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Summary of the talk:



Regge Trajectories

Strongly interacting particles (Hadrons) obey approximate relations
between Angular Momentum (J) and quadratic masses (m”2)

J(m*) ~ ag + o'm?*

/
where (Xg and & are constants



Experimental Regge trajectories from proton proton scattering

J(m?) ~ 1.08 +0.25m* ,

Masses m in GeV ( P. V. Landshoff, “Pomerons,” hep-ph/0108156.)



Experimental Regge trajectories from proton proton scattering

J(m?) ~ 1.08 +0.25m* ,

Masses m in GeV ( P. V. Landshoff, “Pomerons,” hep-ph/0108156.)

The Pomeron is related to Glueball states 27+ 41+ T+ &*+ ..

and may be to 0+t



The Odderon

FE J. Llanes-Estrada, P. Bicudo, and S. R. Cotanch, Phys.
Rev. Lett. 96, 081601 (2006).

Relativistic many-body model (RMB)
Tenm(m?) = —0.88 + 0.23m2,

Non-relativistic constituent model (NRCM)

JNRm(mz) =025 + 0. 18m2.
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Experimental signs of the Odderon

The best experiméntal evidence for the odderon
occurred in 1985 at ISR CERN. A difference between

differential cross sections for pp and pp in the dip-
shoulder region 1.1 < |t] < 1.5 GeV*® at /s = 52.8 GeV
was measured, but these results were not confirmed [ 14].

There are two more evidences related to the nonperturba-
tive odderon, that 1s, the change of shape in the polarization
in 7 p—an from p;, =5 GeV/c [16,17] to p, =
40 GeV/c [18] and a strange structure seen in the
UA4/2 dN /dt data for pp scattering at /s = 541 GeV,
namely a bump centered at 7] = 2 X 107 GeV?* [19].

[14] R. ‘Avila, P. Gauronm, and B. Nicolescu, Eur. Phys. J. C
49, 581 (2007).

[15] Z.-H. Hu, L.-J. Zhou, and W.-X. Ma, Commun. Theor.
Phys. 49, 729 (2008).

[16] D. Hill et al., Phys. Rev. Lett. 30, 239 (1973).

[17] P. Bonamy et al, Nucl. Phys. B52, 392 (1973).

[18] V.D. Apokin et al, AIP Conf. Proc. 95, 118 (2008).

[19] C. Augier er al. (UA4/2 Collaboration), Phys. Lett. B 316,
448 (1993).



Experimental signs of the Odderon

LCH new results?

Some groups are looking for the Odderon...



AdS/CFT correspondence

(Maldacena, 1997)
String theory in AdS_5 x 575 (10 dimensions) is equivalent to

N=4 super-Yang-Mills SU(N) theory for large N in 4 dimensions

AdS_5 = 5 dim. Anti-de Sitter space = space with negative constant curvature

S”5 = 5 dim. hypersphere

N=4 extended supersymmetric conformal gauge theory

Other versions of the Correspondence

M-theory in AdS_4 x S*7 (11 dimensions) is equivalent to super-Yang-Mills
SU(N) conformal gauge theory with large N in 3 dimensions.

M-theory in AdS_7 x 574 (11 dimensions) is equivalent to super-Yang-Mills SU(N)

conformal gauge theory with large N in 6 dimensions.



Holography in String theory

AdS Space in Poincaré coordinates
2

ds? = (R)z(dz 1 (d®)? — dt?)

The 4-dim boundary isatz=0

Fifth dimensionz ~ 1/ E where E =Energy in 4-dim boundary
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Polchinski & Strassler 2001/2002

Scattering of Glueballs using the AdS/CFT correspondence

Finite region in AdS space 0 < z < z_max

zmax ~ 1/E where Eis the Energy scale in boundary theory

HBF & Braga JHEP 2003, EPJC 2004

Masses of Glueball states 0++ and its radial excited states 0++*, O++**, Q++*** .

