Strings at Dunes, Natal, July 4-6 2016

Lectures on Strings and Phenomenology

Anamaría Font V.

Universidad Central de Venezuela

Outline

- I. The Standard Model
- II. Strings
- III. Overview of String Phenomenology
- IV. Heterotic model building
- V. D-Brane constructions
- VI. Flux compactifications and moduli stabilization

Bibliography

- 1. String Theory and Particle Physics: An Introduction to String Phenomenology,
 - L.E. Ibáñez and A.M. Uranga, CUP 2012.
- 2. Basic Concepts of String Theory, R. Blumenhagen, D. Lüst and S. Theisen, Springer 2013.
- 3. String Theory, Vols. I, II, J. Polchinski, CUP 1998.
- 4. String Theory and M-theory: A Modern Introduction, K. Becker, M. Becker and J.H. Schwarz, CUP 2007.

I. The Standard Model

Basics

The SM describes electromagnetic, weak and strong interactions. It is a quantum field theory with gauge group

 W^{\pm} and Z massive due to spontaneous symmetry breaking, $m_{EW} \sim 10^2 \, {
m Gev}$

Matter particles: quarks + leptons in 3 families

$Q_L^i = \begin{pmatrix} U_L^i \\ D_L^i \end{pmatrix}$	D_R^i	U_R^i	$L^{i} = \begin{pmatrix} \nu_{L}^{i} \\ E_{L}^{i} \end{pmatrix}$	E_R^i	i = 1, 2, 3 left-handed
$({\bf 3},{\bf 2})_{rac{1}{6}}$	$(\overline{3},1)_{\frac{1}{3}}$	$(\overline{3},1)_{-\frac{2}{3}}$	$(1,2)_{-\frac{1}{2}}$	$(1, 1)_1$	Weyl spinors

Higgs scalar
$$H = \begin{pmatrix} H^0 \\ H^- \end{pmatrix}$$
 $(\mathbf{1}, \mathbf{2})_{-\frac{1}{2}}$

Higgs found at LHC, July 2012

 $m_H \sim 125 \, {\rm GeV}$

SM Lagrangian

Schematically

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\psi}^{i\dagger} \bar{\sigma}^{\mu} D_{\mu} \psi^{i}$$
$$+ |D_{\mu} H|^{2} - V(H) \quad \text{Higgs}$$
$$+ Y_{ij} \psi^{i} \psi^{j} H \quad \text{Yukawa interactions}$$

only terms of mass dimension \leq 4 \Rightarrow conservation of *B* and *L*

Features of the SM

- $\label{eq:stable} \begin{array}{ll} \triangleright \ \langle H \rangle \neq 0 \ \Rightarrow \ \text{electroweak spontaneous symmetry breaking (EW SSB)} \\ \\ SU(2) \times U(1)_Y \stackrel{\langle H \rangle}{\longrightarrow} U(1)_{\text{EM}} \end{array}$
- ▷ the fermionic spectrum is chiral, i.e. left-handed and right-handed fermions have different $SU(2) \times U(1)_Y$ quantum numbers
- ▷ chiral fermions \Rightarrow Dirac masses $m \bar{f}_R f_L + h.c.$ not gauge invariant
- fermion masses due to EW SSB and Yukawa couplings
- $\mathcal{L}_{Yuk} = Y_{ij}^L L^i E_R^j H + Y_{ij}^D Q_L^i D_R^j H + Y_{ij}^U Q_L^i U_R^j H^* + h.c.$

$$\mathcal{L}_{Yuk} \xrightarrow{\langle H \rangle} m_{ij}^L L^i E_R^j + m_{ij}^D Q_L^i D_R^j + m_{ij}^U Q_L^i U_R^j + h.c.$$

 $m = Y \langle H \rangle \stackrel{V_L m V_R^{\dagger}}{\longrightarrow} \operatorname{diag}(m_1, m_2, m_3)$

 \triangleright couplings of W^{\pm} to U- and D-quarks given by

 $V_{CKM} = V_L^U V_L^{D\,\dagger}$ Cabbibo-Kobayashi-Maskawa matrix

Neutrino masses

In the SM $m_{\nu} = 0$

but observed neutrino oscillations require non-zero tiny $m_{\nu} \sim 10^{-6} m_e.$

