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4-d Regge theory and the Soft Pomeron

Consider the scattering process 1 4+ 2 — 3 + 4. The Mandelstam
variables associated with this process are

s = (kl + k2)2 y t= (kl — k3)2 y u= (kl — k4)2 . (1)

They satisfy the identity s + t + u = Zf}:l m?.

Since the u variable can be written in terms of s and t this process
is described by the scattering amplitude A(s, t)

When the masses are equal, i.e. m; = m, the Mandelstam variables
take the form

s=4(lkP+m?) , t=—2|k’(1—cosbs), (2)

where |E| and 6 are the momentum and scattering angle in the
center of mass frame.

Crossing symmetry implies that

Ar25314(s,t) = A135,514(t,5) (3)



Partial-wave amplitudes

At fixed s the momentum transfer t varies linearly with

zs = cosbs . (4)
Explicitly we have that
t= (s —4m)(z 1), (5)
The amplitude can be expanded in the partial-wave series
A(s, 1) = 16m (20 + 1) A(s)Pu(z:) (6)
=0

where Py(z) is the Legendre polynomial of the first kind, of order
. The quantities Ay(s) are the so called partial-wave amplitudes.

Similarly, in the t-channel t we can also expand the amplitude as

A(s, t) = 167 i(ﬂ + DA (t)Py(z), (7)
J=0
where
2s

= =14+ ———.
Zy = COS U+ +t—4m2



The contribution at each J can be interpreted in terms of the
t-channel exchange of a resonance of spin J.

In the Regge limit, i.e. s — oo with fixed t, each spin J resonance
would contribute to the amplitude as

A(s, t) ~ F(t)s”. (9)

Using the optical theorem we find that the total cross section for
the scattering process 1 + 2 — X takes the form

o™ (s) ~ s, (10)

However, experimental data for pp total cross section suggest the
following behaviour

o™ (s) ~sht | Jy~ 1.08. (11)

The interpretation is the following : The spin J resonances
contribute simultaneously to the scattering amplitude in groups of
Regge trajectories. Regge theory is the mathematical tool to add
all these families of resonances.



The Sommerfeld-Watson transform

Extend J to the complex plane and define functions A(J, t) such
that

A(J,t)=Ay(t) J=0,1,2,... (12)

It is convenient to separate the contributions from even and odd
spin defining A(J, t).

The partial-wave series can be rewritten as the contour integral

. Py(—z:) £ Py(z)

+ _ + J t

A*(s, t) = 8ri /C A+ A A (1)
The contour C is described in . c

Figure 1. —(—-n—-—-—.f;—c—l—l—‘-

It surrounds the poles at
non-negative integer J.

Figure 1 : Contour C in the
complex J plane.



The contour C can be ®
deformed as shown in Figure 2. 3

As the contour passes the

poles we must pick up their

residues. Figure 2 : Deforming the
contour C.

Pushing the left side of the contour to Re J = —1/2 and taking

the Regge limit we find that the amplitude is described entirely by
the Regge poles.

In particular, the amplitude for the even sector takes the form

A (s,8) = 3" N(ia(2)) 57O (14)

where j,(t) are the Regge poles representing families of Regge

resonances (Regge trajectories). The first Regge pole is known as
the Soft Pomeron.



String approach - BPST Pomeron Brower, Polchinski, Strassler and Tan 2006
Consider closed strings in AdSs x S° with the AdSs metric given by

ds* = ) (d” +dX?;) , Ao(z) = |og(£)7 (15)
! z

where L is the AdS radius.
Consider 2 — 2 scattering of scalars in 4-d. The 4-d scattering
amplitude A(s, t) is obtained from closed string scattering in
AdSs x Ss.
When v/ > log s , a local approximation can be used to obtain

A(s, t) =V / dz/=g¢1(2)d3(2)N(a'E)(a'3)2 T n(2)pa(z), (16)
where gmn is the AdSs metric (15) and

vV — /d4X eix-(k1+k2+k3+k4) = (27‘(‘)454(2 ki)7

5 e s F=e oy




When VX ~ log s the local approximation is not valid and a formal
string calculation leads to

Als,t) = / d*x dz /=g k) . (2) s (2)11(0 D) (0 3)2 522
x etk g (2)p4(z2) (18)

where Ay = e>40V3e~2%4 and V3 is the covariant Laplacian of a
scalar in AdSs.