Brodsky, Teramond PRL 2005, 2006; Erlich, Katz, Son, Stephanov PRL 2005.

Extension to Mesons and Baryons
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Scalar Glueballs in the Hard-wall model

Accordingly to the AdS/CFT dictionary a massive field in AdS is related
to a p-form with conformal dimension

mzR* = (A —p)(A +p—4),
So, for a scalar field on the boundary
MZR?* = A(A —4)-

For normalizable modes

A=2+,4+ ([.LR‘)Z..
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In particular for scalar Glueballs related to a massless field in AdS_5
we have a boundary operator

O4 = Tr(F?) = Tr(F*VF ;)
with

A=4.

4d Glueball states are described in AdS(5) by Bessel functions which
satisfy some boundary condition at z=z_max.



Glueballs in the Hard-wall model and the

Pomeron (J++) P=C=+1, J=(0),2,4,...

4d Glueball states are described in AdS(5) by Bessel functions which
satisfy some boundary condition at z=z_max.
For massive scalar fields in AdS_b5:

[ EP (LR)

9; 2_38‘ +nHa 0, — 72

]¢=Q
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Glueballs in the Hard-wall model and the

Pomeron (J++) P=C=+1, J=(0),2,4,...

4d Glueball states are described in AdS(5) by Bessel functions which
satisfy some boundary condition at z=z_max.
For massive scalar fields in AdS_b5:

1 R
[zi*azz—_,,az + D, — (“Zz)z]qb — 0.

¢(x’ Z) - Cv,ke-ip-xzzjv(uv.kz)’

A=2+.4+ (,.LR‘)Z..
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Glueballs in the Hard-wall model and the

Pomeron (J++) P=C=+1, J=(0),2,4,...

4d Glueball states are described in AdS(5) by Bessel functions which
satisfy some boundary condition at z=z_max.
For massive scalar fields in AdS_5: Boundary operator:

spin € =J.
l (LR)
2d,—=d, + nhvad 0 ——] = (.
[ zz3 ‘ K il 22 ¢ (94+g:FD{M1...DM€}F

¢(x: Z) = Cv,ke-ip-xzzjv(uv.kz)v A=4+¢

A=2+4+ (uR)y. (uRY = £(€ + 4). v=2+¢
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Glueballs in the Hard-wall model and the

Pomeron (J++) P=C=+1, J=(0),2,4,...

4d Glueball states are described in AdS(5) by Bessel functions which
satisfy some boundary condition at z=z_max.
For massive scalar fields in AdS_5: Boundary operator:

spin £ =1.
l (uRf
29, —=d, + n*v9 0o ] 0.
[ "23 - n e ¢ (94+g:FD{M1...DM€}F

B, ) = Cpue P332, ) N ais

A=2+4+ (uR)y. (LRY = €(€ + 4). v=2+¢

Dirichlet boundary conditions

X,
L = X Noep: Jy(Xyx) = 0.

Uy = -
The zeros of the Bessel functions give the masses of the Glueballs 1@

“max



Dirichlet boundary conditions

TABLE 1. Masses of glueball states JC with even J expressed
in GeV, estimated using the sliced AdS; X §° space with
Dirichlet boundary conditions. The mass of 07" is an input
from lattice results [38,39].

Dirichlet lightest Ist excited 2nd excited
glueballs state state state
0** 1.63 267 3.69
2+ 241 3.51 4.56
4%7 3.15 431 5.40
6t+ 3.88 5.85 6.21
g++ 4.59 5.85 7.00
1077 5.30 6.60 1.77

HBF, Braga, Carrion, PRD 2006

Our result for the ratio of masses M,++ /My++ = 148 is
in good agreement with lattice |

Morningstar, Peardon, PRD 1997, 1999; Teper hep-lat/9711011.
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Neumann boundary conditions

v.k — §V.k"\Q(:D (2 - V)Jy(fy,k) + fp_kjy—l(fv.k) = 0.

max

e

Uy p =

=]

TABLE II.  Masses of glueball states J"© with even J ex-
pressed in GeV, estimated using the sliced AdS¢ X §° space with
Neumann boundary conditions. The mass of 0¥ is an input
from lattice results [38.39].

