

Fluid/Gravity Correspondence and Casadio-Fabbri-Mazzacurati solutions

Roldão da Rocha

¹FEDERAL UNIVERSITY OF ABC, BRASIL

Strings at Dunes, IIP, Natal, July 2016

► Black strings hydrodynamics (Gregory-Laflamme ⇔ Plateau-Rayleigh)

Casadio-Fabbri-Mazzacurati CFM black strings

Fluid/gravity correspondence

- Kubo formula for fluid viscosity: CFM-AdS black branes
- Shear viscosity-to-entropy density ratio: Kovtun-Son-Starinets
- Theoretical prediction of the PPN parameter bound.

- ► Black strings hydrodynamics (Gregory-Laflamme ⇔ Plateau-Rayleigh)
- Casadio-Fabbri-Mazzacurati CFM black strings
- Fluid/gravity correspondence
 - Kubo formula for fluid viscosity: CFM-AdS black branes
 - Shear viscosity-to-entropy density ratio: Kovtun-Son-Starinets
 - Theoretical prediction of the PPN parameter bound.

- ► Black strings hydrodynamics (Gregory-Laflamme ⇔ Plateau-Rayleigh)
- Casadio-Fabbri-Mazzacurati CFM black strings
- Fluid/gravity correspondence
 - Kubo formula for fluid viscosity: CFM-AdS black branes
 - Shear viscosity-to-entropy density ratio: Kovtun-Son-Starinets
 - Theoretical prediction of the PPN parameter bound.

- ► Black strings hydrodynamics (Gregory-Laflamme ⇔ Plateau-Rayleigh)
- Casadio-Fabbri-Mazzacurati CFM black strings
- Fluid/gravity correspondence
 - Kubo formula for fluid viscosity: CFM-AdS black branes
 - Shear viscosity-to-entropy density ratio: Kovtun-Son-Starinets
 - Theoretical prediction of the PPN parameter bound.

- ► Black strings hydrodynamics (Gregory-Laflamme ⇔ Plateau-Rayleigh)
- Casadio-Fabbri-Mazzacurati CFM black strings
- Fluid/gravity correspondence
 - Kubo formula for fluid viscosity: CFM-AdS black branes
 - Shear viscosity-to-entropy density ratio: Kovtun-Son-Starinets
 - Theoretical prediction of the PPN parameter bound.

- ► Black strings hydrodynamics (Gregory-Laflamme ⇔ Plateau-Rayleigh)
- Casadio-Fabbri-Mazzacurati CFM black strings
- Fluid/gravity correspondence
 - Kubo formula for fluid viscosity: CFM-AdS black branes
 - Shear viscosity-to-entropy density ratio: Kovtun-Son-Starinets
 - Theoretical prediction of the PPN parameter bound.

"Low" energies: string action

Callan, Friedan, Martinec, Perry, Nucl. Phys. B (1985).

- metric g_{μν} dilaton φ
 Maxwell field F_{μν} Kalb-Ramond H_{μνρ}
- $\blacktriangleright H = dB A \wedge F \Rightarrow dH = -F \wedge F$
- Action

$$S = \int d^{D}x \sqrt{-g} \ e^{-2\phi} \Big[\Lambda + R + 4(\nabla \phi)^{2} - F_{\mu\nu}F^{\mu\nu} - \frac{1}{12}H_{\mu\nu\rho}H^{\mu\nu\rho} \Big]$$

 e^{ϕ} is a coupling constant

"Low" energies: string action

Callan, Friedan, Martinec, Perry, Nucl. Phys. B (1985).

- metric g_{μν} dilaton φ
 Maxwell field F_{μν} Kalb-Ramond H_{μνρ}
- $\blacktriangleright H = dB A \wedge F \Rightarrow dH = -F \wedge F$
- Action

$$S = \int d^D x \sqrt{-g} \ e^{-2\phi} \Big[\Lambda + R + 4(\nabla \phi)^2 - F_{\mu\nu}F^{\mu\nu} - \frac{1}{12}H_{\mu\nu\rho}H^{\mu\nu\rho} \Big]$$

 e^{ϕ} is a coupling constant

"Low" energies: string action

Callan, Friedan, Martinec, Perry, Nucl. Phys. B (1985).

- metric g_{μν} dilaton φ
 Maxwell field F_{μν} Kalb-Ramond H_{μνρ}
- $\blacktriangleright H = dB A \wedge F \Rightarrow dH = -F \wedge F$
- Action

$$S = \int d^D x \sqrt{-g} \ e^{-2\phi} \Big[\Lambda + R + 4(\nabla \phi)^2 - F_{\mu\nu}F^{\mu\nu} - \frac{1}{12}H_{\mu\nu\rho}H^{\mu\nu\rho} \Big]$$

 e^{ϕ} is a coupling constant

Equations of motion:

$$\begin{aligned} \mathsf{R}_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu}\phi - 2\mathsf{F}_{\mu\lambda}\mathsf{F}_{\nu}{}^{\lambda} - \frac{1}{4}\mathsf{H}_{\mu\lambda\sigma}\mathsf{H}_{\nu}{}^{\lambda\sigma} &= 0\\ \nabla^{\nu}(e^{-2\phi}\mathsf{F}_{\mu\nu}) + \frac{1}{12}e^{-2\phi}\mathsf{H}_{\mu\nu\rho}\mathsf{F}^{\nu\rho} &= 0\\ \nabla^{\mu}(e^{-2\phi}\mathsf{H}_{\mu\nu\rho}) &= 0\\ 4\nabla^{2}\phi - 4(\nabla\phi)^{2} + \Lambda + \mathsf{R} - \mathsf{F}^{2} - \frac{1}{12}\mathsf{H}^{2} &= 0 \end{aligned}$$

Horowitz, Strominger, Nucl. Phys. B (1991) Seahra, Clarkson, R. Maartens, *Phys. Rev. Lett.* (2005) Chamblin, Reall, Hawking, *Phys. Rev. D* (2000)

 Maartens, LRR (2003), Casadio, PRD (2001)
 RdR, Hoff, PRD (2012) (including variable brane tension)

Taylor expansion along the extra dimension y

$$\begin{aligned} g_{\mu\nu}^{\text{BULK}} &= g_{\mu\nu} + \mathcal{L}_{n} g_{\mu\nu}|_{y=0} |y| + \left(\mathcal{L}_{n} \left(\mathcal{L}_{n} g_{\mu\nu}\right)\right)|_{y=0} \frac{|y|^{2}}{2!} \\ &+ \left(\mathcal{L}_{n} \left(\mathcal{L}_{n} \left(\mathcal{L}_{n} g_{\mu\nu}\right)\right)\right)|_{y=0} \frac{|y|^{3}}{3!} + \dots + \mathcal{L}_{n}^{k} (g_{\mu\nu})|_{y=0} \frac{|y|^{k}}{k!} + \dots \end{aligned}$$

To probe information about the bulk from the brane metric

In Gaussian coordinates:

$$\mathcal{L}_{\mathbf{n}} = \frac{\partial}{\partial \text{ (extra dimension)}}$$

 Maartens, LRR (2003), Casadio, PRD (2001)
 RdR, Hoff, PRD (2012) (including variable brane tension)

Taylor expansion along the extra dimension y

$$g_{\mu\nu}^{\text{BULK}} = g_{\mu\nu} + \mathcal{L}_{\mathbf{n}} g_{\mu\nu}|_{y=0} |y| + (\mathcal{L}_{\mathbf{n}} (\mathcal{L}_{\mathbf{n}} g_{\mu\nu}))|_{y=0} \frac{|y|^2}{2!} \\ + (\mathcal{L}_{\mathbf{n}} (\mathcal{L}_{\mathbf{n}} (\mathcal{L}_{\mathbf{n}} g_{\mu\nu})))|_{y=0} \frac{|y|^3}{3!} + \dots + \mathcal{L}_{\mathbf{n}}^k (g_{\mu\nu})|_{y=0} \frac{|y|^k}{k!} + \dots$$

- To probe information about the bulk from the brane metric
- In Gaussian coordinates:

$$\mathcal{L}_{n} = \frac{\partial}{\partial \text{ (extra dimension)}}$$

 Maartens, LRR (2003), Casadio, PRD (2001)
 RdR, Hoff, PRD (2012) (including variable brane tension)

Taylor expansion along the extra dimension y

$$\begin{array}{lll} g^{\rm BULK}_{\mu\nu} & = & g_{\mu\nu} + \mathcal{L}_{n}g_{\mu\nu}|_{y=0} \, |y| + \left(\mathcal{L}_{n}\left(\mathcal{L}_{n}g_{\mu\nu}\right)\right)|_{y=0} \, \frac{|y|^{2}}{2!} \\ & & + \left(\mathcal{L}_{n}\left(\mathcal{L}_{n}\left(\mathcal{L}_{n}g_{\mu\nu}\right)\right)\right)|_{y=0} \, \frac{|y|^{3}}{3!} + \dots + \mathcal{L}^{k}_{n}(g_{\mu\nu})|_{y=0} \, \frac{|y|^{k}}{k!} + \dots \end{array}$$

- To probe information about the bulk from the brane metric
- In Gaussian coordinates:

$$\mathcal{L}_{\mathbf{n}} = \frac{\partial}{\partial \text{ (extra dimension)}}$$

• Vacuum on the brane: $T_{\mu\nu} = 0$

$$\begin{split} g_{\mu\nu}(x^{\mu},y) &= g_{\mu\nu} - \frac{1}{3}\kappa_{5}^{2}\lambda g_{\mu\nu} |y| + \left[-\mathcal{E}_{\mu\nu} + \left(\frac{1}{36}\kappa_{5}^{4}\lambda^{2} - \frac{1}{6}\Lambda_{5} \right) g_{\mu\nu} \right] y^{2} + \\ &+ \left(\left(-\frac{193}{216}\lambda^{3}\kappa_{5}^{6} - \frac{5}{18}\Lambda_{5}\kappa_{5}^{2}\lambda \right) g_{\mu\nu} + \frac{1}{6}\kappa_{5}^{2}\mathcal{E}_{\mu\nu} + \frac{1}{3}\kappa_{5}^{2}(\mathcal{E}_{\mu\nu} + \mathcal{R}_{\mu\nu}) \right) \frac{|y|^{3}}{3!} + \\ &+ \left[\frac{1}{6}\Lambda_{5} \left(\left(\mathcal{R} - \frac{1}{3}\Lambda_{5} - \frac{1}{18}\lambda^{2}\kappa_{5}^{4} \right) + \frac{7}{324}\lambda^{4}\kappa_{5}^{8} \right) g_{\mu\nu} + \left(\mathcal{R} - \Lambda_{5} + \frac{19}{36}\lambda^{2}\kappa_{5}^{4} \right) \mathcal{E}_{\mu\nu} \\ &+ \left(\frac{37}{216}\lambda^{2}\kappa_{5}^{4} - \frac{1}{6}\Lambda_{5} \right) \mathcal{R}_{\mu\nu} + \mathcal{E}^{\alpha\beta} \mathcal{R}_{\mu\alpha\nu\beta} \right] \frac{y^{4}}{4!} + \cdots \end{split}$$

Bazeia, Hoff, RdR, PLB (2012) Bazeia, Hoff, RdR, PRD (2013) Anjos, Coimbra, RdR, JCAP (2016)

• $\mathcal{E}^{\alpha\beta}$ is the electric part of the Weyl tensor.

