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Black strings
I “Low” energies: string action

Callan, Friedan, Martinec, Perry, Nucl. Phys. B (1985).
I metric gµ⌫

dilaton �
Maxwell field Fµ⌫

Kalb-Ramond Hµ⌫⇢

I H = dB � A ^ F ) dH = �F ^ F
I Action

S =

Z
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Black strings
I Equations of motion:

Rµ⌫ + 2rµr⌫�� 2Fµ�F⌫
� �

1
4

Hµ��H⌫
�� = 0

r⌫(e�2�Fµ⌫) +
1

12
e�2�Hµ⌫⇢F⌫⇢ = 0

rµ(e�2�Hµ⌫⇢) = 0

4r2�� 4(r�)2 + ⇤+ R � F 2 �
1

12
H2 = 0



Black strings
Horowitz, Strominger, Nucl. Phys. B (1991)
Seahra, Clarkson, R. Maartens, Phys. Rev. Lett. (2005)
Chamblin, Reall, Hawking, Phys. Rev. D (2000)
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Detecting extra dimensions with gravity wave spectroscopy:
the black string brane-world

Sanjeev S. Seahra, Chris Clarkson, Roy Maartens
Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 2EG, UK

(Dated: February 7, 2008)

Using the black string between two branes as a model of a brane-world black hole, we compute
the gravity wave perturbations and identify the features arising from the additional polarizations of
the graviton. The standard four-dimensional gravitational wave signal acquires late-time oscillations
due to massive modes of the graviton. The Fourier transform of these oscillations shows a series of
spikes associated with the masses of the Kaluza-Klein modes, providing in principle a spectroscopic
signature of extra dimensions.

Black holes are central to our understanding of gravity,
and are expected to be key sources of gravity waves that
should be detected by the current and upcoming genera-
tion of experiments. Such a detection will not only con-
firm the indirect evidence from binary pulsars for gravity
waves, but will also also allow us to probe the properties
of black holes and of gravity. In particular, this will open
up a new window for testing modifications to general rel-
ativity, such as those arising from quantum gravity the-
ories. String theory for example predicts that spacetime
has extra spatial dimensions, so that the gravitational
field propagates in higher dimensions and has extra polar-
izations. Recent developments in string theory indicate
that Standard Model fields may be confined to a four-
dimensional ‘brane’, while gravity propagates in the full
‘bulk’ spacetime. This has spurred the development of
brane-world models, such as Randall-Sundrum (RS) type
models, which can be used to explore astrophysical pre-
dictions [1]. RS type models have a five-dimensional bulk
with negative cosmological constant, so that the metric
is warped along the extra dimension. As a result, these
models provide a new approach to the hierarchy problem,
dimensional reduction and holography.

The nature of black holes that form by gravitational
collapse on an RS brane is only partly understood [1, 2],
and no exact solution is known for a black hole localized
on one brane. If there is a second ‘shadow’ brane, the
black string may be used to model large black holes on
the visible brane, when the horizon on the brane is much
greater than the extent of the horizon into the bulk [3].
The black string reproduces the Schwarzschild metric on
the visible brane but is not confined to the brane, since
there is a line singularity at r = 0 into the extra di-
mension (see Fig. 1). The shadow brane can also in-
troduce an infra-red cut-o� to shut down the Gregory-
Laflamme (GL) instability of the black string at long
wavelengths [4]. If the shadow brane is close enough to
the visible brane for a given black hole mass M , or if
M is large enough for a given brane separation d, then
GMe�d/�/� is above a positive critical value and the GL
instability is removed (see below). This is the background
model that we perturb.