Neumann lightest Ist excited 2nd excited
glueballs state state State
0*t 1.63 2.98 4.33
2++ 2.54 4.06 547
4+t 3.45 5.09 6.56
6+t 4.34 6.09 7.62
g+t 5.23 7.08 8.66
10+ 6.12 8.05 0.68
M+ M+ . .
— =156 ; —/— = 183 very good agreement with lattice

Mooj{ ) M()‘I#
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REGGE TRAJECTORIES Dirichlet

J=alt =M?) = a, + a'M>.

104

5 " w15 == 2 a0
W (Gev?)

FIG. 2 (color online). Approximate linear Regge trajectory

for  Dirichlet Boundary condition for the  states
277 41t et 8T 101,
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REGGE TRAJECTORIES

J=at =M?*) = a, + a’'M>.

10 -

a = (0.26 =0.02) GeV 2

5 10 15 20 25 30 35 40

M’ (GeV?)

FIG. 1 (color online). Approximate linear Regge trajectory

for Neumann Boundary condition for the states
2+° 4++ 6++ 8++ 10++.

g

= (.80 = 0.40
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Comparison with the Pomeron

J(m?) =~ 1.08 + 0.25m? ,

The Hard-wall Regge trajectories for Glueballs with
Neumann boundary conditions

a = (0.26 =0.02) GeV % ay = 0.80 = 0.40

are in good agreement.

23



Odd spin (P=C=-1) Glueballs and the Odderon

Eduardo Capossoli and H. Boschi PRD 2013
Massive scalar fields in AdS_5

m-R-

l

\o \a

]ﬁb(x’ z) =0, Boundary operator

o Og+¢ = SymTr(F,,FDy, ..D, \F)

msR™ = (A — p)(A + p —4). (p=0) conformal dimension A =6 4+ ¢
Sspin £ =J=1

d(x, z2) = A, exp P22 T (u,;2),

v=\/4+m§R2, v=4+ ¢

glueball states 17 7,377,5 ",etc

24



TABLE 1.  Glueball masses for states J"¢ expressed in GeV, with odd J estimated using the
hardwall model with Dinchlet and Neumann boundary conditions. The mass of 17 1s used as
an mput from the isotropic lattice [36,37]. We also show other results from the literature for
COMPArison.

Glueball states J¥¢

Models used 1 3 5 7 9 11
Hardwall with Dirichlet b.c. 324 4.09 4.93 5.75 6.57 7.38
: Hardwall with Neumann b.c. 324 421 5.17 6.13 7.09 8.04
Relativistic many body [1] 395 4.15 5.05 5.90
Nonrelativistic constituent [1] 349 392 5.15 6.14
Wilson loop [38] 349 4.03
Vacuum correlator [39] 3.02 349 4.18 4.96
Vacuum cormrelator [39] 332 383 4.59 5.25
Semirelativistc potential [40] 399 4.16 5.26
Amnisotropic lattice [41] 3.83 4.20
> Isotropic lattice [36,37] 324 433

> [36] H.B. Meyer and M.J. Teper, Phys. Lett. B 605, 344

(2005).

L5 [37] H.B. Meyer, arXiv:hep-lat/0508002.
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Odd Glueball states in the Hard-wall with
Boundary condition

Good agreement with the Relativistic
Many-body Model (RMB)

26



0Odd Glueball states in the Hard-wall
with Boundary condition

Good agreement with the Relativistic Many-body Model (RMB)
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Open questions for the Odderon

Experimental confirmation?