It can be explained introducing right-handed neutrinos ν_R transforming as $(1, 1)_0$ under $SU(3) \times SU(2) \times U(1)_Y$ and implementing the *see-saw* mechanism via

$$\mathcal{L}_{Yuk} \supset Y^{\nu}_{ij}L^{i}\nu^{j}_{R}H^{*} + M_{ij}\nu^{i}_{R}\nu^{j}_{R} + h.c.$$

with $M \gg Y^{\nu} \langle H \rangle$

Alternatively, without ν_R , it can be explained allowing lepton-number violating terms $\frac{h_{ij}}{M}L^iL^jH^*H^* + h.c.$

More open questions

 Many free parameters, e.g. three coupling constants, quark and lepton masses.
 In particular there is a flavor puzzle

observed values

quarks: $(m_u, m_c, m_t) \sim (0.003, 1.3, 170)$ GeV ; $(m_d, m_s, m_b) \sim (0.005, 0.1, 4)$ GeV

leptons: $(m_e, m_\mu, m_ au) \sim (0.0005, 0.1, 1.8)$ GeV

$$|V_{CKM}| \sim egin{pmatrix} {}^{
m d} & {}^{
m s} & {}^{
m b} & {}^{
m b} & {}^{
m c} & {$$

* large hierarchies $m_3 \gg m_2 \gg m_1$

* small mixings $V_{su} \sim \epsilon, \quad V_{bc} \sim \epsilon^2, \quad V_{bu} \sim \epsilon^3$

More open questions

 \triangleright EW hierarchy problem: Why is the Higgs mass m_H not modified by loop corrections ?

The problem is due to radiative corrections

and the cutoff scale Λ could be as large as the Planck mass.

Supersymmetry gives a solution. For every fermion q, I, \cdots there is a scalar $\tilde{q}, \tilde{l}, \cdots$ and the above loop diagram is cancelled by

MSSM

Minimal Supersymmetric Standard Model: extension of the SM with one additional Higgs and supersymmetric partners (gauginos, squarks, sleptons, Higgsinos).

There are dim 4 couplings violating B and L, e.g. $U_R D_R \tilde{D}$, $LL \tilde{E}$. Such couplings lead to fast proton decay. They can be forbidden imposing R-parity, a \mathbb{Z}_2 symmetry under which the SM particles are even and the partners are odd. R-parity ensures that the lightest supersymmetric particle is stable and is then a candidate for dark matter.

Since the superpartners have not been detected, supersymmetry must be broken above the electroweak scale but so far no evidence has been found the LHC.

More open questions

▷ Why $G_{SM} = SU(3) \times SU(2) \times U(1)_Y$ and the specific matter representations ?

Some simplification is achieved in Grand Unified Theories (GUTs).

The idea is that there is a bigger symmetry group $G_{\rm GUT} \supset G_{\rm SM}$ manifest at high energy scales $M_{GUT} \sim 10^{16}$ Gev.

The GUT idea is supported by the unification of gauge couplings g_a , obtained extrapolating the lower scale experimental values using the renormalization group equations,

$$rac{4\pi}{g_a^2(Q^2)} = rac{4\pi}{g_a^2(M^2)} + rac{b_a}{4\pi}\lograc{M^2}{Q^2}$$

The one-loop β -function coefficients b_a depend on the group and the matter content, e.g. for SU(3) $b_3 = -11 + \frac{4}{3}N_{gen}$.

Gauge coupling unification

Figure from String Theory and Particle Physics: An Introduction to String Phenomenology L.E.Ibáñez, A.M. Uranga

GUTs

 $G_{GUT} = SU(5)$ 1 family = **10** + **5** $SU(5) \supset SU(3) \times SU(2) \times U(1)_Y$ **10** = (**3**, **2**)_{1/6} + (**3**, **1**)_{-2/3} + (**1**, **1**)₁ **5** = (**3**, 1)_{1/3} + (**2**, 1)_{-1/2}

SU(5) broken to G_{SM} by Higgs in the adjoint 24.

For EW SSB the Higgs is also in $\overline{5}$. Quark and lepton masses from Yukawa couplings: $10 \cdot 10 \cdot \overline{5}$, $10 \cdot \overline{5} \cdot \overline{5}$

The triplets in the Higgs $\overline{\mathbf{5}}$ can mediate proton decay so they must be much more massive than the doublets. This is the doublet-triplet splitting problem.