The scattering amplitude can be rewritten as

A(s,t) = /dzdz \Vg(2)p1(z K(s,t,z,2")
X vg(Z’)¢>2(Z )pa(2') (19)

where K(s, t,z,z') is interpreted as the Pomeron kernel.



The Regge approach Brower, Strassler and Tan 2007 ,  Cornalba, Costa and Penedones 2007

Rewrite the Pomeron kernel as an inverse Mellin transform of a
complex J kernel

K(s,t,z,z’):—/ dJ [w} K@, t,z,2'), (20)

o2ri | sinmJ

where § = R2e=A2)e=A(@)s _ It turns out that K(J, t,z,2')
satisfies the equation

L{e—2A° [e73%0,(e3%0,) + t] — mﬁ}K(J, t,z,7') = e 5 5(z — 2'), (21)
with

VA
e

mizé(J72):2 (J—2). (22)

Then K(J,t,z,Z') is interpreted as the 5-d propagator of higher
spin field with masses m; obeying a Regge behaviour.



The J Kernel eq. (21) can be written in a Schrodinger form

L{a§ bt V(z)} G(J,t,z,2)=6(z—2'), (23)
with
3 9. 2 2A 2 1 15 272
V(Z):§A0+ZAO+G OmJ:; Z"‘mJL . (24)

This implies a continuum spectrum (expected for AdS).

The Green's function G(J,t,z,2') can be expanded as

Gtz = [0 e, (25)
where
V1e(z) = (7VE2)Y24y,(VE2), (26)
with

ivy=\/4+miL2=/4+2VNJ-2). (27)



Recalling that m3L? = A(A — 4) where A is the conformal
dimension of the dual operator we find

J=Jo(A) + D(A)(A — 2),

where

2
Jo=2- "=

S

This relation describes the
anomalous dimension of spin J
operators of the form
Tr(FuvDy, ... D Fll’“).

Py
It has the same quadratic
behaviour at strong coupling
(BPST) and weak coupling
(BFKL).
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Im proved Hologra ph iIC QC D (I H QC D) Gursoy, Kiritsis and Nitti 2007

Consider 5-d Dilaton-Gravity in the Einstein-Frame

4
S=M3N? / d°x\/—g [R - ggm"amcb@w + V[¢]} ) (30)
In the String-Frame the action takes the form
S = M3N? / d°x\/—gse *® [Rs + 4gM" 0 ®0,® + VL[®]] ,  (31)

where

4

gon= € %mn , W[®]=e3°V[o] (32)

The Dilaton-Gravity equations arising from (1) are

4 1
Ron = ~0m®0h® — ZgmnV, 33
3 38 (33)

4

1dv
V2 = I
3V 2do



Consider the following family of backgrounds :

ds* = ) (d2° + dX?s)
® = o2). (35)

For these backgrounds the Ricci tensor takes the form
R, = —4A , R,=0,
Ru = —|A+38] . (36)

Then the Dilaton-Gravity equations become the ordinary
differential equations :

AV = 12A+49?,
AV = 3A+9A%,
dv .. -
3V 5 3ab. (37)

8 do



The system (37) have only two independent equations. They can
be written as

V o= 24 (3A+9A2) :

.. . 4 .
A = A2—§<D2. (38)

Introducing a superpotential W[®] the equations (38) become the
first order differential equations

. dw
o = cToeA’ (39)
. 4
A = —§WeA7 (40)
with
64, 4 [dW)?
=W (=) . 41
v=5v-3 (%) (@

An important quantity in these backgrounds is

® 3 dLogW
3A 4 do (42)




Holographic map

logE = A(z2),
ME) = e®@ = gA(z2). (43)

The energy scale E is the dual of the warp factor A(z) whereas
the 't Hooft coupling A(E) is determined by the dilaton ®(z).

A nice consequence of the holographic map is

x4 d B
T 3dA (3\)LogE 3\

(44)
The field X(z) maps to the beta function of the dual theory. For
large-N QCD the two-loop perturbative beta function gives

- - - - - - 2 11 b 51
2 3 1
p boA™ = B1A”, - bo 3(4m)27 B2 121 (45)

This fixes the UV behaviour of the superpotential W[®].



