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4-d Regge theory and the Soft Pomeron

Consider the scattering process 1 + 2→ 3 + 4. The Mandelstam
variables associated with this process are

s = (k1 + k2)2 , t = (k1 − k3)2 , u = (k1 − k4)2 . (1)

They satisfy the identity s + t + u =
∑4

i=1 m
2
i .

Since the u variable can be written in terms of s and t this process
is described by the scattering amplitude A(s, t)

When the masses are equal, i.e. mi = m, the Mandelstam variables
take the form

s = 4(|~k|2 + m2) , t = −2|~k |2(1− cos θs) , (2)

where |~k| and θs are the momentum and scattering angle in the
center of mass frame.

Crossing symmetry implies that

A1+2→3+4(s, t) = A1+3̄→2̄+4(t, s) (3)



Partial-wave amplitudes

At fixed s the momentum transfer t varies linearly with

zs = cosθs . (4)

Explicitly we have that

t =
1

2
(s − 4m2)(zs − 1) . (5)

The amplitude can be expanded in the partial-wave series

A(s, t) = 16π
∞∑
`=0

(2`+ 1)A`(s)P`(zs) , (6)

where P`(z) is the Legendre polynomial of the first kind, of order
`. The quantities A`(s) are the so called partial-wave amplitudes.

Similarly, in the t-channel t we can also expand the amplitude as

A(s, t) = 16π
∞∑
J=0

(2J + 1)AJ(t)PJ(zt) , (7)

where

zt = cos θt = 1 +
2s

t − 4m2
. (8)



The contribution at each J can be interpreted in terms of the
t-channel exchange of a resonance of spin J.

In the Regge limit, i.e. s →∞ with fixed t, each spin J resonance
would contribute to the amplitude as

A(s, t) ∼ fJ(t)sJ . (9)

Using the optical theorem we find that the total cross section for
the scattering process 1 + 2→ X takes the form

σTot(s) ∼ sJ−1 . (10)

However, experimental data for p̄p total cross section suggest the
following behaviour

σTot(s) ∼ sJ0−1 , J0 ≈ 1.08 . (11)

The interpretation is the following : The spin J resonances
contribute simultaneously to the scattering amplitude in groups of
Regge trajectories. Regge theory is the mathematical tool to add
all these families of resonances.



The Sommerfeld-Watson transform

Extend J to the complex plane and define functions A(J, t) such
that

A(J, t) = AJ(t) J = 0, 1, 2, . . . (12)

It is convenient to separate the contributions from even and odd
spin defining A±(J, t).

The partial-wave series can be rewritten as the contour integral

A±(s, t) = 8πi

∫
C
dJ(2J + 1)A±(J, t)

PJ(−zt)± PJ(zt)

sin(πJ)
. (13)

The contour C is described in
Figure 1.

It surrounds the poles at
non-negative integer J.

Figure 1 : Contour C in the
complex J plane.



The contour C can be
deformed as shown in Figure 2.

As the contour passes the
poles we must pick up their
residues. Figure 2 : Deforming the

contour C.

Pushing the left side of the contour to Re J = −1/2 and taking
the Regge limit we find that the amplitude is described entirely by
the Regge poles.

In particular, the amplitude for the even sector takes the form

A+(s, t) =
∑
n

Π(jn(t)) s jn(t) . (14)

where jn(t) are the Regge poles representing families of Regge
resonances (Regge trajectories). The first Regge pole is known as
the Soft Pomeron.



String approach : BPST Pomeron Brower, Polchinski, Strassler and Tan 2006

Consider closed strings in AdS5× S5 with the AdS5 metric given by

ds2 = e2A0(z)
(
dz2 + dX 2

1,3

)
, A0(z) = log(

L

z
) , (15)

where L is the AdS radius.

Consider 2→ 2 scattering of scalars in 4-d. The 4-d scattering
amplitude A(s, t) is obtained from closed string scattering in
AdS5 × S5.