Other GUTs

 $G_{GUT} = SO(10)$ 1 family + ν_R = **16** $SO(10) \supset SU(5) \times U(1)$ **16** = **10** + $\overline{5}$ + **1**

 $G_{\rm GUT} = E_6$

1 family + ν_R + exotics= 27

 $E_6 \supset SO(10) \times U(1)$

 ${\bf 27} = {\bf 16} + {\bf 10}_V + {\bf 1}$

 $\begin{aligned} &E_6 \supset SU(3) \times SU(3) \times SU(3) \\ &\mathbf{27} = (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) + (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3}) + (\mathbf{1}, \mathbf{3}, \overline{\mathbf{3}}) \end{aligned}$

More open questions

▷ How to include gravity ?

The scale at which gravitational interactions become important is the Planck mass

$$M_P = \sqrt{rac{\hbar c}{G_N}} \sim 10^{19}\,{
m Gev}$$

 G_N is the fundamental constant in Newton's law $F_{grav} = G_N \frac{m_1 m_2}{r^2}$. Since $m \sim E$, $G_N \sim 1/M_P^2$, the effective gravitational coupling is

 $\alpha_{grav} = (E/M_P)^2$ which grows quadratically with energy.

The perturbative expansion of gravity diverges.

An ultraviolet (UV) completion is needed \implies Strings ?!

Bosonic strings 1

action $S \propto T \cdot \text{area}$ of world-sheet

light-cone quantization: $X^0 \pm X^{D-1}$ non-dynamical

(due to reparametrization invariance)

 $X^i(au,\sigma), i=1,\cdots,D-2,$ satisfy wave equation

$$\frac{\partial^2 X'}{\partial \tau^2} = \frac{\partial^2 X'}{\partial \sigma^2} \Longrightarrow X^i(\tau, \sigma) = X^i_L(\tau + \sigma) + X^i_R(\tau - \sigma)$$

mode expansions:
$$X_{L}^{i} = \frac{x^{i}}{2} + \frac{p^{i}}{2p^{+}}(\tau + \sigma) + i \sum_{n \neq 0} \frac{\alpha_{n}^{i}}{n} e^{-in(\tau + \sigma)}$$
$$X_{R}^{i} = \frac{x^{i}}{2} + \frac{p^{i}}{2p^{+}}(\tau - \sigma) + i \sum_{n \neq 0} \frac{\tilde{\alpha}_{n}^{i}}{n} e^{-in(\tau - \sigma)}$$

$$\begin{split} & [\alpha_m^i, \alpha_n^j] = [\tilde{\alpha}_m^i, \tilde{\alpha}_n^j] = m \, \delta^{ij} \, \delta_{m, -n}, \quad [\alpha_m^i, \tilde{\alpha}_n^j] = 0 \quad \text{infinite sets of harmonic oscillators} \\ & \text{anhilation ops.} \quad \alpha_n^i, \tilde{\alpha}_n^i, \ n > 0, \qquad \text{creation ops.} \quad \alpha_{-n}^i, \tilde{\alpha}_{-n}^i, \ n > 0 \end{split}$$

Bosonic strings 2

vacuum: $|0\rangle$, $\alpha_n^i |0\rangle = \tilde{\alpha}_n^i |0\rangle = 0$, n > 0, $i = 1, \dots, (D-2)$ excited states: chains of $\alpha_{-n}^i, \tilde{\alpha}_{-n}^i, n > 0$, acting on $|0\rangle$

osc. numbers:
$$N = \sum_{n=1}^{\infty} \alpha_{-n}^{i} \alpha_{n}^{i}, \ \tilde{N} = \sum_{n=1}^{\infty} \tilde{\alpha}_{-n}^{i} \tilde{\alpha}_{n}^{i},$$
 level-matching: $N = \tilde{N}$

vacuum energies:
$$E_0 = \tilde{E}_0 = (D-2) \frac{1}{2} \sum_{n=1}^{\infty} n \xrightarrow{\text{regularization}} -\frac{(D-2)}{24}$$

mass formula: $\alpha' M^2 = 2(N + \tilde{N} + E_0 + \tilde{E}_0)$

spectrum: level 0: |0⟩, $\alpha' M^2 = 4E_0$, level 1: $\alpha_{-1}^i \tilde{\alpha}_{-1}^j |0⟩$, $\alpha' M^2 = 4(E_0 + 1)$, ...