In order to guarantee confinement the IR behaviour of the warp
factor should be the following

Az>»1)=-C"+..., (46)
where o > 1 and C > 0.

Background | : A simple superpotential that interpolates between
the UV and IR behaviours is the following

) 262 + 3b;) Log [1 4 2] | ¥
W[A]=W0<1+§b0)\>3<1+< o + 1) Og[ + ]) : (47)

18a
where
9 3a—1
WO - H ) a= é B )
- by by 51
b = b —_ = == = — 4
0 Cobo bg b(2) 121’ ( 8)

and L is the AdS radius. A good agreement with lattice QCD
results is obtained for

a=2 , by=42. (49)



For N. = 3 the QCD running coupling can be identified with

as = \/(127). Figure 4 shows how o runs with the energy scale
in the model.

Qs

R
0 ! ! !

0 0.5 1 15 2 25 g (GeV)

Figure 4 :  Running coupling as vs. energy scale. The red point is
as(1.2GeV) = 0.34.



Spin 2 glueballs in IHQCD
Consider the fluctuations hy,, and ¢ defined by

8mn + hmn y ® + © - (50)
The metric perturbations hp,, are decomposed according to the

S0(1, 3) global symmetry of the background ,i.e.

has . oo = V] + Das. (51)

The spin 2 glueball spectrum is obtained by solving the equation
for h;-g In IHQCD it takes the form

(v2 + 2A2ef2A<Z>) hT=o0. (52)
In the String Frame the eq. (52) becomes

(v2 _2e Ay, 2A2e-2A<Z>) hT=0. (53)



5-d Regge theory in IHQCD and the Soft Pomeron

Consider the operators Tr(F,, Dy, ... Dy, FY, ). The dual of

TT

those operators are higher spin fields h,,’ .

In AdSs higher spin fields dual to operators of dimension A satisfy
the eq.

AA —4) —
P ) (54)

Costa, Gongalves and Penedones 2014

At weak coupling we expect A = J 42 + ;.
Our proposal for spin J fields in Dilaton-Gravity backgrounds :

AA—4) .,
——— +JA% 2A) a0, =0, (55)

(v2—2 e AdV, — .

For J =2, A = 4 this eq. reduces to eq. (53) for the metric
perturbation. For A(z) =In(L/z) and ® = 0 we recover the spin J
AdS equation (54).



In the the region of J < 2 we use the diffusion approximation

A(A - 4)

2
B ~ (4-2), (56)

where [; = v/o/ is the string length.

In AdSs we have that o/ = L2/ﬁ. In our model we take /s as a
phenomenological parameter to be fixed by data.

The diffusion approximation misses the UV expectation that
A = J+ 2. However, for IR processes this approximation is very
useful.

The eq. for the spin J fields (55) can be put in a Schrodinger form

(-5 + V@) @) = tu(a), (57

3/, 2.\ 9/, 2.\° A(A-—4
U(z) =5 (A - 3¢) +3 (A - 3<D> + % A2 (58)



The energy spectrum for each J quantises t = t,(J). For J =2
they correspond to the spin 2 glueball masses.

The effective potential for
different values of spin J is
shown in Figure 5.

This includes the first two spin
2 glueball states 2+, 27+,

o 1 2 s 4 =z
Figure 5 : Effective potential for
different values of spin J



t-channel spin J exchange
Consider the elastic scattering of scalar hadronic states of equal
masses m. We write the incoming momenta in light-cone
coordinates

m2 m2+ 2
kl = (\/57\/570) ) k3:_ (\/§7\/§C7L’ql>7 (59)
m? m® + ¢4
ky = | —= ky = — [ —=—=+ -
2 (\/ga\/gvo)v 4 < \E 7\[3 ql>7
. . . . 2
where we consider the Regge limit s >t = —q7 .