• $\sqrt{g_{\theta\theta}(x^{\mu},0)}$: black holes horizon

 $\sqrt{g_{ heta heta}(x^{\mu},y)}$: black string warped horizon, when y equals a coordinate singularity

• Vacuum on the brane: $T_{\mu\nu} = 0$

$$\begin{split} g_{\mu\nu}(\mathbf{x}^{\mu},\mathbf{y}) &= g_{\mu\nu} - \frac{1}{3}\kappa_{5}^{2}\lambda g_{\mu\nu} |\mathbf{y}| + \left[-\mathcal{E}_{\mu\nu} + \left(\frac{1}{36}\kappa_{5}^{4}\lambda^{2} - \frac{1}{6}\Lambda_{5} \right) g_{\mu\nu} \right] \mathbf{y}^{2} + \\ &+ \left(\left(-\frac{193}{216}\lambda^{3}\kappa_{5}^{6} - \frac{5}{18}\Lambda_{5}\kappa_{5}^{2}\lambda \right) g_{\mu\nu} + \frac{1}{6}\kappa_{5}^{2}\mathcal{E}_{\mu\nu} + \frac{1}{3}\kappa_{5}^{2}(\mathcal{E}_{\mu\nu} + \mathcal{R}_{\mu\nu}) \right) \frac{|\mathbf{y}|^{3}}{3!} + \\ &+ \left[\frac{1}{6}\Lambda_{5} \left(\left(\mathcal{R} - \frac{1}{3}\Lambda_{5} - \frac{1}{18}\lambda^{2}\kappa_{5}^{4} \right) + \frac{7}{324}\lambda^{4}\kappa_{5}^{8} \right) g_{\mu\nu} + \left(\mathcal{R} - \Lambda_{5} + \frac{19}{36}\lambda^{2}\kappa_{5}^{4} \right) \mathcal{E}_{\mu\nu} \\ &+ \left(\frac{37}{216}\lambda^{2}\kappa_{5}^{4} - \frac{1}{6}\Lambda_{5} \right) \mathcal{R}_{\mu\nu} + \mathcal{E}^{\alpha\beta} \mathcal{R}_{\mu\alpha\nu\beta} \right] \frac{\mathbf{y}^{4}}{4!} + \cdots \end{split}$$

Bazeia, Hoff, RdR, PLB (2012) Bazeia, Hoff, RdR, PRD (2013) Anjos, Coimbra, RdR, JCAP (2016)

• $\mathcal{E}^{\alpha\beta}$ is the electric part of the Weyl tensor.

• $\sqrt{g_{\theta\theta}(x^{\mu},0)}$: black holes horizon

 $\sqrt{g_{ heta heta}(x^{\mu},y)}$: black string warped horizon, when y equals a coordinate singularity

• Vacuum on the brane: $T_{\mu\nu} = 0$

$$\begin{split} g_{\mu\nu}(x^{\mu},y) &= g_{\mu\nu} - \frac{1}{3}\kappa_{5}^{2}\lambda g_{\mu\nu} |y| + \left[-\mathcal{E}_{\mu\nu} + \left(\frac{1}{36}\kappa_{5}^{4}\lambda^{2} - \frac{1}{6}\Lambda_{5} \right) g_{\mu\nu} \right] y^{2} + \\ &+ \left(\left(-\frac{193}{216}\lambda^{3}\kappa_{5}^{6} - \frac{5}{18}\Lambda_{5}\kappa_{5}^{2}\lambda \right) g_{\mu\nu} + \frac{1}{6}\kappa_{5}^{2}\mathcal{E}_{\mu\nu} + \frac{1}{3}\kappa_{5}^{2}(\mathcal{E}_{\mu\nu} + \mathcal{R}_{\mu\nu}) \right) \frac{|y|^{3}}{3!} + \\ &+ \left[\frac{1}{6}\Lambda_{5} \left(\left(\mathcal{R} - \frac{1}{3}\Lambda_{5} - \frac{1}{18}\lambda^{2}\kappa_{5}^{4} \right) + \frac{7}{324}\lambda^{4}\kappa_{5}^{8} \right) g_{\mu\nu} + \left(\mathcal{R} - \Lambda_{5} + \frac{19}{36}\lambda^{2}\kappa_{5}^{4} \right) \mathcal{E}_{\mu\nu} \\ &+ \left(\frac{37}{216}\lambda^{2}\kappa_{5}^{4} - \frac{1}{6}\Lambda_{5} \right) \mathcal{R}_{\mu\nu} + \mathcal{E}^{\alpha\beta} \mathcal{R}_{\mu\alpha\nu\beta} \right] \frac{y^{4}}{4!} + \cdots \end{split}$$

Bazeia, Hoff, RdR, PLB (2012) Bazeia, Hoff, RdR, PRD (2013) Anjos, Coimbra, RdR, JCAP (2016)

- $\mathcal{E}^{\alpha\beta}$ is the electric part of the Weyl tensor.
- $\sqrt{g_{\theta\theta}(x^{\mu},0)}$: black holes horizon

 $\sqrt{g_{\theta\theta}(x^{\mu}, y)}$: black string warped horizon, when *y* equals a coordinate singularity

PPN parameter: experimental/observational bounds

C. Will, Living Rev. Rel. 9, 3 (2006).

Very-long-baseline interferometry elay Baseline B Correlator Time Delay τ Baseline B Imagery

PPN parameter: experimental/observational bounds

C. Will, Living Rev. Rel. **9**, 3 (2006): "A light ray with passes the Sun at a distance d is deflected by an angle

$$\Delta\theta = \frac{1+\beta}{2} \frac{4M_{\odot}}{d} \frac{1+\cos\Phi}{2}$$

where Φ is the angle between the Earth-Sun line and the incoming direction of the photon."

Cassini probe

- Casadio, Fabbri, Mazzacurati, "New black holes in the brane world?," Phys. Rev. D 65 (2002) 084040.
- $ds^2 = -f(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2 d\Omega^2$:

Why to take f(r) = A(r)?

Casadio, Fabbri, Mazzacurati, "New black holes in the brane world?," Phys. Rev. D 65 (2002) 084040.

•
$$ds^2 = -f(r)dt^2 + \frac{1}{A(r)}dr^2 + r^2 d\Omega^2$$
:

Why to take f(r) = A(r)?

5D Einstein equations ↓ Shiromizu-Sasaki-Maeda, PRD (2000) ↓ Effective 4D Einstein equations

$$G_{\mu\nu} = 8 \pi G T_{\mu\nu} - \frac{\Lambda_4}{2} g_{\mu\nu} + \frac{\kappa_5^4}{4} \left[\frac{g_{\mu\nu}}{2} \left(T^2 - T_{\alpha\beta} T^{\alpha\beta} \right) + T T_{\mu\nu} - T_{\mu\alpha} T^{\alpha}_{\ \nu} \right] - \mathcal{E}_{\mu\nu}$$

 $\begin{array}{l} \kappa_5^2 = 8 \, \pi \ G_5 \\ G = \kappa_5^2 \, \lambda/48 \, \pi \ \text{is the Newton constant} \\ (\lambda \equiv \text{brane tension}) \\ T_{\mu\nu} : \text{energy-momentum tensor of brane matter} \\ \mathcal{E}_{\mu\nu} \ \text{is the Weyl tensor term.} \end{array}$

Solution I

vacuum energy density = cosmological constant of our (4D) Universe

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(\frac{1 - \frac{3GM}{2c^{2}r}}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

 β : (PPN) post-Newtonian parameter ($|\beta| < 0.003$).

- ▶ $\lim_{\beta \to 1} \text{CFM} = \text{Schwarzschild}.$
- Hawking temperature

$$T_H = \frac{\sqrt{1 - 4(\beta - 1)}}{8\,\pi\,M}$$

For r = 0 and (for $T_H \sim 0$) $r = \frac{3GM}{2c^2}$: (physical singularities) Kretschmann $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$

Solution I

vacuum energy density = cosmological constant of our (4D) Universe

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(\frac{1 - \frac{3GM}{2c^{2}r}}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

 β : (PPN) post-Newtonian parameter ($|\beta| < 0.003$).

- $\lim_{\beta \to 1} CFM = Schwarzschild.$
- Hawking temperature

$$T_H = \frac{\sqrt{1 - 4(\beta - 1)}}{8\,\pi\,M}$$

For r = 0 and (for $T_H \sim 0$) $r = \frac{3GM}{2c^2}$: (physical singularities) Kretschmann $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \to \infty$

Solution I

vacuum energy density = cosmological constant of our (4D) Universe

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(\frac{1 - \frac{3GM}{2c^{2}r}}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

 β : (PPN) post-Newtonian parameter ($|\beta| < 0.003$).

- $\lim_{\beta \to 1} CFM = Schwarzschild.$
- Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M}$$

For r = 0 and (for $T_H \sim 0$) $r = \frac{3GM}{2c^2}$: (physical singularities) Kretschmann $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \to \infty$

Solution I

vacuum energy density = cosmological constant of our (4D) Universe

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(\frac{1 - \frac{3GM}{2c^{2}r}}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

 β : (PPN) post-Newtonian parameter ($|\beta| < 0.003$).