Lorentz invariance $\implies E_0 = -1, D = 26$

so at level 1, M = 0 and $(D - 2)^2$ states fill rep. of massless little group SO(D - 2)

 $\alpha_{-1}^{i}\tilde{\alpha}_{-1}^{j}|\mathbf{0}\rangle \longrightarrow \text{graviton } G_{\mu\nu}, \text{ dilaton } \varphi, \text{ anti-symmetric tensor } B_{\mu\nu}$ $|0\rangle \longrightarrow \text{tachyon}$

Open strings and D-branes

 $\delta S = 0 \Rightarrow \text{ boundary conditions:} \quad \delta X_{\mu} \partial_{\sigma} X^{\mu} \Big|_{0}^{\pi} = 0$ Lorentz inv. in *D* dim. \Rightarrow Neumann (N) b.c. $\partial_{\sigma} X^{\mu} \Big|_{0,\pi} = 0, \ \mu = 0, \cdots, D-1$ b.c. mix L- and R-movers: $\alpha_{n}^{i} = \tilde{\alpha}_{n}^{i}, \ i = 1, \cdots, D-2$ spectrum: level 0: $|0\rangle, \ \alpha' M^{2} = E_{0}$, level 1: $\alpha_{-1}^{i} |0\rangle, \ \alpha' M^{2} = (E_{0} + 1), \dots$ Lorentz inv. $\Rightarrow E_{0} = -1, \ D = 26$, so $\alpha_{-1}^{i} |0\rangle$ massless, vector of SO(D-2) $\alpha_{-1}^{i} |0\rangle \rightarrow \text{gauge vector } A^{\mu}$

can consider fixed ends or Dirichlet (D) b.c. in some directions, i.e.

 X^{0}, \dots, X^{p} (N) space-time X^{p+1}, \dots, X^{25} (D) string endpoints lie on a D*p*-brane $\alpha_{-1}^{i}|0\rangle, i = 1, \dots, p-1$ massless vectors $\alpha_{-1}^{t}|0\rangle, t = p + 1, \dots, 25$ massless scalars D*p*-branes required by T-duality

Chan-Paton labels and D-branes

non-dynamical degrees of freedom at endpoints $a, b = 1, \cdots, N$ consistent with symmetries and interactions С states carry extra labels, e.g. $|0\rangle$ becomes $|ab\rangle$ а massless vectors: $\alpha_{-1}^{i} |ab\rangle \rightarrow A_{ab}^{\mu}$ gauge fields h Chan-Paton factors: $N \times N$ matrices $\lambda_{ab}^{\flat}, \, \flat = 1, \cdots, N^2$ h $\sum_{{\it a},{\it b}} \lambda^\flat_{{\it a}{\it b}}\, \alpha^i_{-1} |{\it a}{\it b}\rangle \longrightarrow {\it A}^\flat_\mu$ d U(N) gauge fields, for oriented strings $\sim \lambda_{ab}^1 \lambda_{bc}^2 \lambda_{cd}^3 \lambda_{da}^4$ $= \mathrm{Tr}\lambda^1\lambda^2\lambda^3\lambda^4$ a,b label D-branes at endpoints $12\rangle$ $|11\rangle$ 22 $|21\rangle$

Superstrings 1

extra world-sheet d.o.f. $\psi^{\mu}(\tau, \sigma)$ 2d fermions, $\mu = 0, 1, \cdots, D-1$ $X^{\mu}(\tau, \sigma)$ $\psi^{\mu}(au,\sigma+2\pi)=\mp\psi^{\mu}(au,\sigma)$; – Neveu-Schwarz(NS), + Ramond ψ^μ (τ, σ) $\partial \psi^i(\tau,\sigma) = 0 \Rightarrow \psi^i(\tau,\sigma) = \begin{pmatrix} \psi^i_R(\tau-\sigma) \\ \psi^i_L(\tau+\sigma) \end{pmatrix}, \quad i = 1, \cdots, D-2$ $\psi_{L}^{i} = \sum_{r} b_{r}^{i} e^{-ir(\tau+\sigma)}, \quad \{b_{r}^{i}, b_{s}^{j}\} = \delta^{ij} \delta_{r,-s}, \quad \text{NS: } r \in \mathbb{Z} + \frac{1}{2}, \text{ Ramond: } \vec{r} \in \mathbb{Z}$ Lorentz invariance $\implies D = 10$ massless little group SO(8) NS states: $|0\rangle$, $b_{-\frac{1}{2}}^{i}|0\rangle$ massless $\mathbf{8}_{v}, \cdots$ Ramond states: $|S\rangle, |C\rangle$ massless $\mathbf{8}_s, \mathbf{8}_c, \cdots \{\mathbf{b}_0^i, \mathbf{b}_0^j\} = \delta^{ij}$, Clifford algebra GSO projection: $(-1)^F = 1$, F = world-sheet fermion number $|0\rangle, |S\rangle$ projected out, full spectrum is supersymmetric in D = 10GSO projection is required by modular invariance