When
√
λ� log s , a local approximation can be used to obtain

A(s, t) = V

∫
dz
√−gφ1(z)φ3(z)Π(α′t̃)(α′s̃)2+ α′

2 t̃φ2(z)φ4(z) , (16)

where gmn is the AdS5 metric (15) and

V =

∫
d4x e ix·(k1+k2+k3+k4) = (2π)4δ4(

∑
i

ki ) ,

s̃ = e−2A0s , t̃ = e−2A0t , Π(α′t̃) = 2π
Γ(−α′ t̃

4 )

Γ(1 + α′ t̃
4 )

e−iπ
α′ t̃

4 .(17)



When
√
λ ∼ log s the local approximation is not valid and a formal

string calculation leads to

A(s, t) =

∫
d4x dz

√−ge ix.(k1+k3)φ1(z)φ3(z)Π(α′∆2)(α′s̃)2+ α′
2 ∆2

× e ix.(k2+k4)φ2(z)φ4(z) , (18)

where ∆2 = e2A0∇2
0e
−2A0 and ∇2

0 is the covariant Laplacian of a
scalar in AdS5.

The scattering amplitude can be rewritten as

A(s, t) = g2
0V

∫
dz dz ′

√
g(z)φ1(z)φ3(z)K (s, t, z , z ′)

×
√
g(z ′)φ2(z ′)φ4(z ′) , (19)

where K (s, t, z , z ′) is interpreted as the Pomeron kernel.



The Regge approach Brower, Strassler and Tan 2007 , Cornalba, Costa and Penedones 2007

Rewrite the Pomeron kernel as an inverse Mellin transform of a
complex J kernel

K (s, t, z , z ′) = −
∫

dJ

2πi

[
ŝJ + (−ŝ)J

sinπJ

]
K (j , t, z , z ′) , (20)

where ŝ = R2e−A(z)e−A(z ′)s . It turns out that K (J, t, z , z ′)
satisfies the equation

L
{
e−2A0

[
e−3A0∂z(e3A0∂z) + t

]
−m2

J

}
K (J, t, z , z ′) = e−5A0 δ(z − z ′) , (21)

with

m2
J =

2

α′
(J − 2) = 2

√
λ

L2
(J − 2) . (22)

Then K (J, t, z , z ′) is interpreted as the 5-d propagator of higher
spin field with masses mJ obeying a Regge behaviour.



The J Kernel eq. (21) can be written in a Schrodinger form

L
{
∂2
z + t − V (z)

}
Ḡ (J, t, z , z ′) = δ(z − z ′) , (23)

with

V (z) =
3

2
Ä0 +

9

4
Ȧ2

0 + e2A0m2
J =

1

z2

[
15

4
+ m2

JL
2

]
. (24)

This implies a continuum spectrum (expected for AdS).

The Green’s function Ḡ (J, t, z , z ′) can be expanded as

Ḡ (J, t, z , z ′) =

∫ ∞
0

dE

2π
√
E

ψJ,E (z)ψ?J,E (z ′)

E − t
, (25)

where

ψJ,E (z) = (π
√
Ez)1/2JiνJ (

√
Ez) , (26)

with

iνJ =
√

4 + m2
JL

2 =

√
4 + 2

√
λ(J − 2) . (27)



Recalling that m2
JL

2 = ∆(∆− 4) where ∆ is the conformal
dimension of the dual operator we find

J = J0(λ) + D(λ)(∆− 2)2 , (28)

where

J0 = 2− 2√
λ

, D(λ) =
1

2
√
λ
. (29)

This relation describes the
anomalous dimension of spin J
operators of the form
Tr(Fµ1νDµ2 . . .DµJ−1

F νµJ ).

