW) 
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Pairing: intra- vs intervalley 

S.-K. Jian, C.-H. Lin, JM, H. Yao, arXiv ’16, to appear in PRL 



Landau theory for PDW instability 

•  By symmetry (C3v x U(1) x TRS x translation), Landau theory for PDW 
instability must have the form 
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•  In ordered phases, relative phase modes (Leggett modes) are gapped: can 
ignore at the mean-field level (                             ) u1 + u0

1 ! u1



Mean-field phase diagram (I) 

•  For u2 > 0: 

r

u1

DSM NPDW 

IPDW 

(1st order) 

Dirac semimetal (DSM):                   , 3 gapless Dirac cones 
 
Isotropic PDW (IPDW):                                                   , 3 gapped Dirac cones 
 
Nematic PDW (NPDW):                                                        & cyclic permutations, 

h�ii = 0

h�1i = h�2i = h�3i 6= 0

2 gapped & 1 gapless Dirac cones: breaks C3 

h�1i 6= 0, h�2i = h�3i = 0



Mean-field phase diagram (II) 

•  For u2 < 0: must add sixth-order 
term                              to 
stabilize the ground state energy 
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•  NPDW-DSM and IPDW-DSM 
transitions go from continuous to 
first-order at tricritical lines 
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NPDW-DSM tricritical line (I) 

•  Low-energy effective theory of the NPDW-DSM tricritical line: 
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kinetic energy of Dirac 
fermion/Cooper pair 

“classical” Landau energy 

pair breaking 

•  Determine critical properties using Wilson and Fisher’s ε-expansion 
(one-loop) 



NPDW-DSM tricritical line (II) 

•  At low energies, fermion & boson velocities become isotropic and equal 
to each other: emergent Lorentz invariance 

•  Unstable fixed point with two relevant directions, r and u2: NPDW-DSM 
tricritical line 

•  Fixed point couplings: 

•  Fixed point Lagrangian: 
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Emergent SUSY 
•  The fixed point Lagrangian on the NPDW-DSM tricritical line is a SUSY 

field theory known as the XYZ model (Aharony et al., NPB ’97) 
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•  Cooper pair φi and Dirac fermion ψi are 
superpartners, e.g., “components” of a 
single “superfield” Φi: 

“fermionic” or “superspace” coordinates 



XYZ tricritical line: critical properties 

•  As in the single Dirac case (N=2 WZ model), certain critical properties can 
be evaluated exactly even though the QCP is strongly interacting 

•  Dirac fermion/Cooper pair anomalous dimensions: 

•  Universal T=0 optical conductivity: 
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Mirror symmetry and SQED3 

•  The XYZ model is interesting because it has an equivalent or “dual” 
description in terms of N=2 supersymmetric quantum electrodynamics 
in 2+1 dimensions (N=2 SQED3) with a single “flavor” of matter fields 

•  This duality is known as mirror symmetry (Aharony et al., NPB ‘97) and 
can be understood as a SUSY version of particle-vortex duality 
(Dasgupta, Halperin, PRL ‘81) 

quantum XY model 
(“matter” side) 

Abelian Higgs model 
(“gauge” side) 

superfluid 
vortices 

“charged” 
bosonic matter 

U(1) 
vortices, 
“photons” 

bosonic Cooper 
pairs 



Mirror symmetry and SQED3 

XYZ model 
(“matter” side) 

N=2 SQED3 
(“gauge” side) 

superfluid 
vortices 

”charged” 
bosonic & 
fermionic 

matter 

U(1) 
vortices, 

“photons” & 
“photinos” 

bosonic Cooper 
pairs & Dirac 

fermions 

•  The XYZ model is interesting because it has an equivalent or “dual” 
description in terms of N=2 supersymmetric quantum electrodynamics 
in 2+1 dimensions (N=2 SQED3) with a single “flavor” of matter fields 

•  This duality is known as mirror symmetry (Aharony et al., NPB ‘97) and 
can be understood as a SUSY version of particle-vortex duality 
(Dasgupta, Halperin, PRL ‘81) 



Summary 

•  At charge neutrality (Dirac point), the surface of 3D topological insulators 
can exhibit a semimetal-superconductor quantum critical point where 
gapless Dirac fermions and Cooper pairs interact strongly 

•  For a surface with one (three) Dirac cone(s), the QCP displays emergent 
N=2 SUSY of the Wess-Zumino (XYZ/SQED3) type. Possible realization in 
Sb2Te3 (SmB6) or other TI compounds? 

•  SUSY allows one to determine exactly certain response properties 
(optical conductivity, dynamical shear viscosity) of the QCP, despite 
strong correlations 

 
•  Realization of mirror symmetry in condensed matter: SUSY version of 

Son-Metlitski-Vishwanath-Senthil-… Dirac fermion/Nf=1 QED3 duality 