The authors

F J. Llanes-Estrada, P. Bicudo, and S. R. Cotanch, Phys.
Rev. Lett. 96, 081601 (2006).

suggest that the state | =~ does NOT belong to the
Odderon trajectory

Our analysis with the Hard-wall is not conclusive in this
regard

28



Soft-wall AdS/QCD Model

Soft cut off (Karch, Katz, Son, Stephanov PRD 2006)

f d’z/—gL = / dry—ge L. ;  B(2) =

spectrum of vector mesons ms =de(n+1),

Glueballs in the soft-wall
[Colangelo, De Fazio, Jugeau, Nicotri PLB(2007)]

The corresponding glueball spectrum is

9

mg_ = 4c(n +2).
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Softwall Model L

Colangelo et al 2007 (scalar, vector and tensor glueballs)

Capossoli, HBF 2016 (higher spin glueballs)

_ / Pxy/=ge ™ [ g™ nGonG + M3G2).

R2
d52 — gmndxmdxn — Z_z(dzz + nuvdyudyv) ’

®(2) = kz°

am[ [ e —P(2) mna g] [ e CI)(Z)MZg O

30



Softwall Model

G(z,x") = v(z) expiqux*,

v(2) = ¥ (@)(2/R)*?exp 3 (kz?),
“Schrodinger-like” equation

1 2.2 15 R ’ 2 2
—"(2) + | k°z —I—E—I—Zk—l— 3 Mz | ¥ (2) = —q° ¥ (2)

which has a well known solution:

Un(2) = Ny 22M9)% 2 | Fy (—n; t(Ms) + 1, kz2) exp{—kz2/2)

where t(Ms) = ,/4+ R2MZ,

31



Softwall Model 3

The corresponding “eigenenergies” —q? = —quq" are identified

with the 4-d glueball squared masses

m? = [4n—|—4+2\/4—|—M§R2]k; n=0,1,2,--).

A=2+ \/ 4+ R2M?
scalar glueball state 0T+ O4=Tr(F?) =Tr(F*"Fp)

(M2 =0) A =4.

m2=[4n+8]k; (n=0,1,2,---).

32



Higher spin glueballs in the softwall model

A=2—|—\/4—|—R2M§ 0t+, 21+, 47T etc

O41j=FDyy1..Dy jyF, A=4+]

MiR*=]J(J+4);  (even]).

m%:[4n+4+2\/4+](]+4)]k; (n=0,1,2,---,even J),



Higher spin glueballs in the softwall model 2

A=2—|—\/4—|—R21\/1§ 1-7,377,5 7, etc.
Oy = SymTr (FuFDur. Dy gy F)

MiR? =(J +6)(J+2);  (odd)),

m,%:[4+2\/4+(]+6)(]+2)]k; (odd J). (n = 0)

Not good when compared with the literature!!!




A Dynamical Softwall Model 1

The 5D action for the graviton-dilaton coupling in the string frame
is given by:

1
S =
16T Gy

f d°x/—gs e 2P @D (Rs + 40y M & — V(D))

The metric tensor has the following form:

ds? = g5 dx"dx" = b2(2)(dZ* + 1, dxPdx’);

l

bs(z) = e



A Dynamical Softwall Model

Einstein frame and equations of motion
E s —2d E 1y
Emn = &mn€ > > Ve=e3" Ve,

2
be(2) = bs(2)e 3%@ =A@ Ap(z) = A(z) — S0@).

4
—AY 4+ A — §<1>’2 =0,
and

3
d" +3ALD" — §e2AEa¢ vE@)=o0.

2



A Dynamical Softwall Model

For a quadratic dilaton

®(z) = kz?

one finds the solutions

R d2
AEg(z) =log (—) —log (oF1(5/4, —))

Z 9
and

2 2
120F1(1/4, %)% 16 0F1(5/4, %)?®?
VE(D) =— 2 2

R? 3R?
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A Dynamical Softwall Model 4

Going back to the String frame

which means a deformed AdS space

ds? = g5, dx"dx" = b2 (2)(dZ* + nyuydxdx”); bs(z) = et

and a potential

2
12 0F1(1/4, %)?
R2
2
16 0F1(5/4, %)% ®?
3R?