It has the same quadratic
behaviour at strong coupling
(BPST) and weak coupling
(BFKL).
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Figure 3 : J as a function of
∆− 2



Improved Holographic QCD (IHQCD) Gursoy, Kiritsis and Nitti 2007

Consider 5-d Dilaton-Gravity in the Einstein-Frame

S = M3N2
c

∫
d5x
√−g

[
R − 4

3
gmn∂mΦ∂nΦ + V [Φ]

]
, (30)

In the String-Frame the action takes the form

S = M3N2
c

∫
d5x
√−gse−2Φ [Rs + 4gmn

s ∂mΦ∂nΦ + Vs [Φ]] , (31)

where

g s
mn = e

4
3 Φgmn , Vs [Φ] = e−

4
3 ΦV [Φ]. (32)

The Dilaton-Gravity equations arising from (1) are

Rmn =
4

3
∂mΦ∂nΦ− 1

3
gmnV , (33)

4

3
∇2Φ = −1

2

dV

dΦ
. (34)



Consider the following family of backgrounds :

ds2 = e2A(z)
(
dz2 + dX 2

1,3

)
Φ = Φ(z). (35)

For these backgrounds the Ricci tensor takes the form

Rzz = −4Ä , Rzµ=0 ,

Rµν = −
[
Ä + 3Ȧ2

]
ηµν . (36)

Then the Dilaton-Gravity equations become the ordinary
differential equations :

e2AV = 12Ä + 4Φ̇2 ,
e2AV = 3Ä + 9Ȧ2 ,

−3

8
e2A dV

dΦ
= Φ̈ + 3ȦΦ̇ . (37)



The system (37) have only two independent equations. They can
be written as

V = e−2A
(

3Ä + 9Ȧ2
)
,

Ä = Ȧ2 − 4

9
Φ̇2 . (38)

Introducing a superpotential W[Φ] the equations (38) become the
first order differential equations

Φ̇ =
dW

dΦ
eA , (39)

Ȧ = −4

9
WeA , (40)

with

V =
64

27
W 2 − 4

3

(
dW

dΦ

)2

. (41)

An important quantity in these backgrounds is

X :=
Φ̇

3Ȧ
= −3

4

dLogW

dΦ
. (42)



Holographic map

log E = A(z) ,
λ̄(E ) = c0 e

Φ(z) =: c0λ(z) . (43)

The energy scale E is the dual of the warp factor A(z) whereas
the ’t Hooft coupling λ̄(E ) is determined by the dilaton Φ(z).

A nice consequence of the holographic map is

X =
dΦ

3dA
=

dλ

(3λ)LogE
=

β

3λ
. (44)

The field X (z) maps to the beta function of the dual theory. For
large-N QCD the two-loop perturbative beta function gives

β̄ = −b̄0λ̄
2 − b̄1λ̄

3 , b̄0 =
2

3

11

(4π)2
,

b̄1

b̄2
0

=
51

121
. (45)

This fixes the UV behaviour of the superpotential W [Φ].



In order to guarantee confinement the IR behaviour of the warp
factor should be the following

A(z � 1) = −Czα + . . . , (46)

where α ≥ 1 and C > 0.

Background I : A simple superpotential that interpolates between
the UV and IR behaviours is the following

W [λ] = W0

(
1 +

2

3
b0λ

)
2
3

(
1 +

(
2b2

0 + 3b1

)
Log

[
1 + λ2

]
18a

) 4
3 a

, (47)

where

W0 =
9

4L
, a =

3

8

α− 1

α
,

b0 = c0b̄0 ,
b1

b2
0

=
b̄1

b̄2
0

=
51

121
, (48)

and L is the AdS radius. A good agreement with lattice QCD
results is obtained for

α = 2 , b0 = 4.2 . (49)



For Nc = 3 the QCD running coupling can be identified with
αs = λ̄/(12π). Figure 4 shows how αs runs with the energy scale
in the model.

Figure 4 : Running coupling αs vs. energy scale. The red point is
αs(1.2 GeV) = 0.34.



Spin 2 glueballs in IHQCD

Consider the fluctuations hmn and ϕ defined by

gmn + hmn , Φ + ϕ . (50)

The metric perturbations hmn are decomposed according to the
SO(1, 3) global symmetry of the background ,i.e.

hαβ = hTTαβ + ∂(αh
T
β) +

(
4∂α∂β − ηαβ∂

2
)
h̄ + ηαβh ,

hzz , hzα = vT
α + ∂αs . (51)

The spin 2 glueball spectrum is obtained by solving the equation
for hTTαβ . In IHQCD it takes the form(

∇2 + 2Ȧ2e−2A(z)
)
hTTαβ = 0 . (52)

In the String Frame the eq. (52) becomes(
∇2 − 2e−2A(z)Φ̇∇z + 2Ȧ2e−2A(z)

)
hTTαβ = 0 . (53)



5-d Regge theory in IHQCD and the Soft Pomeron

Consider the operators Tr(Fµ1νDµ2 . . .DµJ−1
F νµJ ). The dual of

those operators are higher spin fields hTTα1...αJ
.