- $\lim_{\beta \to 1} CFM = Schwarzschild.$
- Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M}$$

► For r = 0 and (for $T_H \sim 0$) $r = \frac{3GM}{2c^2}$: (physical singularities) Kretschmann $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$

Solution II

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r} + \frac{2G^{2}M^{2}}{c^{4}r^{2}}(\beta - 1)\right)dt^{2} + \left(\frac{1 - 3GM/2c^{2}r}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

lim_{$$\beta \rightarrow 1$$} CFM = Schwarzschild.

- $R = R_S$ and $R = R_S (\beta 1/4)$. (Here $R_S = \frac{2GM}{c^2}$).
- Kretschmann scalar $K = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$, when r = 0 (and extra singularity $r = \frac{5GM}{(\beta-1)c^2}$).
- GR \mapsto Newtonian potential (\approx weak field)

$$g_{00}^{(4D)} = -\left(1+rac{2GM}{R}
ight)$$
 .

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R} + (\beta - 1)\left(\frac{2GM}{R}\right)^2\right) + \cdots$$

Solution II

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r} + \frac{2G^{2}M^{2}}{c^{4}r^{2}}(\beta - 1)\right)dt^{2} + \left(\frac{1 - 3GM/2c^{2}r}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

- $R = R_S$ and $R = R_S (\beta 1/4)$. (Here $R_S = \frac{2GM}{c^2}$).
- ► Kretschmann scalar $K = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$, when r = 0 (and extra singularity $r = \frac{5GM}{(\beta-1)c^2}$).
- GR \mapsto Newtonian potential (\approx weak field)

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R}\right)$$
.

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R} + (\beta - 1)\left(\frac{2GM}{R}\right)^2\right) + \cdots$$

Solution II

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r} + \frac{2G^{2}M^{2}}{c^{4}r^{2}}(\beta - 1)\right)dt^{2} + \left(\frac{1 - 3GM/2c^{2}r}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

- $R = R_S$ and $R = R_S (\beta 1/4)$. (Here $R_S = \frac{2GM}{c^2}$).
- Kretschmann scalar $K = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$, when r = 0 (and extra singularity $r = \frac{5GM}{(\beta-1)c^2}$).
- GR \mapsto Newtonian potential (\approx weak field)

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R}\right)$$
.

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R} + (\beta - 1)\left(\frac{2GM}{R}\right)^2\right) + \cdots$$

Solution II

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r} + \frac{2G^{2}M^{2}}{c^{4}r^{2}}(\beta - 1)\right)dt^{2} + \left(\frac{1 - 3GM/2c^{2}r}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

- $R = R_S$ and $R = R_S (\beta 1/4)$. (Here $R_S = \frac{2GM}{c^2}$).
- Kretschmann scalar $K = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$, when r = 0 (and extra singularity $r = \frac{5GM}{(\beta-1)c^2}$).
- GR \mapsto Newtonian potential (\approx weak field)

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R}\right) \,.$$

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R} + (\beta - 1)\left(\frac{2GM}{R}\right)^2\right) + \cdots$$

Solution II

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r} + \frac{2G^{2}M^{2}}{c^{4}r^{2}}(\beta - 1)\right)dt^{2} + \left(\frac{1 - 3GM/2c^{2}r}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

- lim_{$\beta \rightarrow 1$} CFM = Schwarzschild.
- $R = R_S$ and $R = R_S (\beta 1/4)$. (Here $R_S = \frac{2GM}{c^2}$).
- Kretschmann scalar $K = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$, when r = 0 (and extra singularity $r = \frac{5GM}{(\beta-1)c^2}$).
- GR \mapsto Newtonian potential (\approx weak field)

$$g_{00}^{(4D)}=-\left(1+rac{2GM}{R}
ight)$$
 .

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R} + (\beta - 1)\left(\frac{2GM}{R}\right)^2\right) + \cdots$$

Solution II

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r} + \frac{2G^{2}M^{2}}{c^{4}r^{2}}(\beta - 1)\right)dt^{2} + \left(\frac{1 - 3GM/2c^{2}r}{\left(1 - \frac{2GM}{c^{2}r}\right)\left(1 - \frac{GM}{2c^{2}r}(4\beta - 1)\right)}\right)dr^{2} + r^{2}d\Omega^{2}$$

- lim_{$\beta \rightarrow 1$} CFM = Schwarzschild.
- $R = R_S$ and $R = R_S (\beta 1/4)$. (Here $R_S = \frac{2GM}{c^2}$).
- Kretschmann scalar $K = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \rightarrow \infty$, when r = 0 (and extra singularity $r = \frac{5GM}{(\beta-1)c^2}$).
- GR → Newtonian potential (≈ weak field)

$$g_{00}^{(4D)}=-\left(1+rac{2GM}{R}
ight)$$
 .

$$g_{00}^{(4D)} = -\left(1 + \frac{2GM}{R} + (\beta - 1)\left(\frac{2GM}{R}\right)^2\right) + \cdots$$

Classical Perturbation

- Classical black string is unstable: (Gregory, Laflamme, PRL (1993))
- (at weak gravity:) corrections

$$h_{\mu\nu} = -\frac{2GM}{r} \left(1 + \frac{1}{3k^2r^2}\right) \delta_{\mu\nu}$$

5D Einstein equations:

$$\Delta h_{\mu\nu} + 2R_{\mu\lambda\nu\rho}h^{\lambda\rho} = 0$$

Event horizon instability (Chamblin, Reall, Hawking Phys. Rev. D (2000))

Classical Perturbation

- Classical black string is unstable: (Gregory, Laflamme, PRL (1993))
- (at weak gravity:) corrections

$$h_{\mu\nu} = -\frac{2GM}{r}\left(1 + \frac{1}{3k^2r^2}\right)\delta_{\mu\nu}$$

5D Einstein equations:

$$\Delta h_{\mu\nu} + 2R_{\mu\lambda\nu\rho}h^{\lambda\rho} = 0$$

Event horizon instability (Chamblin, Reall, Hawking Phys. Rev. D (2000))

Classical Perturbation

- Classical black string is unstable: (Gregory, Laflamme, PRL (1993))
- (at weak gravity:) corrections

$$h_{\mu\nu} = -\frac{2GM}{r}\left(1 + \frac{1}{3k^2r^2}\right)\delta_{\mu\nu}$$

5D Einstein equations:

$$\Delta h_{\mu\nu} + 2R_{\mu\lambda\nu\rho}h^{\lambda\rho} = 0$$

Event horizon instability (Chamblin, Reall, Hawking Phys. Rev. D (2000))

Classical Perturbation

- Classical black string is unstable: (Gregory, Laflamme, PRL (1993))
- (at weak gravity:) corrections

$$h_{\mu\nu} = -\frac{2GM}{r} \left(1 + \frac{1}{3k^2r^2}\right) \delta_{\mu\nu}$$

5D Einstein equations:

$$\Delta h_{\mu
u} + 2R_{\mu\lambda
u
ho}h^{\lambda
ho} = 0$$

Event horizon instability (Chamblin, Reall, Hawking Phys. Rev. D (2000))

Classical Perturbation

- Classical black string is unstable: (Gregory, Laflamme, PRL (1993))
- (at weak gravity:) corrections

$$h_{\mu\nu} = -\frac{2GM}{r} \left(1 + \frac{1}{3k^2r^2}\right) \delta_{\mu\nu}$$

5D Einstein equations:

$$\Delta h_{\mu
u} + 2R_{\mu\lambda
u
ho}h^{\lambda
ho} = 0$$

Event horizon instability (Chamblin, Reall, Hawking Phys. Rev. D (2000))

Black Strings (in the Kitchen)

Plateau-Rayleigh instability (1873): <u>Jet of water</u> pinches into <u>drops</u> when the wavelength is 3.18 times its diameter

Plateau-Rayleigh instability

What is the **final state** of a black string, after perturbations? It depends on the black string viscosity.

- Lehner, Pretorius, PRL (2010)
- Wiseman, Class. Quant. Grav. (2003)

Black string perturbations

Gregory-Laflamme instability

A CONTRACT

 \rightarrow perturbation \rightarrow

• Lehner, Pretorius, PRL (2010)

Final state of CFM (MGD) black strings

Kuerten, RdR, Class. Quant. Grav. (2013)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2015):

▶ Droplets black holes: Black Strings Hydrodynamics; High viscosity fluids ↔ (high tension black strings): one throat forms, before drops formation

Final state of CFM (MGD) black strings

Kuerten, RdR, Class. Quant. Grav. (2013)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2015):

▶ Droplets black holes: Black Strings Hydrodynamics; High viscosity fluids ↔ (high tension black strings): one throat forms, before drops formation

Final state of CFM black strings

Transition regime occurs when $|\beta-1| \lesssim 3 \times 10^{-1}$

(preliminaries): Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)

Black strings: temperature and entropy...

- ... and hydrodynamic features: viscosity, diffusion rates, diffusion constants and other transport coefficients.
- Bulk dynamics: specified by Einstein equations

$$R_{MN}-\frac{1}{2}Rg_{MN}+\Lambda_5g_{MN}=0.$$

Boundary dynamics: specified by stress tensor conservation

$abla_{\mu}T^{\mu u}=0$

- Black strings: temperature and entropy...
- ... and hydrodynamic features: viscosity, diffusion rates, diffusion constants and other transport coefficients.
- Bulk dynamics: specified by Einstein equations

$$R_{MN}-\frac{1}{2}Rg_{MN}+\Lambda_5g_{MN}=0.$$

Boundary dynamics: specified by stress tensor conservation

 $abla_{\mu}T^{\mu
u}=0$

- Black strings: temperature and entropy...
- ... and hydrodynamic features: viscosity, diffusion rates, diffusion constants and other transport coefficients.
- Bulk dynamics: specified by Einstein equations

$$R_{MN}-\frac{1}{2}Rg_{MN}+\Lambda_5g_{MN}=0.$$

Boundary dynamics: specified by stress tensor conservation

 $\nabla_{\mu}T^{\mu\nu}=0$

- Black strings: temperature and entropy...
- ... and hydrodynamic features: viscosity, diffusion rates, diffusion constants and other transport coefficients.
- Bulk dynamics: specified by Einstein equations

$$R_{MN}-\frac{1}{2}Rg_{MN}+\Lambda_5g_{MN}=0.$$

Boundary dynamics: specified by stress tensor conservation

 $\nabla_{\mu}T^{\mu\nu}=0$

- Black strings: temperature and entropy...
- ... and hydrodynamic features: viscosity, diffusion rates, diffusion constants and other transport coefficients.
- Bulk dynamics: specified by Einstein equations

$$R_{MN}-\frac{1}{2}Rg_{MN}+\Lambda_5g_{MN}=0.$$

Boundary dynamics: specified by stress tensor conservation

 $\nabla_{\mu}T^{\mu\nu}=0$

Bulk	Boundary
Collapse to black hole in gravity	thermalization in CFT
Stationary black hole	thermal equilibrium (at same T)
Quasinormal modes	approach to thermal equilibrium [Horowitz, Hubeny]
* Horizon response properties	* transport coefficients in CFT [Kovtun, Son, Starinets]
Long-wavelength, small frequency deformations	fluid flows
Einstein equations	relativistic Navier-Stokes equations (boundary conformal fluid).