4
Ve () = exp{—§<l>}[—
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A Dynamical Softwall Model 5

5D action for Scalar Glueballs in String frame

|
S = /d5x~/—gsie_q’(Z)[8Mg8Mg + MZ:G?],

which implies the equations of motion

mlv/—gse PP gMNonG) — V—ge *PMEIG =0.

as before

Gz, x") = v(z)eiqﬂ"u ,

B(2) = ®(2) — 3As5(2), Vv(2) = ¥ (2)eB@/2

so that one gets a Schrédinger-like equation:

/2 1/ 2
o4 [B @ _B@ (5) 23 Az}w)

4
= —q*¥(2),

2 Z

where A = oF1(5/4, 2 /9).
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A Dynamical Softwall Model

Higher spins from AdS/CFT

MZR*=A(A—4)—] (J=0,1,2,3,---)

which implies an effective potential of the form

15 A(A —4) —
V(@) =k*z* + — — 2k + ( ) —J
472

72

2 _
e4kz /3A 2.
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A Dynamical Softwall Model

Higher spins from AdS/CFT

MZR*=A(A—-4)—] (J=0,1,2,3,---)

which implies an effective potential of the f

15 A(A —4) —
V] (2) = k222 + @ — 2k + ( ) —J €4k22/3./4_2 .

72
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Even spins and the pomeron

twist 2 trajectory A = J 4+ 2

Complex masses for 0++ and 2++ ————» No Regge trajectory

twist 4 trajectory A=]+4.
Real masses for 0++ and 2++, etc ——»  Good Regge trajectories

Table 1
Masses m, expressed in GeV for the glueball states JFC with even J as the eigen-
states of Eq. (9) with the potential (12) for k = 0.10 GeV?.

Glueball states JPC k
0++ 2++ 4++ 6++ 8++ 10++

My 0.51 2.03 3.23 4.40 5.56 6.71 0.10




-4

Regge trajectory: glueball states 27+, 4T+ and 67

J(m?) = (1.06 + 0.33) + (0.26 & 0.02)m?

LI LI T LI [T T LI T LI [T T LI T T T [T T T | LI T [T LI |
2 4 6 8 10 12 14 16 18 20

m?(GeV)?

Very good compared to experimental pomeron:

J(m?) ~ 1.08 + 0.25 m?,
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Effective potentials in the Dynamical Softwall X usual Softwall

v, @) [Gev] v, () [GeV?]

100 [4 # o8 g e - J=10 10 \

[ o smimim 8 [ “ =10
80 8L .

[y ;&2 - ¥ ee--- J=6 [
60 [ mEEE- J=4 6 '-_
40 | J=2 4l

: —— 0 :
20 2+

z[GeV"] [ . . N ! : * z [GEV-1]
2 2 4 6 8 10 12 14
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Odd spins and the odderon
Opy] = SymTr <FWFD{M1...DM}F),

A=6+] spin 1+ J.

Table 2
Masses m, expressed in GeV for the glueball states JP¢ with odd ] solving Eq. (9)
with the potential (12) for k = 0.10 GeV?.

Glueball states JPC k
1 37 577 7 9~ 117
™ 2.77 3.91 5.05 6.19 7.33 8.47 0.10




Regge trajectories for the odderon

J(m?) ~ (0.20 £ 0.43) + (0.17 £ 0.01)m?

10

0 10 20 30 40 50 60
m2(GeV)?

Very good agreement with the non-relativistic model for the odderon:

J(m?) ~ 0.25 +0.18 m?,
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Regge trajectories for the odderon

J(m?) = (—0.60 +0.33) + (0.22 & 0.01)m?

-3

m?(GeV)?

Very good agreement with the relativistic model for the odderon:

J(m?) ~ —0.88 + 0.23m?,
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Finite Temperature AdS/CFT and AdS/QCD

Witten’s proposal (1998)
Policastro, Son, Starinets, PRL 2001 (Shear viscosity...)