In AdS5 higher spin fields dual to operators of dimension ∆ satisfy
the eq.

[∇2
AdS5
− ∆(∆− 4)− J

L2
]hTTα1...αJ

= 0 . (54)

Costa, Gonçalves and Penedones 2014

At weak coupling we expect ∆ = J + 2 + γJ .

Our proposal for spin J fields in Dilaton-Gravity backgrounds :(
∇2−2 e−2AΦ̇∇z−

∆(∆− 4)

L2
+JȦ2e−2A

)
hα1...αJ

= 0 , (55)

For J = 2,∆ = 4 this eq. reduces to eq. (53) for the metric
perturbation. For A(z) = ln(L/z) and Φ = 0 we recover the spin J
AdS equation (54).



In the the region of J ≤ 2 we use the diffusion approximation

∆(∆− 4)

L2
≈ 2

α′
(J − 2) , (56)

where ls =
√
α′ is the string length.

In AdS5 we have that α′ = L2/
√
λ. In our model we take ls as a

phenomenological parameter to be fixed by data.

The diffusion approximation misses the UV expectation that
∆ = J + 2. However, for IR processes this approximation is very
useful.

The eq. for the spin J fields (55) can be put in a Schrödinger form(
− d2

dz2
+ U(z)

)
ψ(z) = t ψ(z) , (57)

U(z) =
3

2

(
Ä− 2

3
Φ̈

)
+

9

4

(
Ȧ− 2

3
Φ̇

)2

+
∆(∆− 4)

L2
e2A(z) , (58)



The energy spectrum for each J quantises t = tn(J). For J = 2
they correspond to the spin 2 glueball masses.

The effective potential for
different values of spin J is
shown in Figure 5.

This includes the first two spin
2 glueball states 2++, 2++∗.

Figure 5 : Effective potential for
different values of spin J



t-channel spin J exchange
Consider the elastic scattering of scalar hadronic states of equal
masses m. We write the incoming momenta in light-cone
coordinates

k1 =

(√
s,

m2

√
s
, 0

)
, k3 = −

(√
s,

m2 + q2
⊥√

s
, q⊥

)
, (59)

k2 =

(
m2

√
s
,
√
s, 0

)
, k4 = −

(
m2 + q2

⊥√
s

,
√
s,−q⊥

)
,

where we consider the Regge limit s � t = −q2
⊥.

Each hadron is described by a norm. mode Υi (z , x) = e iki ·xiυ(z)
with a coupling to the spin J field given by

κJ

∫
d5x
√−g e−Φha1···aJ Υ∇a1 · · · ∇aJ Υ . (60)

In the Regge limit we spin J exchange is described by

AJ(ki ) = −κ2
J

∫
d4xdzd4x ′dz ′

√
−g(z)

√
−g(z ′)e−Φ(z)−Φ(z′)(

Υ1∂
J
−Υ3

)
Π−···−,+···+(x , z , x ′, z ′)

(
Υ′2∂

′
+
JΥ′4

)
. (61)



After some algebra the scattering amplitude takes the form

A(s, t) = iV
∑

J=(2,4,... )

κ2
J

(−2)J

∫
dzdz ′

√
g(z)

√
g(z ′)e−Φ(z)−Φ(z′)

|υ(z)|2|υ(z ′)|2
(
s e−A(z)−A(z′)

)J
K (J, t, z , z ′) , (62)

where the spin J propagator K (J, t, z , z ′) satisfies the eq.