FIG. 1: Schematic of the black string

The brane separation is constrained from above by sta-
bility requirements. It is also constrained from below.
This follows since the brane separation is a massless de-
gree of freedom, felt on the visible brane as a ‘radion’
field, so that the low-energy e�ective theory on the visi-
ble brane is of Brans-Dicke type, with [5] �bd = 3(e2d/� �
1)/2, where � is the bulk curvature radius. The shadow
brane must be far enough away that its gravitational in-
fluence on the visible brane is within observational lim-
its. Solar system observations impose the lower limit [6]
�bd � 4 � 104, so that d/� � 5. The allowed region
in parameter space is shown in Fig. 2. Table-top tests of
Newton’s law impose the constraint � . 0.1 mm. This up-
per limit defines a mass 0.1 mm/2G � 10�7M�, so that
for astrophysical black holes it follows that 2GM � � is
easily satisfied: GM/� � 107(M/M�).

The 5D black string is a solution of the Einstein equa-
tions GAB = 6��2gAB, with metric

ds2 = a2
�
�f dt2 + f�1 dr2 + r2 d�2

�
+ dy2, (1)

where f(r) = 1 � 2GM/r, a(y) = e�|y|/�, and the
branes are at y = 0, d. Metric perturbations satisfy

�hAB +�A�BhC
C �2�C�(AhB)C �8��2hAB = 0, (2)

and gauge choices may be made to reduce the degrees



I Maartens, LRR (2003),
Casadio, PRD (2001)
RdR, Hoff, PRD (2012) (including variable brane tension)

I Taylor expansion along the extra dimension y

gBULK
µ⌫ = gµ⌫ + Lngµ⌫ |y=0 |y |+ (Ln (Lngµ⌫)) |y=0

|y |2
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I To probe information about the bulk from the brane metric
I In Gaussian coordinates:

Ln =
@

@ (extra dimension)
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I Vacuum on the brane: Tµ⌫ = 0
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Bazeia, Hoff, RdR, PLB (2012)
Bazeia, Hoff, RdR, PRD (2013)
Anjos, Coimbra, RdR, JCAP (2016)

I E↵� is the electric part of the Weyl tensor.
I p

g✓✓(xµ, 0): black holes horizon
p

g✓✓(xµ, y): black string warped horizon, when y equals a coordinate

singularity
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PPN parameter: experimental/observational bounds

C. Will, Living Rev. Rel. 9, 3 (2006).

Very-long-baseline interferometry



PPN parameter: experimental/observational bounds
C. Will, Living Rev. Rel. 9, 3 (2006):
“A light ray with passes the Sun at a distance d is deflected by an angle

�✓ =
1 + �

2
4M�

d
1 + cos�

2
where � is the angle between the Earth-Sun line and the incoming direction of the
photon.”

Cassini probe



Black strings

I Casadio, Fabbri, Mazzacurati, “New black holes in the brane world?,” Phys.
Rev. D 65 (2002) 084040.

I ds2 = �f (r)dt2 + 1
A(r)dr2 + r2 d⌦2:

Why to take f (r) = A(r)?



Black strings

I Casadio, Fabbri, Mazzacurati, “New black holes in the brane world?,” Phys.
Rev. D 65 (2002) 084040.

I ds2 = �f (r)dt2 + 1
A(r)dr2 + r2 d⌦2:

Why to take f (r) = A(r)?



Black strings

5D Einstein equations
+

Shiromizu-Sasaki-Maeda, PRD (2000)
+

Effective 4D Einstein equations

Gµ⌫ = 8⇡ G Tµ⌫ �
⇤4

2
gµ⌫ +

4
5

4

hgµ⌫

2

⇣
T 2 � T↵�T↵�

⌘
+ T Tµ⌫ � Tµ↵T↵

⌫

i
� Eµ⌫

2
5 = 8⇡ G5

G = 2
5 �/48⇡ is the Newton constant

(� ⌘ brane tension)
Tµ⌫ : energy-momentum tensor of brane matter
Eµ⌫ is the Weyl tensor term.