KSS bound

▶ Bulk supergravity, N = 4 supersymmetric $SU(N_c)$ Yang-Mills theory, in the regime $N_c \rightarrow \infty$ and large 't Hooft coupling $g^2 N_c$

(Buchel, Liu, Starinets, Nucl. Phys. B (2005)).

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[1 + \frac{135\,\zeta(3)}{8(2g^2N_c)^{3/2}} + \cdots \right] \; ,$$

(ζ (3) is the Apéry constant).

$$\blacktriangleright \quad \frac{\text{shear viscosity}}{\text{entropy density}} = \frac{\eta}{s} \ge \frac{\hbar}{4 \pi k_{\rm B}} \simeq 6.08 \times 10^{-13} \,\text{ks}$$

(Kovtun, Son, Starinets, PRL (2005).)

Hereon, KSS bound

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

KSS bound

▶ Bulk supergravity, N = 4 supersymmetric $SU(N_c)$ Yang-Mills theory, in the regime $N_c \rightarrow \infty$ and large 't Hooft coupling $g^2 N_c$

(Buchel, Liu, Starinets, Nucl. Phys. B (2005)).

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[1 + \frac{135\,\zeta(3)}{8(2g^2N_c)^{3/2}} + \cdots \right] \; ,$$

(ζ (3) is the Apéry constant).

$$\blacktriangleright \quad \frac{\text{shear viscosity}}{\text{entropy density}} = \frac{\eta}{s} \ge \frac{\hbar}{4 \pi k_{\rm B}} \simeq 6.08 \times 10^{-13} \,\text{k}\,\text{s}$$

(Kovtun, Son, Starinets, PRL (2005).)

Hereon, KSS bound

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

KSS bound

▶ Bulk supergravity, N = 4 supersymmetric $SU(N_c)$ Yang-Mills theory, in the regime $N_c \rightarrow \infty$ and large 't Hooft coupling $g^2 N_c$

(Buchel, Liu, Starinets, Nucl. Phys. B (2005)).

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[1 + \frac{135\,\zeta(3)}{8(2g^2N_c)^{3/2}} + \cdots \right] \; ,$$

(ζ (3) is the Apéry constant).

$$\blacktriangleright \quad \frac{\text{shear viscosity}}{\text{entropy density}} = \frac{\eta}{s} \ge \frac{\hbar}{4 \pi k_{\rm B}} \simeq 6.08 \times 10^{-13} \, \text{K s}$$

(Kovtun, Son, Starinets, PRL (2005).)

Hereon, KSS bound

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

KSS bound

▶ Bulk supergravity, N = 4 supersymmetric $SU(N_c)$ Yang-Mills theory, in the regime $N_c \rightarrow \infty$ and large 't Hooft coupling $g^2 N_c$

(Buchel, Liu, Starinets, Nucl. Phys. B (2005)).

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[1 + \frac{135\,\zeta(3)}{8(2g^2N_c)^{3/2}} + \cdots \right] \; ,$$

(ζ (3) is the Apéry constant).

$$\blacktriangleright \frac{\text{shear viscosity}}{\text{entropy density}} = \frac{\eta}{s} \ge \frac{\hbar}{4 \pi k_{\text{B}}} \simeq 6.08 \times 10^{-13} \,\text{ks}$$

(Kovtun, Son, Starinets, PRL (2005).)

Hereon, KSS bound

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

CFM: Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M} \ge 0$$

 \Rightarrow 1 < β < 1.25 (Strongest theoretical bound).

- **Post-Newtonian** approximation: $g_{00}^{(4D)} = -\left(1 + \frac{2GM}{r} + (\beta 1)\left(\frac{2GM}{r}\right)^2\right)$
- Observational bound: $|\beta| \lesssim 1.003$ Experimental bound: $|\beta| \lesssim 1.00023$.
- KSS bound: a stronger bound on β?

CFM: Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M} \ge 0$$

 \Rightarrow 1 < β < 1.25 (Strongest theoretical bound).

- Post-Newtonian approximation: $g_{00}^{(4D)} = -\left(1 + \frac{2GM}{r} + (\beta 1)\left(\frac{2GM}{r}\right)^2\right)$
- Observational bound: $|\beta| \lesssim 1.003$ Experimental bound: $|\beta| \lesssim 1.0023$.
- KSS bound: a stronger bound on β?

CFM: Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M} \ge 0$$

 \Rightarrow 1 < β < 1.25 (Strongest theoretical bound).

- Post-Newtonian approximation: $g_{00}^{(4D)} = -\left(1 + \frac{2GM}{r} + (\beta 1)\left(\frac{2GM}{r}\right)^2\right)$
- Observational bound: $|\beta| \lesssim 1.003$ Experimental bound: $|\beta| \lesssim 1.0023$.
- KSS bound: a stronger bound on β?

CFM: Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M} \ge 0$$

 \Rightarrow 1 < β < 1.25 (Strongest theoretical bound).

- Post-Newtonian approximation: $g_{00}^{(4D)} = -\left(1 + \frac{2GM}{r} + (\beta 1)\left(\frac{2GM}{r}\right)^2\right)$
- Observational bound: $|\beta| \lesssim 1.003$ Experimental bound: $|\beta| \lesssim 1.00023$.
- KSS bound: a stronger bound on β?
- CFM-AdS black branes: $\frac{\text{shear viscosity}}{\text{entropy density}} = \frac{\eta(\beta)}{s(\beta)} \ge \frac{1}{4\pi}$

CFM: Hawking temperature

$$T_H = \frac{\sqrt{1-4(\beta-1)}}{8\,\pi\,M} \ge 0$$

 \Rightarrow 1 < β < 1.25 (Strongest theoretical bound).

- Post-Newtonian approximation: $g_{00}^{(4D)} = -\left(1 + \frac{2GM}{r} + (\beta 1)\left(\frac{2GM}{r}\right)^2\right)$
- Observational bound: |β| ≤ 1.003 Experimental bound: |β| ≤ 1.00023.
- KSS bound: a stronger bound on β?
- CFM-AdS black branes: $\frac{\text{shear viscosity}}{\text{entropy density}} = \frac{\eta(\beta)}{s(\beta)} \ge \frac{1}{4\pi}$

Kubo formula

Green-Kubo formula

• Sources J^a , coupled to operators $O^a \ S \mapsto S + \int d^4x \ J_a(x) \ O^a(x)$

$$\langle O^a(x)
angle = -\int dy \ G^{a|b}_R(x;y) \, J_b(y) \ ,$$

 $G_R^{a|b}(x;y) = -i\theta(x^0 - y^0) \langle [O^a(x), O^b(y)] \rangle$ retarded Green function of O^a .

• interaction picture in QFT $\Rightarrow \delta \langle O^a(q) \rangle = -G_R^{a|b}(q) J_b(q)$

Kubo formula

Green-Kubo formula

• Sources J^a , coupled to operators $O^a \ S \mapsto S + \int d^4x \ J_a(x) \ O^a(x)$

$$\langle O^a(x)
angle = -\int dy \ G^{a|b}_R(x;y) \, J_b(y) \ ,$$

 $G_R^{a|b}(x;y) = -i\theta(x^0 - y^0) \langle [O^a(x), O^b(y)] \rangle$ retarded Green function of O^a .

• interaction picture in QFT $\Rightarrow \delta \langle O^a(q) \rangle = -G_R^{a|b}(q) J_b(q)$

(Natsuume, Lect. Notes Phys. 903 (2015))

Energy-momentum tensor

$$\begin{array}{ll} \langle T^{\mu\nu}(\mathbf{x})\rangle &=& \langle T^{\mu\nu}\rangle_{h=0} - \frac{1}{2} \int d^4 y \ G_{\mathrm{R}}^{\mu\nu|\rho\sigma}(\mathbf{x};y) \ h_{\rho\sigma}(y) \\ &+ \frac{1}{8} \int d^4 y \ \int d^4 z \ G_{\mathrm{R}}^{\mu\nu|\rho\sigma|\tau\zeta}(\mathbf{x};y,z) \ h_{\rho\sigma}(y) \ h_{\tau\zeta}(z) + \dots \\ &\equiv& \langle T^{\mu\nu}_{(0)}\rangle + \langle T^{\mu\nu}_{(1)}\rangle + \langle T^{\mu\nu}_{(2)}\rangle + \dots , \end{array}$$

$G_{R}^{\mu\nu|\dots}$: retarded *n*-point correlators.

Fluid response:

- stress tensor conservation law $\nabla_{\mu}T^{\mu\nu} = 0$;

- fluid describes a conformal theory $T^{\mu}_{\ \mu} = 0$.

Energy-momentum tensor

$$\begin{array}{ll} \langle T^{\mu\nu}(\mathbf{x}) \rangle &=& \langle T^{\mu\nu} \rangle_{h=0} - \frac{1}{2} \int d^4 y \ G_{\mathrm{R}}^{\mu\nu|\rho\sigma}(\mathbf{x}; \mathbf{y}) \ h_{\rho\sigma}(\mathbf{y}) \\ &+ \frac{1}{8} \int d^4 \mathbf{y} \ \int d^4 z \ G_{\mathrm{R}}^{\mu\nu|\rho\sigma|\tau\zeta}(\mathbf{x}; \mathbf{y}, \mathbf{z}) \ h_{\rho\sigma}(\mathbf{y}) \ h_{\tau\zeta}(\mathbf{z}) + \dots \\ &\equiv& \langle T^{\mu\nu}_{(0)} \rangle + \langle T^{\mu\nu}_{(1)} \rangle + \langle T^{\mu\nu}_{(2)} \rangle + \dots , \end{array}$$

$G_{R}^{\mu\nu|\dots}$: retarded *n*-point correlators.