L{e−2A
[
e2Φ−3A∂z(e3A−2Φ∂z) + t

]
−m2

J}K (J, t, z , z ′)

= e−5Ae2Φδ(z − z ′) . (63)

Mapping this eq. to a Schrödinger form and using the
completeness relation

∑
n ψn(z)ψ∗n(z ′) = δ(z − z ′) we find that the

spin J kernel can be expanded as

K (J, t, z , z ′) = eΦ(z)− 3
2 A(z)+Φ(z′)− 3

2 A(z′)
∑
n

ψn(z)ψ∗n(z ′)

tn(J)− t
. (64)



The Soft Pomeron in IHQCD

The sum over spin can be converted to a Sommerfeld-Watson
integral in the complex J plane

1

2

∑
J≥2

(
sJ + (−s)J

)
→ −π

2

∫
dJ

2πi

sJ + (−s)J

sin(πJ)
, (65)

Then the amplitude becomes

A(s, t) = iV

∫
dz dz ′e3(A(z)+A(z′))|υ(z)|2|υ(z ′)|2

∑
n

χn(z , z ′, s, t) ,

(66)
where

χn(z , z ′, s, t) = −π
2

∫
dJ

2πi

sJ + (−s)J

sin(πJ)

κ2
J

2J
e−(J− 1

2 )(A(z)+A(z′))ψn(z)ψ∗n(z ′)

tn(J)− t
.

(67)

We assume the J-plane integral can be deformed from the poles
at even values of J, to the poles J = jn(t) defined by tn(J) = t.



In the scattering domain of negative t the Regge poles are along
the real axis for J < 2. Thus we can write the amplitude as

A(s, t) = V
∑
n

s jn(t)Π(jn(t)) , (68)

where

Π(jn(t)) =
π

2

(
1− i cot

πjn(t)

2

)
κ2
jn(t)

2jn(t)

djn(t)

dt

×
(∫

dz e3A(z)e−(jn(t)− 1
2 )A(z)υ2(z)ψn(z)

)2

. (69)

Figure 6 shows the Regge
trajectories jn(t).

As J decreases the energy
levels cross the zero energy
value. This is the intercept for
the n-th Regge trajectory.

Figure 6 : Regge trajectories.



Results

First Regge trajectory :

I Scenario I : For ls = 0.178 GeV−1 and ΛQCD = 0.265 we
obtain an approximate linear trajectory consistent with the
Soft Pomeron

J(t) ≈ 1.08 + 0.25t . (70)

Donnachie and Landshoff 1992

I Scenario II :For ls = 0.192 GeV−1 and ΛQCD = 0.292 we
find an approximate linear trajectory in agreement with the
lattice SU(3) result.

J(t) ≈ 0.93 + 0.25t . (71)

Meyer and Teper 2004

Second Regge trajectory :

J(t) ≈ 0.43 + 0.21t (Scenario I) ,
J(t) ≈ 0.17 + 0.2t (Scenario II) . (72)



Fit to p p̄ total cross section
The contribution from the first two Regge poles in our model takes
the form

σ = g0S
J1(0)−1 + g1S

J2(0)−1 . (73)

Using g0 and g1 as parameters we ran fits to p p̄ total cross section
data in the region

√
s > 10 GeV Olive et al (Particle Data Group) 2014 .

Our fit is shown in Figure 7.
The blue line is the fit of two
Regge poles and the green line
is a fit with just one Regge
pole.

A second Regge pole inside the
range ≈ 0.35− 0.55 is
necessary to get χ2

d .o.f . ≤ 1.

Figure 7 : A fit to p p̄ total cross
section data using two Regge
poles.



Conclusions

Using IHQCD we have developed a 5-d Regge approach to
scattering process dominated by Soft Pomeron exchange.

Although inspired by the BPST approach, our model describe a
discrete set of Regge poles in constrast to the branch cut obtained
in the BPST approach.

Our models lacks of an UV description of spin J fields that should
match with perturbative QCD analysis of the dual operators. This
would allow a unified description of Soft and Hard Pomeron.

Analysis of the pp̄ differential cross sections could lead to a better
understanding of the coefficients Π(jn(t)).

Deep inelastic Scattering (DIS) is an interesting laboratory to
investigate the competition between Soft and Hard Pomeron at
very low Bjorken variable x (work in progress).
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