Casadio-Fabbri-Mazzacurati (CFM) black strings

Solution I
I vacuum energy density = cosmological constant of our (4D) Universe

ds2 = �
✓

1 �
2GM
c2r

◆
dt2 +

0

@
1 � 3GM

2c2r⇣
1 � 2GM

c2r

⌘⇣
1 � GM

2c2r (4� � 1)
⌘

1

A dr2 + r2d⌦2

�: (PPN) post-Newtonian parameter (|�| < 0.003).

I lim�!1 CFM = Schwarzschild.
I Hawking temperature

TH =

p
1 � 4(� � 1)

8⇡ M

I For r = 0 and (for TH ⇠ 0) r = 3GM
2c2 : (physical singularities)

Kretschmann Rµ⌫⇢�Rµ⌫⇢� ! 1
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Casadio-Fabbri-Mazzacurati (CFM) black strings

Solution II
I
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I lim�!1 CFM = Schwarzschild.

I R = RS and R = RS (� � 1/4). (Here RS = 2GM
c2 ).

I Kretschmann scalar K = Rµ⌫⇢�Rµ⌫⇢� ! 1, when r = 0 (and extra singularity
r = 5GM
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I GR 7! Newtonian potential (⇡ weak field)
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0

@ 1 � 3GM/2c2r
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c2 r
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2c2 r
(4� � 1)
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1

A dr2 + r2d⌦2

I lim�!1 CFM = Schwarzschild.

I R = RS and R = RS (� � 1/4). (Here RS = 2GM
c2 ).

I Kretschmann scalar K = Rµ⌫⇢�Rµ⌫⇢� ! 1, when r = 0 (and extra singularity
r = 5GM

(��1)c2 ).

I GR 7! Newtonian potential (⇡ weak field)
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Classical Perturbation

I Classical black string is unstable: (Gregory, Laflamme, PRL (1993))
I (at weak gravity:) corrections

hµ⌫ = �
2GM

r

✓
1 +

1
3k2r2

◆
�µ⌫

I 5D Einstein equations:
�hµ⌫ + 2Rµ�⌫⇢h�⇢ = 0

I Event horizon instability (Chamblin, Reall, Hawking Phys. Rev. D (2000))
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Black Strings (in the Kitchen)

Plateau-Rayleigh instability (1873): Jet of water pinches into drops when the
wavelength is 3.18 times its diameter



Plateau-Rayleigh instability
What is the final state of a black string, after perturbations? It depends on the black
string viscosity.

• Lehner, Pretorius, PRL (2010)
• Wiseman, Class. Quant. Grav. (2003)



Black string perturbations

Gregory-Laflamme instability

! perturbation !

• Lehner, Pretorius, PRL (2010)



Final state of CFM (MGD) black strings

I Kuerten, RdR, Class. Quant. Grav. (2013)
Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
Casadio, Ovalle, RdR, Class. Quant. Grav. (2015):
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I Droplets black holes: Black Strings Hydrodynamics; High viscosity fluids $
(high tension black strings): one throat forms, before drops formation
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Final state of CFM black strings

Transition regime occurs when |� � 1| . 3 ⇥ 10�1

()

(preliminaries): Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)



Fluid/Gravity Correspondence

I Black strings: temperature and entropy. . .
I . . . and hydrodynamic features: viscosity, diffusion rates, diffusion constants and

other transport coefficients.
I Bulk dynamics: specified by Einstein equations

RMN �
1
2

RgMN + ⇤5gMN = 0.