Fluid response:

- stress tensor conservation law $\nabla_{\mu}T^{\mu\nu} = 0$;

– fluid describes a conformal theory $T^{\mu}_{\ \mu} = 0$.

Energy-momentum tensor

 $1^{\rm st}$ order formalism $\Rightarrow 0^{\rm th}$ order in derivatives:

$$T^{\mu
u}_{(0)} = (\epsilon + P) \, u^{\mu} \, u^{
u} + P \, \bar{g}^{\mu
u} \, ,$$

 u^{μ} : fluid 4-velocity; ϵ : energy density; P: pressure $\bar{g}_{\mu\nu}$: 4D boundary unperturbed metric

Energy-momentum tensor: 1st-order

• Son, Starinets, Ann. Rev. Nucl. Part. Sci. (2007).

$$\langle T^{\mu
u}(x)
angle\sim\int dy\,G^{\mu
u|lphaeta}_R(x;y)\,h_{lphaeta}(y)\;,$$

for retarded Green function $G_R^{\mu\nu|\alpha\beta} = \langle T^{\mu\nu}(x) T^{\alpha\beta}(y) \rangle$.

 \Rightarrow 1th order in derivatives: dissipative terms, shear and bulk viscosities.

$$T^{\mu\nu}_{(1)} = -P^{\mu\alpha}P^{\nu\beta}\left[\eta\left(\nabla_{\alpha}u_{\beta} + \nabla_{\beta}u_{\alpha} - \frac{2}{3}\,\bar{g}_{\alpha\beta}\,\nabla_{\lambda}u^{\lambda}\right) + \zeta\,\bar{g}_{\alpha\beta}\nabla_{\lambda}u^{\lambda}\right]\,,$$

 η : shear viscosity,

 ζ : bulk viscosity,

 $P^{\mu\nu} = \bar{g}^{\mu\nu} + u^{\mu}u^{\nu}$: projection.

Energy-momentum tensor: 1st-order

• Son, Starinets, Ann. Rev. Nucl. Part. Sci. (2007).

$$\langle T^{\mu
u}(x)
angle\sim\int dy\,G^{\mu
u|lphaeta}_R(x;y)\,h_{lphaeta}(y)\,,$$

for retarded Green function $G_R^{\mu\nu|\alpha\beta} = \langle T^{\mu\nu}(x) T^{\alpha\beta}(y) \rangle.$

 \Rightarrow 1 th order in derivatives: dissipative terms, shear and bulk viscosities.

$$T^{\mu\nu}_{(1)} = -P^{\mu\alpha}P^{\nu\beta}\left[\eta\left(\nabla_{\alpha}u_{\beta} + \nabla_{\beta}u_{\alpha} - \frac{2}{3}\,\bar{g}_{\alpha\beta}\,\nabla_{\lambda}u^{\lambda}\right) + \zeta\,\bar{g}_{\alpha\beta}\nabla_{\lambda}u^{\lambda}\right]\,,$$

 η : shear viscosity,

 ζ : bulk viscosity,

$$P^{\mu\nu} = \bar{g}^{\mu\nu} + u^{\mu}u^{\nu}$$
: projection.

Bulk	Boundary
$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, \ h_{\mu\nu}\ \ll 1$	$\langle T^{\mu\nu} \rangle = \langle T^{\mu\nu}_{(0)} \rangle + \langle T^{\mu\nu}_{(1)} \rangle + \cdots$
Gravitational perturbations	Fluid energy-momentum tensor response

 $g^{(0)}_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & h_{xy}(t) & 0 \\ 0 & h_{xy}(t) & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

For

Energy-momentum tensor: 1st-order

▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$

• Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_x u_y = \partial_x u_y - \Gamma^{\alpha}_{xy} u_{\alpha} = -\Gamma^0_{xy} u_0 = -\frac{1}{2} \partial_0 h_{xy}$$

*
$$\Rightarrow \delta \langle T_{(1)xy} \rangle \sim -\eta \left(\nabla_x u_y + \nabla_y u_x \right) = -\eta \, \partial_0 h_{xy}$$

- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k=0) \rangle = i \, \omega \, \eta \, h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^{a}(q) \rangle = -G_{R}^{a|b}(q) J_{b}(q) \iff \delta \langle T^{xy} \rangle = -G_{R}^{12|12}(q) h_{xy} ,$$

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$

Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_x u_y = \partial_x u_y - \Gamma^{\alpha}_{xy} u_{\alpha} = -\Gamma^0_{xy} u_0 = -\frac{1}{2} \partial_0 h_{xy}$$

$$\Rightarrow \delta \langle T_{(1)xy} \rangle \sim -\eta \left(\nabla_x u_y + \nabla_y u_x \right) = -\eta \, \partial_0 h_{xy}$$

- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^{a}(q) \rangle = -G_{R}^{a|b}(q) J_{b}(q) \iff \delta \langle T^{xy} \rangle = -G_{R}^{12|12}(q) h_{xy}$$

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$

Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_{\mathbf{x}} u_{\mathbf{y}} = \partial_{\mathbf{x}} u_{\mathbf{y}} - \Gamma_{\mathbf{xy}}^{\alpha} u_{\alpha} = -\Gamma_{\mathbf{xy}}^{0} u_{0} = -\frac{1}{2} \partial_{0} h_{\mathbf{xy}}$$
$$\Rightarrow \delta \langle T_{(1)\mathbf{xy}} \rangle \sim -\eta \left(\nabla_{\mathbf{x}} u_{\mathbf{y}} + \nabla_{\mathbf{y}} u_{\mathbf{x}} \right) = -\eta \partial_{0} h_{\mathbf{xy}}$$

- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^{a}(q) \rangle = -G_{R}^{a|b}(q) J_{b}(q) \iff \delta \langle T^{xy} \rangle = -G_{R}^{12|12}(q) h_{xy}$$

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$

Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_x u_y = \partial_x u_y - \Gamma^{\alpha}_{xy} u_{\alpha} = -\Gamma^0_{xy} u_0 = -\frac{1}{2} \partial_0 h_{xy}$$

$$\Rightarrow \delta \langle T_{(1)xy} \rangle \sim -\eta \left(\nabla_x u_y + \nabla_y u_x \right) = -\eta \, \partial_0 h_{xy}$$

• Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.

A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^{a}(q) \rangle = -G_{R}^{a|b}(q) J_{b}(q) \iff \delta \langle T^{xy} \rangle = -G_{R}^{12|12}(q) h_{xy}$$

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$
Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_x u_y = \partial_x u_y - \Gamma^{\alpha}_{xy} u_{\alpha} = -\Gamma^0_{xy} u_0 = -\frac{1}{2} \partial_0 h_{xy}$$

- $\Rightarrow \delta \langle T_{(1)xy} \rangle \sim -\eta \left(\nabla_x u_y + \nabla_y u_x \right) = -\eta \, \partial_0 h_{xy}$
- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^a(q) \rangle = -G_R^{a|b}(q) J_b(q) \iff \delta \langle T^{xy} \rangle = -G_R^{12|12}(q) h_{xy}$$

• Here $G_R^{xy|xy}(q) = -i \int d^4x \, e^{-i \, q \cdot x} \, \theta(x^0) \, \langle T^{xy}(x^\mu) \, T^{xy}(0) \rangle.$

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$

Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_{x} u_{y} = \partial_{x} u_{y} - \Gamma_{xy}^{\alpha} u_{\alpha} = -\Gamma_{xy}^{0} u_{0} = -\frac{1}{2} \partial_{0} h_{xy}$$

$$\Rightarrow \delta \langle T_{(1)xy} \rangle \sim -\eta \left(\nabla_x u_y + \nabla_y u_x \right) = -\eta \, \partial_0 h_{xy}$$

- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^a(q) \rangle = -G_R^{a|b}(q) J_b(q) \iff \delta \langle T^{xy} \rangle = -G_R^{12|12}(q) h_{xy}$$

• Here $G_B^{xy|xy}(q) = -i \int d^4x \, e^{-i q \cdot x} \, \theta(x^0) \, \langle T^{xy}(x^\mu) \, T^{xy}(0) \rangle.$

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$

Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_{x} u_{y} = \partial_{x} u_{y} - \Gamma_{xy}^{\alpha} u_{\alpha} = -\Gamma_{xy}^{0} u_{0} = -\frac{1}{2} \partial_{0} h_{xy}$$

$$\Rightarrow \delta \langle I_{(1)xy} \rangle \sim -\eta \left(\nabla_x u_y + \nabla_y u_x \right) = -\eta \partial_0 h_{xy}$$

- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^a(q)
angle = -G^{a|b}_R(q) J_b(q) \iff \delta \langle T^{xy}
angle = -G^{12|12}_R(q) h_{xy} ,$$

• Here
$$G_R^{xy|xy}(q) = -i \int d^4x \, e^{-i q \cdot x} \, \theta(x^0) \, \langle T^{xy}(x^\mu) \, T^{xy}(0) \rangle$$
.