Each hadron is described by a norm. mode T;(z, x) = e’ki”iy(z)
with a coupling to the spin J field given by

/{J/dsx —ge ®h,..,, TV™...V¥T, (60)

In the Regge limit we spin J exchange is described by

Ay(ki) = *Hj/d4xdzd4x’dz \/7\/7 —o(2)—0(z

(T10T3) N = (x, 2, X, 2/) (59 T) . (61)



After some algebra the scattering amplitude takes the form

A(s, t) =iV Z HJJ/dZdZ/\/gﬁ\/gme*CD(z)fd)(z’)

J=(2,4,...) (=2)
s\ J
[(2)Pu(2)? (se XD -4) K(J,,2,2), (62)

where the spin J propagator K(J, t, z, z') satisfies the eq.

L{e2A [e2¢*3A82(e3A72¢3z) 4 t] — mi}K(J, t,z,z')
~ eshrog(s 2. (63)

Mapping this eq. to a Schrodinger form and using the

completeness relation > 1n(2)1}(2') = 6(z — Z’) we find that the
spin J kernel can be expanded as

K(J,t,z,z ) <1>(z)*fA(z)+¢ Z Pn Z)¢_(t ) . (64)



The Soft Pomeron in IHQCD

The sum over spin can be converted to a Sommerfeld-Watson
integral in the complex J plane

dJ
72 S * _>_2/277155|—'r_1((7rJ)) ’ (65)

J>2

Then the amplitude becomes

A(s, t) = iV/dz dz' AT y(2) 2o ()2 an z,7 s, t)
(66)
where
dJ 57+ (=5)) K5 (- 1yam)eacy) Ya(@)Yn(2)
! _— L S ARFA(E)) Zni2) ¥nls )
Xol2:7',5,t) = 2 2mi sin(mJ) 27 y t(J)—t
(67)

We assume the J-plane integral can be deformed from the poles
at even values of J, to the poles J = j,(t) defined by t,(J) = t.



In the scattering domain of negative t the Regge poles are along
the real axis for J < 2. Thus we can write the amplitude as

As, t) = V> $ON(j(1)), (68)
where
. _ 7T _/n(t) ( ) d./n( )
NGi(e) = (1 i D) S
2

3 ( [ deee b0 D020 a)) (69
Figure 6 shows the Regge j(t)z [ ‘ | |
trajectories jp(t). 2% *
As J decreases the energy 157

levels cross the zero energy
value. This is the intercept for T

the n-th Regge trajectory.
0.5

4 2 o0 2 4 t
Figure 6 = Regge trajectories.



Results

First Regge trajectory :

» Scenario | : For /s = 0.178 GeV~! and Aocp = 0.265 we
obtain an approximate linear trajectory consistent with the
Soft Pomeron

J(t) ~ 1.08 4+ 0.25¢. (70)

Donnachie and Landshoff 1992

» Scenario Il :For /; = 0.192 GeV ™! and Nocp = 0.292 we
find an approximate linear trajectory in agreement with the
lattice SU(3) result.

J(t) ~ 0.93 + 0.25¢. (71)
Meyer and Teper 2004

Second Regge trajectory :

J ~ 0.43+0.21t (Scenariol),
J(t) =~ 0.17+40.2¢t (ScenarioII) . (72)



Fit to p p total cross section
The contribution from the first two Regge poles in our model takes

the form
o= goSHO1 4 g 5RO (73)

Using go and g1 as parameters we ran fits to p p total cross section
data in the I’egion \/g > 10 GeV Olive et al (Particle Data Group) 2014 .

Total Cross Section

Our fit is shown in Figure 7.
The blue line is the fit of two @ I
Regge poles and the green line
is a fit with just one Regge
pole.

A second Regge pole inside the
range ~ 0.35 — 0.55 is “

necessary to get X2 < 1. oL v =

Figure 7 : A fit to p/3 total cross
section data using two Regge
poles.



Conclusions

Using IHQCD we have developed a 5-d Regge approach to
scattering process dominated by Soft Pomeron exchange.

Although inspired by the BPST approach, our model describe a
discrete set of Regge poles in constrast to the branch cut obtained
in the BPST approach.

Our models lacks of an UV description of spin J fields that should
match with perturbative QCD analysis of the dual operators. This
would allow a unified description of Soft and Hard Pomeron.

Analysis of the pp differential cross sections could lead to a better
understanding of the coefficients M(j,(t)).

Deep inelastic Scattering (DIS) is an interesting laboratory to
investigate the competition between Soft and Hard Pomeron at
very low Bjorken variable x (work in progress).
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