I Boundary dynamics: specified by stress tensor conservation

rµTµ⌫ = 0

I Black strings hydrodynamics features = hydrodynamic behaviour of a dual theory.
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Fluid/Gravity Correspondence

∃ one well-known solution: AdS black string                             
(= Schw warped in AdS5) [Chamblin, Hawking, Reall]

exact bulk solution, singular on Poincare horizon

dynamically unstable [Gregory]

but induced stress tensor on the boundary                                                      
does not grow with N:  

corresponds to a confined phase of the CFT.

we want to find other solutions with non-zero induced stress 

tensor                         (deconfined phase)

boundary
BH

r

zbulk

Tµ� � O(N2)

Tµ� � O(1)

CFT on black hole background

Bulk Boundary

Collapse to black hole in gravity thermalization in CFT

Stationary black hole thermal equilibrium (at same T )

Quasinormal modes approach to thermal equilibrium [Horowitz, Hubeny]

? Horizon response properties ? transport coefficients in CFT [Kovtun, Son, Starinets]

Long-wavelength, small frequency deformations fluid flows

Einstein equations relativistic Navier-Stokes equations (boundary conformal fluid).



KSS Bound

KSS bound
I Bulk supergravity, N = 4 supersymmetric SU(Nc) Yang-Mills theory, in the

regime Nc ! 1 and large ’t Hooft coupling g2Nc

(Buchel, Liu, Starinets, Nucl. Phys. B (2005)).

⌘

s
=

1
4⇡


1 +

135 ⇣(3)
8(2g2Nc)3/2 + · · ·

�
,

(⇣(3) is the Apéry constant).

I shear viscosity
entropy density

=
⌘

s
�

~
4⇡ kB

' 6.08 ⇥ 10�13 K s

(Kovtun, Son, Starinets, PRL (2005).)

I Hereon, KSS bound
⌘

s
�

1
4⇡

I KSS: universal for a large class of strongly coupled plasmas.
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PPN parameter: experimental/observational bounds

I CFM: Hawking temperature

TH =

p
1 � 4(� � 1)

8⇡ M
� 0

) 1 < � < 1.25 (Strongest theoretical bound).

I Post-Newtonian approximation: g(4D)
00 = �

✓
1 + 2GM

r + (� � 1)
⇣

2GM
r

⌘2
◆

I Observational bound: |�| . 1.003
Experimental bound: |�| . 1.00023.

I KSS bound: a stronger bound on �?
I CFM-AdS black branes:

shear viscosity
entropy density = ⌘(�)

s(�) � 1
4 ⇡

) theoretical bound matching experimental/observational bounds.
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Kubo formula

Green-Kubo formula
I Sources Ja, coupled to operators Oa S 7! S +

R
d4x Ja(x)Oa(x)

hOa(x)i = �
Z

dy Ga|b
R (x ; y) Jb(y) ,

Ga|b
R (x ; y) = �i✓(x0 � y0)h[Oa(x),Ob(y)]i retarded Green function of Oa.

I interaction picture in QFT ) �hOa(q)i = �Ga|b
R (q) Jb(q)
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Kubo formula1.2 AdS/real-world 5

Fig. 1.2 When one adds perturbations, a black hole behaves like a hydrodynamical system. In
hydrodynamics, the dissipation is a consequence of viscosity.

ons. Under normal circumstances, they are confined inside protons and neutrons.
But at high enough temperatures, they are deconfined and form the quark-gluon
plasma (Sect. 4.1.2). The QGP experiments are in progress (Sect. 4.1.3). Accord-
ing to the experiments, QGP behaves like a fluid with a very small shear viscosity.
This implies that QGP is strongly coupled, which makes theoretical analysis dif-
ficult (Sects. 4.1.4 and 12.2). However, it turns out that the value of the viscosity
implied by the experiments is very close to the value predicted by AdS/CFT using
black holes (Chap. 12). This triggers the AdS/CFT research beyond string theory
community.

How is the black hole related to the viscosity? Here, we give an intuitive ex-
planation (Fig. 1.2). Consider adding a perturbation to a thermal system which is
in equilibrium. For example, drop a ball in a water pond. Then, surface waves are
generated, but they decay quickly, and the water pond returns to a state of stable
equilibrium. This is a dissipation which is a consequence of viscosity.