• Green-Kubo formula:
$$\eta = -\lim_{\omega \to 0} \frac{\Im G_R^{xy \mid xy}(\omega, 0)}{\omega}$$

Energy-momentum tensor: 1st-order

- ▶ Fluctuations around thermal equilibrium are small \Rightarrow the fluid has uniform temperature $\mathcal{T}(x^{\mu}) = \mathcal{T}_0$
- Kubo formula derivation (rest frame $u^{\mu} = (1, u^{i} = 0)$.)

$$\nabla_{x} u_{y} = \partial_{x} u_{y} - \Gamma_{xy}^{\alpha} u_{\alpha} = -\Gamma_{zy}^{0} u_{0} = -\frac{1}{2} \partial_{0} h_{xy}$$

$$\Rightarrow \delta \langle I_{(1)xy} \rangle \sim -\eta \left(\nabla_x U_y + \nabla_y U_x \right) = -\eta \, \partial_0 n_{xy}$$

- Fourier transform: $\delta \langle T_{(1)xy}(\omega, k = 0) \rangle = i \omega \eta h_{xy}$.
- A perturbed fluid Lagrangian is correspondingly given by $\delta \mathcal{L} = h_{\mu\nu}(x^0) T^{\mu\nu}(x^\alpha) = h_{xy}(t) T^{xy}(x^\alpha)$, for which

$$\delta \langle O^a(q)
angle = -G^{a|b}_R(q) J_b(q) \iff \delta \langle T^{xy}
angle = -G^{12|12}_R(q) h_{xy} ,$$

► Here
$$G_R^{xy|xy}(q) = -i \int d^4x \, e^{-i q \cdot x} \, \theta(x^0) \, \langle T^{xy}(x^\mu) \, T^{xy}(0) \rangle.$$
► Green-Kubo formula: $\eta = -\lim_{\omega \to 0} \frac{\Im \, G_R^{xy|xy}(\omega, 0)}{\omega}$

Energy-momentum tensor: 1st-order

Emparan, Reall, Living Rev. Rel. 11 (2008) 6

"It is expected that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS, black-hole solution of vacuum gravity with a negative cosmological constant, but this has not been proven."

CFM black branes

Black branes

- At strong coupling $g_s N \gg 1$, the branes curve the spacetime substantially, sourcing the **black 3-brane** geometry (**Maldacena**, (1997, 1998, 1999).)
- Schwarzschild-AdS black brane:

$$ds^{2} = r^{2} \left(-f(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}} \quad r_{+} \text{ is the event horizon.}$$

Casadio, Fabbri, Mazzacurati, PRD (2002)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

vacuum energy density = cosmological constant of our (4D) Universe

CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$
?

CFM black branes

Black branes

- At strong coupling $g_s N \gg 1$, the branes curve the spacetime substantially, sourcing the **black 3-brane** geometry (**Maldacena**, (1997, 1998, 1999).)
- Schwarzschild-AdS black brane:

$$ds^{2} = r^{2} \left(-f(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}} \quad r_{+} \text{ is the event horizon.}$$

Casadio, Fabbri, Mazzacurati, PRD (2002)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

vacuum energy density = cosmological constant of our (4D) Universe

CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$
?

CFM black branes

Black branes

- At strong coupling $g_s N \gg 1$, the branes curve the spacetime substantially, sourcing the **black 3-brane** geometry (**Maldacena**, (1997, 1998, 1999).)
- Schwarzschild-AdS black brane:

$$ds^{2} = r^{2} \left(-f(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}} \quad r_{+} \text{ is the event horizon.}$$

Casadio, Fabbri, Mazzacurati, PRD (2002)
 Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

vacuum energy density = cosmological constant of our (4D) Universe

CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$
?

Schwarzschild-AdS black brane (see Nastase's book!): $\frac{\eta}{s} = \frac{1}{4\pi}$

$$ds^{2} = r^{2} \left(-\frac{f(r)dt^{2}}{r^{2}} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}}$$

Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$

Yes, we can, whenever $\frac{1}{2} \frac{N''}{N} - \frac{1}{4} \left(\frac{N'}{N}\right)^2 - \frac{1}{4} \frac{N'}{N} \frac{A'}{A} - \frac{1}{r} \left(\frac{N'}{N} \frac{A'}{A}\right) \frac{2}{r^3} (A-1) = 0$

Solutions
$$N(r) = 1 - \frac{r_{+}^4}{r_{-}^4} + (\beta - 1)\frac{r_{+}^8}{r_{-}^8}$$
 and $A(r) = \frac{1 - \frac{3r_{+}^4}{2r_{-}^4}}{\left(1 - \frac{r_{+}^4}{r_{-}^4}\right)\left[\left(1 - (4\beta - 1)\frac{r_{+}^4}{2r_{-}^4}\right)\right]}$

Here β is a free parameter! However, $\lim_{\beta \to 1} A(r) = N(r)$. (New solutions? New hope!)

Schwarzschild-AdS black brane (see Nastase's book!): $\frac{\eta}{s} = \frac{1}{4\pi}$

$$ds^{2} = r^{2} \left(-\frac{f(r)dt^{2}}{r^{2}} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}}$$

Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$

Yes, we can, whenever $\frac{1}{2} \frac{N''}{N} - \frac{1}{4} \left(\frac{N'}{N}\right)^2 - \frac{1}{4} \frac{N'}{N} \frac{A'}{A} - \frac{1}{r} \left(\frac{N'}{N} \frac{A'}{A}\right) \frac{2}{r^3} (A-1) = 0$

Solutions
$$N(r) = 1 - \frac{r_{+}^4}{r_{-}^4} + (\beta - 1)\frac{r_{+}^8}{r_{-}^8}$$
 and $A(r) = \frac{1 - \frac{3r_{+}^4}{2r_{-}^4}}{\left(1 - \frac{r_{+}^4}{r_{-}^4}\right)\left[\left(1 - (4\beta - 1)\frac{r_{+}^4}{2r_{-}^4}\right)\right]}$

Here β is a free parameter! However, $\lim_{\beta \to 1} A(r) = N(r)$. (New solutions? New hope!)

Schwarzschild-AdS black brane (see Nastase's book!): $\frac{\eta}{s} = \frac{1}{4\pi}$

$$ds^{2} = r^{2} \left(-f(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}}$$

Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

CFM-AdS black brane:
$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)}$$
Yes, we can, whenever $\frac{1}{2} \frac{N''}{N} - \frac{1}{4} \left(\frac{N'}{N} \right)^{2} - \frac{1}{4} \frac{N'}{N} \frac{A'}{A} - \frac{1}{r} \left(\frac{N'}{N} \frac{A'}{A} \right) \frac{2}{r^{3}} (A-1) = 0$
Solutions $N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1) \frac{r_{+}^{4}}{r^{6}}$ and $A(r) = \frac{1 - \frac{3r_{+}^{4}}{r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}}\right) \left[\left(1 - (4\beta - 1) \frac{r_{+}^{4}}{2r^{4}}\right) \right]}$

Here β is a free parameter! However, $\lim_{\beta \to 1} A(r) = N(r)$. (New solutions? New hope

Schwarzschild-AdS black brane (see Nastase's book!): $\frac{\eta}{s} = \frac{1}{4\pi}$

$$ds^{2} = r^{2} \left(-\frac{f(r)dt^{2}}{r^{2}} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}}$$

Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

CFM-AdS black brane:
$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)}$$

Yes, we can, whenever $\frac{1}{2} \frac{N''}{N} - \frac{1}{4} \left(\frac{N'}{N} \right)^{2} - \frac{1}{4} \frac{N'}{N} \frac{A'}{A} - \frac{1}{r} \left(\frac{N'}{N} \frac{A'}{A} \right) \frac{2}{r^{3}} (A-1) = 0$
Solutions $N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1) \frac{r_{+}^{8}}{r^{8}}$ and $A(r) = \frac{1 - \frac{3r_{+}^{4}}{2r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}} \right) \left[\left(1 - (4\beta - 1) \frac{r_{+}^{4}}{2r^{4}} \right) \right]}$

Here β is a free parameter! However, $\lim_{\beta \to 1} A(r) = N(r)$. (New solutions? New hop

Schwarzschild-AdS black brane (see Nastase's book!): $\frac{\eta}{s} = \frac{1}{4\pi}$

$$ds^{2} = r^{2} \left(-f(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}f(r)} \quad f(r) = 1 - \frac{r_{+}^{4}}{r^{4}}$$

Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
 Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

CFM-AdS black brane:
$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)}$$

Yes, we can, whenever $\frac{1}{2} \frac{N''}{N} - \frac{1}{4} \left(\frac{N'}{N} \right)^{2} - \frac{1}{4} \frac{N'}{N} \frac{A'}{A} - \frac{1}{r} \left(\frac{N'}{N} \frac{A'}{A} \right) \frac{2}{r^{3}} (A-1) = 0$
Solutions
$$N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1) \frac{r_{+}^{8}}{r^{8}} \text{ and } A(r) = \frac{1 - \frac{3r_{+}^{4}}{2r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}} \right) \left[\left(1 - (4\beta - 1) \frac{r_{+}^{4}}{2r^{4}} \right) \right]}$$

Here β is a free parameter! However, $\lim_{\beta \to 1} A(r) = N(r)$. (New solutions? New hope!)

KSS bound: a controller Sheriff

Figure: Shear viscosity-to-entropy density ratio × CFM-AdS solution.

- New variable $u \sim \frac{r_+^2}{r^2}$
- CFM-AdS black brane metric:

$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)} \equiv g_{uu} \, du^{2} + g_{\mu\nu} \, dx^{\mu} \, dx^{\nu}$$

- Perturbations $g_{AB} \mapsto g_{AB} + h_{AB}$
- $h_{AB} \equiv \phi = \phi(x^{\mu}, u)$
- ► ⇒ mode equation $\partial_u \left(\sqrt{-g} g^{\mu\nu} \partial_\mu \phi \right) + \sqrt{-g} g^{\mu\nu} \partial_\mu \partial_\nu \phi = 0$
- Fourier transform $\phi \simeq e^{i \omega t} \Phi(u)$ implies

$$\partial_{u}\left(\sqrt{-g}\,g^{uu}\partial_{u}\Phi\right) - \sqrt{-g}\,g^{tt}\,\omega^{2}\,\Phi = 0$$

- New variable $u \sim \frac{r_+^2}{r^2}$
- CFM-AdS black brane metric:

$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)} \equiv g_{uu} du^{2} + g_{\mu\nu} dx^{\mu} dx^{\nu}$$

- Perturbations $g_{AB} \mapsto g_{AB} + h_{AB}$
- $\blacktriangleright h_{AB} \equiv \phi = \phi(x^{\mu}, u)$
- ► ⇒ mode equation $\partial_u \left(\sqrt{-g} g^{\mu\nu} \partial_\mu \phi \right) + \sqrt{-g} g^{\mu\nu} \partial_\mu \partial_\nu \phi = 0$
- Fourier transform $\phi \simeq e^{i \omega t} \Phi(u)$ implies

$$\partial_{u}\left(\sqrt{-g}\,g^{uu}\partial_{u}\Phi\right) - \sqrt{-g}\,g^{tt}\,\omega^{2}\,\Phi = 0$$

- New variable $u \sim \frac{r_+^2}{r^2}$
- CFM-AdS black brane metric:

$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)} \equiv g_{uu} du^{2} + g_{\mu\nu} dx^{\mu} dx^{\nu}$$

- Perturbations $g_{AB} \mapsto g_{AB} + h_{AB}$
- $h_{AB} \equiv \phi = \phi(x^{\mu}, u)$
- ► ⇒ mode equation $\partial_u \left(\sqrt{-g} g^{\mu\nu} \partial_u \phi \right) + \sqrt{-g} g^{\mu\nu} \partial_\mu \partial_\nu \phi = 0$
- Fourier transform $\phi \simeq e^{i \omega t} \Phi(u)$ implies

$$\partial_{u}\left(\sqrt{-g}\,g^{\mu\nu}\partial_{\mu}\Phi\right) - \sqrt{-g}\,g^{tt}\,\omega^{2}\,\Phi = 0$$

- New variable $u \sim \frac{r_+^2}{r^2}$
- CFM-AdS black brane metric:

$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)} \equiv g_{uu} du^{2} + g_{\mu\nu} dx^{\mu} dx^{\nu}$$

- Perturbations $g_{AB} \mapsto g_{AB} + h_{AB}$
- $h_{AB} \equiv \phi = \phi(x^{\mu}, u)$
- ► ⇒ mode equation $\partial_u \left(\sqrt{-g} g^{\mu\nu} \partial_\mu \phi \right) + \sqrt{-g} g^{\mu\nu} \partial_\mu \partial_\nu \phi = 0$
- Fourier transform $\phi \simeq e^{i \omega t} \Phi(u)$ implies

$$\partial_{u}\left(\sqrt{-g}\,g^{\mu\nu}\partial_{\mu}\Phi\right) - \sqrt{-g}\,g^{tt}\,\omega^{2}\,\Phi = 0$$

- New variable $u \sim \frac{r_+^2}{r^2}$
- CFM-AdS black brane metric:

$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)} \equiv g_{uu} du^{2} + g_{\mu\nu} dx^{\mu} dx^{\nu}$$

- Perturbations $g_{AB} \mapsto g_{AB} + h_{AB}$
- $h_{AB} \equiv \phi = \phi(x^{\mu}, u)$
- ► ⇒ mode equation $\partial_u \left(\sqrt{-g} g^{\mu\nu} \partial_\mu \phi \right) + \sqrt{-g} g^{\mu\nu} \partial_\mu \partial_\nu \phi = 0$
- Fourier transform $\phi \simeq e^{i \omega t} \Phi(u)$ implies

$$\partial_{u}\left(\sqrt{-g}\,g^{\mu\nu}\partial_{\mu}\Phi\right) - \sqrt{-g}\,g^{tt}\,\omega^{2}\,\Phi = 0$$

- New variable $u \sim \frac{r_+^2}{r^2}$
- CFM-AdS black brane metric:

$$ds^{2} = r^{2} \left(-N(r)dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + \frac{dr^{2}}{r^{2}A(r)} \equiv g_{uu} du^{2} + g_{\mu\nu} dx^{\mu} dx^{\nu}$$

- Perturbations $g_{AB} \mapsto g_{AB} + h_{AB}$
- $h_{AB} \equiv \phi = \phi(x^{\mu}, u)$
- ► ⇒ mode equation $\partial_u \left(\sqrt{-g} g^{\mu\nu} \partial_u \phi \right) + \sqrt{-g} g^{\mu\nu} \partial_\mu \partial_\nu \phi = 0$
- Fourier transform $\phi \simeq e^{i \omega t} \Phi(u)$ implies

$$\partial_{u}\left(\sqrt{-g}\,g^{uu}\partial_{u}\Phi\right) - \sqrt{-g}\,g^{tt}\,\omega^{2}\,\Phi = 0$$

KSS bound

CFM black branes

• $\frac{d^2\Phi}{du^2} + \frac{V}{u}\frac{d\Phi}{du} + \left(1 - \frac{2\bar{M}}{R}u\right)\omega^2\Phi = 0$, where V is some potential.

• Green function $G_R(\omega, \vec{0}; \beta) = -\sqrt{-g} g^{uu} \Phi^* \left. \frac{d\Phi}{du} \right|_{u \to 0}$ • KSS bound: $\frac{\eta(\beta)}{s(\beta)} = -\frac{1}{s(\beta)} \lim_{u \to 0} \frac{\Im G_R(\omega, k=0; \beta)}{\omega} \ge \frac{1}{4\pi}$.

KSS bound

CFM black branes

- $\frac{d^2\Phi}{du^2} + \frac{V}{u}\frac{d\Phi}{du} + \left(1 \frac{2\bar{M}}{R}u\right)\omega^2\Phi = 0$, where V is some potential.
- Green function $G_R(\omega, \vec{0}; \beta) = -\sqrt{-g} g^{uu} \Phi^* \left. \frac{d\Phi}{du} \right|_{u \to 0}$ • KSS bound: $\frac{\eta(\beta)}{s(\beta)} = -\frac{1}{s(\beta)} \lim_{\omega \to 0} \frac{\Im G_R(\omega, k=0; \beta)}{\omega} \ge \frac{1}{4\pi}$.

KSS bound

CFM black branes

• $\frac{d^2\Phi}{du^2} + \frac{V}{u}\frac{d\Phi}{du} + \left(1 - \frac{2\bar{M}}{R}u\right)\omega^2\Phi = 0$, where V is some potential.

• Green function
$$G_R(\omega, \vec{0}; \beta) = -\sqrt{-g} g^{uu} \Phi^* \left. \frac{d\Phi}{du} \right|_{u \to 0}$$

► KSS bound:
$$\frac{\eta(\beta)}{s(\beta)} = -\frac{1}{s(\beta)} \lim_{\omega \to 0} \frac{\Im G_R(\omega, k=0;\beta)}{\omega} \ge \frac{1}{4\pi}.$$

Figure: PPN parameter $\beta \times \text{mass } M$, for CFM-AdS black branes: 1st-order corrections.

...However, this is out of the observational bound $|\beta - 1| \lesssim 0.00023$

Figure: PPN parameter $\beta \times \text{mass } M$, for CFM-AdS black branes: 1st-order corrections.

...However, this is out of the observational bound $|\beta - 1| \lesssim 0.00023$

Kubo formula: 2nd order improvements

Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

Bulk	Boundary
$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}, \ h_{\mu\nu}\ \ll 1$	$\langle T^{\mu\nu} \rangle = \langle T^{\mu\nu}_{(0)} \rangle + \langle T^{\mu\nu}_{(1)} \rangle + \langle T^{\mu\nu}_{(2)} \rangle \cdots$
Gravitational perturbations	Fluid energy-momentum tensor response

2nd order improvements

 Bhattacharyya, Hubeny, Minwalla, Rangamani, JHEP (2008). Arnold, Vaman, Wu, Xiao, JHEP (2011).
 Bu, Lublinsky, JHEP (2014).
 Grozdanov, Starinets, JHEP (2015).

2nd-order (dissipative) stress-energy tensor

$$T_{(2)}^{\mu\nu} = \eta \tau_{\Pi} \left[u^{\langle \rho} \nabla_{\rho} \sigma^{\mu\nu\rangle} + \frac{1}{2} \sigma^{\mu\nu} (\nabla \cdot u) \right] + \kappa \left(R^{\langle \mu\nu\rangle} - 2u_{\rho} u_{\tau} R^{\rho \langle \mu\nu\rangle\tau} \right) \\ + \lambda_1 \sigma_{\tau}^{\langle \mu} \sigma^{\nu\rangle\tau} + \lambda_2 \sigma_{\tau}^{\langle \mu} \Omega^{\nu\rangle\tau} + \lambda_3 \Omega_{\tau}^{\langle \mu} \Omega^{\nu\rangle\tau} ,$$

 κ : contributes to the **2-point Green's function**, $\sigma^{\alpha\beta} = P^{\alpha\mu}P^{\beta\nu}\nabla_{(\mu}u_{\nu)} - \frac{2}{3}P^{\alpha\beta}P^{\mu\nu}\nabla_{\mu}u_{\nu}$: shear tensor, $\Omega^{\alpha\beta} = P^{\alpha\mu}P^{\beta\nu}\nabla_{[\mu}u_{\nu]}$: vorticity tensor.

 How to calculate the (further) transport coefficients? (Arnold, Vaman, Wu, Xiao, JHEP (2011).
 Critelli, Finazzo, Zaniboni, J. Noronha, Phys. Rev. D (2014)).
 For example,

$$\lambda_3 = -4 \lim_{\substack{k_1 \to 0 \\ k_2 \to 0}} \frac{\partial}{\partial_{k_1}} \frac{\partial}{\partial_{k_2}} \lim_{\substack{\omega_1 \to 0 \\ \omega_2 \to 0}} G^{xy|0x|0y} \,.$$

2nd order improvements

 Bhattacharyya, Hubeny, Minwalla, Rangamani, JHEP (2008). Arnold, Vaman, Wu, Xiao, JHEP (2011).
 Bu, Lublinsky, JHEP (2014).
 Grozdanov, Starinets, JHEP (2015).

2nd-order (dissipative) stress-energy tensor

$$\begin{split} T^{\mu\nu}_{(2)} &= \eta \tau_{\Pi} \left[u^{\langle \rho} \nabla_{\rho} \sigma^{\mu\nu\rangle} + \frac{1}{2} \sigma^{\mu\nu} (\nabla \cdot u) \right] + \kappa \left(R^{\langle \mu\nu\rangle} - 2 u_{\rho} u_{\tau} R^{\rho \langle \mu\nu\rangle\tau} \right) \\ &+ \lambda_1 \sigma^{\langle \mu}_{\tau} \sigma^{\nu\rangle\tau} + \lambda_2 \sigma^{\langle \mu}_{\tau} \Omega^{\nu\rangle\tau} + \lambda_3 \Omega^{\langle \mu}_{\tau} \Omega^{\nu\rangle\tau} , \end{split}$$

 How to calculate the (further) transport coefficients? (Arnold, Vaman, Wu, Xiao, JHEP (2011).
 Critelli, Finazzo, Zaniboni, J. Noronha, Phys. Rev. D (2014)).
 For example,

$$\lambda_3 = -4 \lim_{\substack{k_1 \to 0 \\ k_2 \to 0}} \frac{\partial}{\partial_{k_1}} \frac{\partial}{\partial_{k_2}} \lim_{\substack{\omega_1 \to 0 \\ \omega_2 \to 0}} G^{xy|0x|0y} \,.$$

2nd order improvements

 Bhattacharyya, Hubeny, Minwalla, Rangamani, JHEP (2008). Arnold, Vaman, Wu, Xiao, JHEP (2011).
 Bu, Lublinsky, JHEP (2014).
 Grozdanov, Starinets, JHEP (2015).