Finite temperature Yang-Mills theory in 4d dual to a

modified AdS(5)xS(5) set up with a Black Hole
(Schwarzschild AdS (5) xS (5))

The temperature of the Yang-Mills theory is

identified with the Hawking temperature of the Black
Hole

48



Soft-wall model at Finite Temperature

AdS black-hole spacetime

ds? = 240) | _ f(2)dt? + Y (dr)? + f(z)"'d2?

L i=1

A(z) = —In(z/L) f (z)=1—(z [z ) L

Herzog PRL 2007,
Kajantie, Tahkokallio, Yee, JHEP 2007;

Ballon-Bayona, HBF, Braga, Pando Zayas, PRD 2008.
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Hard-wall and Soft-wall at Finite Temperature:

Confining/deconfining phase transition

Thermal AdS space (low temperature) < —
(confined phase)

AdS Black hole (high temperature)
(deconfined phase)

H_

Herzog, PRL 2007

Hawking-Page phase transition

Thermal AdS

"\ Black Hole

-15} Confinement[Deconfinement

Trandition

A In
" 12

(xTY/c
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Quasinormal modes and scalar Glueballs

in the Soft-wall at Finite Temperature

Quasinormal modes are formed when a particle/field falls onto a
black hole horizon

1 1 1 L 1 1 L - L L 1 1
© 005 o1 0I5 02 02 03 035 04 005 01 015 02 025 03 03%5 04
(xTy’c (xn/c

Figure 6. Numerical results for the square of the real and imaginary parts of the QN frequencies,
wh /e and wi /e, for the first five quasinormal modes n = 0,1,.... 4, with ¢ = 0. (zero momentum)

Miranda,Ballon-Bayona, HBF, Braga, JHEP 2009
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Quasinormal modes and

in the Soft-wall at Finite Temperature

s 01 QIS 02 025 03 035 04 04as 05
(XTFKC

Figure 5. Numerical results for the quasinormal frequencies. On the left panel we show the real

part, associated with mass of the vector mesons. On the right panel we show the imaginary part

associated with the decay time of the quasiparticle states.

Mamani, Miranda, HBF, Braga, JHEP 2014
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Ve

Vector Mesons at Finite T in the Soft-wall model

Figure 1. Potential at zero wave number for high temperatures.
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the critical value T2 = 0.538 in the detail.
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Figure 2. Potential at zero wave number for low temperatures.
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Other Results:

Wilson loops in AdS/CFT and AdS/QCD (nonconfining/
confining)

Vector mesons form factors in the D4-D8 model

Production of positive and negative parity Baryons in
the D4-D8 model

Pion and vector mesons form factors from the
Kuperstein-Sonnenschein model




Baryons Form Factors and Proton Structure in the

Holographic Sakai-Sugimoto D4-D8 Model

Ballon-Bayona, HBF, Braga, lhl, Torres, PRD 2012; NPB 2013

Helicity Amplitude [1073(GeV) /2] for the observed negative parity
“12 resonance S_11(1535)
Ag, 8,(q7)

Blue line = SS Model prediction
Red dots = exp. data (JLAB-CLAS)
Blue triangles = Bare amplitude results (EBAC)

140 -

CLAS: Aznauryan et al PRC 2009.

EBAC: Julia-Diaz et al PRC 2009;
é Matasuyama et al Phys.Rep. 2007;
+ é * Ramalho, Pena, PRD 2011.

l""l"'l"'l"'ﬁ'qz(GGV)z
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Pion (and vector meson) Form Factors in the Kuperstein-

Sonnenschein Holographic model

) D3-brane background
Ballon-Bayona, HBF, Ihl, Torres, JHEP (2010) - n
D7-brane profiles
The KS model is based on the D3-brane background with a conical singularity in type
I1B superstring theory first studied by Klebanov and Witten

Stable, non-supersymmetric, but similar to D4-D8 with VMD

lr‘};(q‘ ) g xF(Q%)

0.8

0.6 \

...............

Red = SS model; Blue = KS model
Dots = experimental data (PDG) 56