This behavior is very similar to a black hole. Again, drop an object to a black
hole. Then, the shape of the black hole horizon becomes irregular, but such a pertur-
bation decays quickly, and the black hole returns to the original symmetric shape. If
one regards this as a dissipation as well, the dissipation occurs since the perturba-
tion is absorbed by the black hole. Thus, one can consider the notion of viscosity for
black holes as well, and the “viscosity” for black holes should be calculable from
the above process.

Such a phenomenon is in general known as a relaxation phenomenon. In a relax-
ation phenomenon, one adds a perturbation and sees how it decays. The relaxation
phenomenon is the subject of nonequilibrium statistical mechanics or hydrodynam-
ics. The important quantities there are transport coefficients. The viscosity is an
example of transport coefficients. A transport coefficient measures how some ef-
fect propagates. The correspondence between black holes and hydrodynamics may
sound just an analogy, but one can indeed regard that black holes have a very small
viscosity; one purpose of this book is to show this.

Bulk Boundary

gµ⌫ = ḡµ⌫ + hµ⌫ , khµ⌫k ⌧ 1 hTµ⌫i = hTµ⌫
(0) i + hTµ⌫

(1) i + · · ·

Gravitational perturbations Fluid energy-momentum tensor response

Horizon response properties transport coefficients in CFT [Kovtun, Son, Starinets]

Long-wavelength, small frequency deformations fluid flows

Einstein equations relativistic Navier-Stokes equations (boundary conformal fluid).

(Natsuume, Lect. Notes Phys. 903 (2015))



Fluid response

Energy-momentum tensor

hTµ⌫(x)i = hTµ⌫ih=0 � 1
2

Z
d4y Gµ⌫|⇢�

R (x ; y) h⇢�(y)

+ 1
8

Z
d4y

Z
d4z Gµ⌫|⇢�|⌧⇣

R (x ; y , z) h⇢�(y) h⌧⇣(z) + . . .

⌘ hTµ⌫
(0) i+ hTµ⌫

(1) i+ hTµ⌫
(2) i+ · · · ,

Gµ⌫|...
R : retarded n-point correlators.

I Fluid response:
– stress tensor conservation law rµTµ⌫ = 0;

– fluid describes a conformal theory Tµ
µ = 0.
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Fluid response

Energy-momentum tensor
1st order formalism ) 0th order in derivatives:

Tµ⌫
(0) = (✏+ P) uµ u⌫ + P ḡµ⌫ ,

uµ: fluid 4-velocity;
✏: energy density;
P: pressure
ḡµ⌫ : 4D boundary unperturbed metric



Fluid response

Energy-momentum tensor: 1st-order
• Son, Starinets, Ann. Rev. Nucl. Part. Sci. (2007).

hTµ⌫(x)i ⇠
Z

dy Gµ⌫|↵�
R (x ; y) h↵�(y) ,

for retarded Green function Gµ⌫|↵�
R = hTµ⌫(x)T↵�(y)i.

) 1th order in derivatives: dissipative terms, shear and bulk viscosities.

Tµ⌫
(1) = �Pµ↵P⌫�


⌘

✓
r↵u� +r�u↵ �

2
3

ḡ↵� r�u�
◆

+ ⇣ ḡ↵�r�u�
�

,

⌘: shear viscosity,
⇣: bulk viscosity,

Pµ⌫ = ḡµ⌫ + uµu⌫ : projection.
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Fluid response

Energy-momentum tensor: 1st-order
I Fluctuations around thermal equilibrium are small ) the fluid has uniform

temperature T (xµ) = T0

I Kubo formula derivation (rest frame uµ = (1, ui = 0).)
I rx uy = @x uy � �↵xy u↵ = ��0

xy u0 = � 1
2 @0hxy

I ) �hT(1)xy i ⇠ �⌘ (rx uy +ry ux ) = �⌘ @0hxy
I Fourier transform: �hT(1)xy (!, k = 0)i = i ! ⌘ hxy .