2nd-order (dissipative) stress-energy tensor

$$T^{\mu\nu}_{(2)} = \eta \tau_{\Pi} \left[u^{\langle \rho} \nabla_{\rho} \sigma^{\mu\nu\rangle} + \frac{1}{2} \sigma^{\mu\nu} (\nabla \cdot u) \right] + \kappa \left(R^{\langle \mu\nu\rangle} - 2u_{\rho} u_{\tau} R^{\rho\langle \mu\nu\rangle\tau} \right) \\ + \lambda_1 \sigma^{\langle \mu}_{\tau} \sigma^{\nu\rangle\tau} + \lambda_2 \sigma^{\langle \mu}_{\tau} \Omega^{\nu\rangle\tau} + \lambda_3 \Omega^{\langle \mu}_{\tau} \Omega^{\nu\rangle\tau} ,$$

 How to calculate the (further) transport coefficients? (Arnold, Vaman, Wu, Xiao, JHEP (2011).
 Critelli, Finazzo, Zaniboni, J. Noronha, Phys. Rev. D (2014)).
 For example,

$$\lambda_3 = -4 \lim_{\substack{k_1 \to 0 \\ k_2 \to 0}} \frac{\partial}{\partial_{k_1}} \frac{\partial}{\partial_{k_2}} \lim_{\substack{\omega_1 \to 0 \\ \omega_2 \to 0}} G^{xy|0x|0y} \,.$$

Figure: PPN parameter $\beta \times \text{mass } M$, for CFM-AdS black branes: 2nd-order corrections.

► KSS bound ⇒ PPN parameter bound, from fluid/gravity.

► KSS bound $\frac{\eta}{s} \ge \frac{1}{4\pi}$: shortcut/laboratory for experimental/observational quantities. (optimism/realism)

 Other black string/black brane solutions: Bazeia, Hoff, RdR, PLB (2012)
 Bazeia, Hoff, RdR, PRD (2013)

brane tension bound $\lambda \ge 1.19 \times 10^5 \text{ MeV}^4$ (Kapner et al, PRL (2007)).

- ► KSS bound ⇒ PPN parameter bound, from fluid/gravity.
- ► KSS bound $\frac{\eta}{s} \ge \frac{1}{4\pi}$: shortcut/laboratory for experimental/observational quantities. (optimism/realism)

 Other black string/black brane solutions: Bazeia, Hoff, RdR, PLB (2012) Bazeia, Hoff, RdR, PRD (2013)

brane tension bound $\lambda \ge 1.19 \times 10^5 \text{ MeV}^4$ (Kapner et al, PRL (2007)).

- ► KSS bound ⇒ PPN parameter bound, from fluid/gravity.
- ► KSS bound $\frac{\eta}{s} \ge \frac{1}{4\pi}$: shortcut/laboratory for experimental/observational quantities. (optimism/realism)
- Other black string/black brane solutions: Bazeia, Hoff, RdR, PLB (2012)
 Bazeia, Hoff, RdR, PRD (2013)

brane tension bound $\lambda \ge 1.19 \times 10^5$ MeV⁴ (Kapner et al, PRL (2007)).

1st claim proved!

▶ KSS bound \Rightarrow PPN parameter bound $|\beta - 1| \lesssim 0.00023$

Final remarks: 2nd claim ...proved (?)

Emparan, Reall, Living Rev. Rel. 11 (2008) 6

"It is expected that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS, black-hole solution of gravity with a negative cosmological constant, but this has not been proven."

► CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$

$$N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1)\frac{r_{+}^{8}}{r^{8}} \text{ implies } A(r) = \frac{1 - \frac{3r_{+}^{4}}{2r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}}\right)\left[\left(1 - (4\beta - 1)\frac{r_{+}^{4}}{2r^{4}}\right)\right]}$$

► KSS bound ⇒ CFM-AdS black brane:

$$ds^{2} \approx r^{2} \left(-\left(1 - \frac{r_{+}^{4}}{r^{4}} + \epsilon \frac{r_{+}^{8}}{r^{8}}\right) dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + (1 + \epsilon) \frac{dr^{2}}{r^{2} \left(1 - \frac{r_{+}^{4}}{r^{4}}\right)}$$
$$|\epsilon| \sim 10^{-4}$$

CFM-AdS is (effectively) the Schwarzschild-AdS if KSS bound is imposed!

Final remarks: 2nd claim ...proved (?)

Emparan, Reall, Living Rev. Rel. 11 (2008) 6

"It is expected that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS, black-hole solution of gravity with a negative cosmological constant, but this has not been proven."

► CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$

$$N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1)\frac{r_{+}^{8}}{r^{8}} \text{ implies } A(r) = \frac{1 - \frac{3r_{+}^{4}}{2r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}}\right)\left[\left(1 - (4\beta - 1)\frac{r_{+}^{4}}{2r^{4}}\right)\right]}$$

KSS bound CFM-AdS black brane:

$$ds^{2} \approx r^{2} \left(-\left(1 - \frac{r_{+}^{4}}{r^{4}} + \epsilon \frac{r_{+}^{8}}{r^{8}}\right) dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + (1 + \epsilon) \frac{dr^{2}}{r^{2} \left(1 - \frac{r_{+}^{4}}{r^{4}}\right)}$$

CFM-AdS is (effectively) the Schwarzschild-AdS if KSS bound is imposed!
Final remarks: 2nd claim ...proved (?)

Emparan, Reall, Living Rev. Rel. 11 (2008) 6

"It is expected that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS, black-hole solution of gravity with a negative cosmological constant, but this has not been proven."

► CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$

$$N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1)\frac{r_{+}^{8}}{r^{8}} \text{ implies } A(r) = \frac{1 - \frac{3r_{+}^{4}}{2r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}}\right)\left[\left(1 - (4\beta - 1)\frac{r_{+}^{4}}{2r^{4}}\right)\right]}$$

KSS bound CFM-AdS black brane:

$$ds^{2} \simeq r^{2} \left(-\left(1 - \frac{r_{+}^{4}}{r^{4}} + \epsilon \frac{r_{+}^{8}}{r^{8}}\right) dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + (1 + \epsilon) \frac{dr^{2}}{r^{2} \left(1 - \frac{r_{+}^{4}}{r^{4}}\right)}$$
$$|\epsilon| \sim 10^{-4}$$

CFM-AdS is (effectively) the Schwarzschild-AdS if KSS bound is imposed!

Final remarks: 2nd claim ...proved (?)

Emparan, Reall, Living Rev. Rel. 11 (2008) 6

"It is expected that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS, black-hole solution of gravity with a negative cosmological constant, but this has not been proven."

CFM-AdS black brane:
$$ds^2 = r^2 \left(-N(r)dt^2 + \sum_{i=1}^3 (dx^i)^2 \right) + \frac{dr^2}{r^2 A(r)}$$

$$N(r) = 1 - \frac{r_{+}^{4}}{r^{4}} + (\beta - 1)\frac{r_{+}^{8}}{r^{8}} \text{ implies } A(r) = \frac{1 - \frac{3r_{+}^{4}}{2r^{4}}}{\left(1 - \frac{r_{+}^{4}}{r^{4}}\right)\left[\left(1 - (4\beta - 1)\frac{r_{+}^{4}}{2r^{4}}\right)\right]}$$

KSS bound CFM-AdS black brane:

$$ds^{2} \approx r^{2} \left(-\left(1 - \frac{r_{+}^{4}}{r^{4}} + \epsilon \frac{r_{+}^{8}}{r^{8}}\right) dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + (1 + \epsilon) \frac{dr^{2}}{r^{2} \left(1 - \frac{r_{+}^{4}}{r^{4}}\right)}$$

CFM-AdS is (effectively) the Schwarzschild-AdS if KSS bound is imposed!

Bulk	Boundary
$g_{\mu u} = \bar{g}_{\mu u} + h_{\mu u}, \ h_{\mu u}\ \ll 1$	$\langle T^{\mu\nu} \rangle = \langle T^{\mu\nu}_{(0)} \rangle + \langle T^{\mu\nu}_{(1)} \rangle + \langle T^{\mu\nu}_{(2)} \rangle + \langle T^{\mu\nu}_{(3)} \rangle \cdots \cdots$
Gravitational perturbations	Fluid energy-momentum tensor response

$$ds^{2} \approx r^{2} \left(-\left(1 - \frac{r_{+}^{4}}{r^{4}} + \epsilon \frac{r_{+}^{8}}{r^{8}}\right) dt^{2} + \sum_{i=1}^{3} (dx^{i})^{2} \right) + (1 + \epsilon) \frac{dr^{2}}{r^{2} \left(1 - \frac{r_{+}^{4}}{r^{4}}\right)} \quad |\epsilon| \lesssim 10^{-5}$$

CFM-AdS is (even more effectively) the Schwarzschild-AdS if KSS bound is imposed!

Final remarks

Thanks

2nd order improvements

Arnold, Vaman, Wu, Xiao, JHEP (2011).

$$\begin{split} \kappa &= \frac{N_c^2 \, \mathcal{T}^2}{8} \, (1 - 10 \, \gamma) \\ \tau_{\Pi} &= \frac{2 - \ln 2}{2 \pi \mathcal{T}} + \frac{375 \gamma}{4 \pi \mathcal{T}} + \dots \\ \lambda_1 &= \frac{N_c^2 \, \mathcal{T}^2}{16} \, (1 + 350 \, \gamma) \\ \lambda_2 &= -\frac{N_c^2 \, \mathcal{T}^2}{16} \, [2 \ln 2 + 5 \, (97 + 54 \ln 2) \, \gamma + \dots] \\ \lambda_3 &= \frac{25 \, N_c^2 \, \mathcal{T}^2}{2} \, \gamma + \dots \end{split}$$

where $\gamma = (g^2 N_c)^{-3/2} \zeta(3)/8$.