I A perturbed fluid Lagrangian is correspondingly given by
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Fluid response

Energy-momentum tensor: 1st-order
I Emparan, Reall, Living Rev. Rel. 11 (2008) 6

“It is expected that the Schwarzschild-AdS black hole is the unique, static,

asymptotically AdS, black-hole solution of vacuum gravity with a negative

cosmological constant, but this has not been proven.”



CFM black branes

Black branes
I At strong coupling gsN � 1, the branes curve the spacetime substantially,

sourcing the black 3-brane geometry (Maldacena, (1997, 1998, 1999).)
I Schwarzschild-AdS black brane:

ds2 = r2

 
�f (r)dt2 +

3X

i=1

(dxi )2

!
+

dr2

r2f (r)
f (r) = 1�

r4
+

r4 r+ is the event horizon.

I Casadio, Fabbri, Mazzacurati, PRD (2002)
Casadio, Ovalle, RdR, Class. Quant. Grav. (2014)
Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]

vacuum energy density = cosmological constant of our (4D) Universe
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CFM-AdS black branes
I Schwarzschild-AdS black brane (see Nastase’s book!): ⌘
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Yes, we can, whenever 1
2

N00

N � 1
4

⇣
N0

N

⌘2
� 1

4
N0

N
A0

A � 1
r

⇣
N0

N
A0

A

⌘
2
r3 (A � 1) = 0

I Solutions N(r) = 1 �
r4
+

r4
+ (� � 1)

r8
+

r8
and A(r) =

1 �
3r4
+

2 r4 
1 �

r4
+
r4

!" 
1 � (4� � 1)

r4
+

2r4

!#

I Here � is a free parameter! However, lim
�!1

A(r) = N(r) . (New solutions? New hope!)
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KSS bound: a controller Sheriff

Figure: Shear viscosity-to-entropy density ratio ⇥ CFM-AdS solution.
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I CFM-AdS black brane metric:
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⌘ guu du2 + gµ⌫ dxµ dx⌫
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KSS bound

CFM black branes
I d2�

du2 + V
u

d�
du +

⇣
1 � 2 M̄

R u
⌘
!2 � = 0, where V is some potential.

I Green function GR(!,~0;�) = �
p
�g guu �⇤ d�

du

���
u!0

I KSS bound: ⌘(�)
s(�) = � 1

s(�) lim
!!0

= GR (!,k=0;�)
! � 1

4 ⇡ .
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KSS bound !!
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Figure: PPN parameter � ⇥ mass M, for CFM-AdS black branes: 1st-order
corrections.
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Kubo formula: 2nd order improvements
1.2 AdS/real-world 5

Fig. 1.2 When one adds perturbations, a black hole behaves like a hydrodynamical system. In
hydrodynamics, the dissipation is a consequence of viscosity.

ons. Under normal circumstances, they are confined inside protons and neutrons.
But at high enough temperatures, they are deconfined and form the quark-gluon
plasma (Sect. 4.1.2). The QGP experiments are in progress (Sect. 4.1.3). Accord-
ing to the experiments, QGP behaves like a fluid with a very small shear viscosity.
This implies that QGP is strongly coupled, which makes theoretical analysis dif-
ficult (Sects. 4.1.4 and 12.2). However, it turns out that the value of the viscosity
implied by the experiments is very close to the value predicted by AdS/CFT using
black holes (Chap. 12). This triggers the AdS/CFT research beyond string theory
community.

How is the black hole related to the viscosity? Here, we give an intuitive ex-
planation (Fig. 1.2). Consider adding a perturbation to a thermal system which is
in equilibrium. For example, drop a ball in a water pond. Then, surface waves are
generated, but they decay quickly, and the water pond returns to a state of stable
equilibrium. This is a dissipation which is a consequence of viscosity.

This behavior is very similar to a black hole. Again, drop an object to a black
hole. Then, the shape of the black hole horizon becomes irregular, but such a pertur-
bation decays quickly, and the black hole returns to the original symmetric shape. If
one regards this as a dissipation as well, the dissipation occurs since the perturba-
tion is absorbed by the black hole. Thus, one can consider the notion of viscosity for
black holes as well, and the “viscosity” for black holes should be calculable from
the above process.

Such a phenomenon is in general known as a relaxation phenomenon. In a relax-
ation phenomenon, one adds a perturbation and sees how it decays. The relaxation
phenomenon is the subject of nonequilibrium statistical mechanics or hydrodynam-
ics. The important quantities there are transport coefficients. The viscosity is an
example of transport coefficients. A transport coefficient measures how some ef-
fect propagates. The correspondence between black holes and hydrodynamics may
sound just an analogy, but one can indeed regard that black holes have a very small
viscosity; one purpose of this book is to show this.

Casadio, Cavalcanti, RdR [arXiv:1601.03222 [hep-th]]
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Final remarks

I KSS bound ) PPN parameter bound, from fluid/gravity.
I KSS bound ⌘
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4⇡ : shortcut/laboratory for experimental/observational

quantities. (optimism/realism)
I Other black string/black brane solutions:

Bazeia, Hoff, RdR, PLB (2012)
Bazeia, Hoff, RdR, PRD (2013)

brane tension bound � � 1.19 ⇥ 105 MeV4 (Kapner et al, PRL (2007)).
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Final remarks: 2nd claim ...proved (?)
I Emparan, Reall, Living Rev. Rel. 11 (2008) 6

“It is expected that the Schwarzschild-AdS black hole is the unique, static,
asymptotically AdS, black-hole solution of gravity with a negative cosmological
constant, but this has not been proven.”
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I CFM-AdS is (effectively) the Schwarzschild-AdS if KSS bound is imposed!
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Fig. 1.2 When one adds perturbations, a black hole behaves like a hydrodynamical system. In
hydrodynamics, the dissipation is a consequence of viscosity.

ons. Under normal circumstances, they are confined inside protons and neutrons.
But at high enough temperatures, they are deconfined and form the quark-gluon
plasma (Sect. 4.1.2). The QGP experiments are in progress (Sect. 4.1.3). Accord-
ing to the experiments, QGP behaves like a fluid with a very small shear viscosity.
This implies that QGP is strongly coupled, which makes theoretical analysis dif-
ficult (Sects. 4.1.4 and 12.2). However, it turns out that the value of the viscosity
implied by the experiments is very close to the value predicted by AdS/CFT using
black holes (Chap. 12). This triggers the AdS/CFT research beyond string theory
community.

How is the black hole related to the viscosity? Here, we give an intuitive ex-
planation (Fig. 1.2). Consider adding a perturbation to a thermal system which is
in equilibrium. For example, drop a ball in a water pond. Then, surface waves are
generated, but they decay quickly, and the water pond returns to a state of stable
equilibrium. This is a dissipation which is a consequence of viscosity.

This behavior is very similar to a black hole. Again, drop an object to a black
hole. Then, the shape of the black hole horizon becomes irregular, but such a pertur-
bation decays quickly, and the black hole returns to the original symmetric shape. If
one regards this as a dissipation as well, the dissipation occurs since the perturba-
tion is absorbed by the black hole. Thus, one can consider the notion of viscosity for
black holes as well, and the “viscosity” for black holes should be calculable from
the above process.

Such a phenomenon is in general known as a relaxation phenomenon. In a relax-
ation phenomenon, one adds a perturbation and sees how it decays. The relaxation
phenomenon is the subject of nonequilibrium statistical mechanics or hydrodynam-
ics. The important quantities there are transport coefficients. The viscosity is an
example of transport coefficients. A transport coefficient measures how some ef-
fect propagates. The correspondence between black holes and hydrodynamics may
sound just an analogy, but one can indeed regard that black holes have a very small
viscosity; one purpose of this book is to show this.

Bulk Boundary
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