Superstrings 2 massless spectra

IIB left-right symmetric

$$\begin{split} [\mathbf{8}_{v} \oplus \mathbf{8}_{c}]_{L} \otimes [\mathbf{8}_{v} \oplus \mathbf{8}_{c}]_{R} &= (\mathbf{1} \oplus \mathbf{35}_{v} \oplus \mathbf{28}_{v}) \oplus (\mathbf{1} \oplus \mathbf{28}_{c} \oplus \mathbf{35}_{c}) \\ & \oplus (\mathbf{8}_{s} \oplus \mathbf{56}_{s} \oplus \mathbf{8}_{s} \oplus \mathbf{56}_{s}) \\ & \text{massless fields of } \mathcal{N} = 2 \text{ IIB supergravity (chiral)} \end{split}$$

$$\{\varphi, G_{\mu\nu}, B_{\mu\nu}\} + \{a, C_{\mu\nu}, C_{\mu\nu\alpha\beta}\} + \{\Psi_1, \Psi_1^{\mu}, \Psi_2, \Psi_2^{\mu}\}$$
anomaly-free RR 0-,2-,4-forms

IIA

$$\begin{split} [\mathbf{8}_{v} \oplus \mathbf{8}_{c}]_{L} \otimes [\mathbf{8}_{v} \oplus \mathbf{8}_{s}]_{R} &= (\mathbf{1} \oplus \mathbf{35}_{v} \oplus \mathbf{28}_{v}) \oplus (\mathbf{8}_{v} \oplus \mathbf{56}_{v}) \\ & \oplus (\mathbf{8}_{s} \oplus \mathbf{56}_{s} \oplus \mathbf{8}_{c} \oplus \mathbf{56}_{c}) \\ & \text{massless fields of } \mathcal{N} = 2 \text{ IIA supergravity (non-chiral)} \end{split}$$

$$\{\varphi, \mathcal{G}_{\mu\nu}, \mathcal{B}_{\mu\nu}\} + \{\mathcal{C}_{\mu}, \mathcal{C}_{\mu\nu\alpha}\} + \{\Psi^+, \Psi^+_{\mu}, \Psi^-, \Psi^-_{\mu}\}$$
RR 1-,3-forms

IIA supergravity can be obtained from circle compactification of 11-dimensional supergravity with fields $\{G_{MN}, C_{MN}, \Psi_M\}$ massless fields of M-theory

Type I and IIB orientifolds closed sector

 \rhd type I is a theory of *unoriented* closed and open superstrings, it can be described as a quotient of IIB by world-sheet parity Ω

ho Ω : $\sigma \rightarrow (2\pi - \sigma)$, exchanges left and right modes, reverses orientation

 \triangleright IIB is symmetric under Ω , can take quotient type IIB/ Ω "orientifold"

 \triangleright projection $\frac{1}{2}(1+\Omega)$ gives invariant states, introduces unoriented topologies

unoriented world-sheets

e.g. Klein bottle

generic world-sheet is sphere with g handles, n_b boundaries and n_c crosscaps

Euler characteristic: $\chi_E = 2 - 2g - n_b - n_c$

crosscap = disk with opposite sides identified = \mathbf{RP}_2

Klein bottle is sphere with two crosscaps, has $\chi_E = 0$, appears at 1-loop

Type I and IIB orientifolds closed sector

 \triangleright type I is a theory of *unoriented* closed and open superstrings, it can be described as a quotient of IIB by world-sheet parity Ω

 $\triangleright \Omega : \sigma \rightarrow (2\pi - \sigma)$, exchanges left and right modes, reverses orientation

- \triangleright IIB is symmetric under Ω , can take quotient type IIB/ Ω "orientifold"
- \triangleright projection $\frac{1}{2}(1+\Omega)$ gives invariant states, introduces unoriented topologies
- $\succ \text{ massless states: NS-NS: } \mathbf{8}_{\nu} \otimes \mathbf{8}_{\nu}|_{S} \longrightarrow \varphi, G_{\mu\nu}, \quad \text{R-R: } \mathbf{8}_{c} \otimes \mathbf{8}_{c}|_{A} \longrightarrow C_{\mu\nu}$ NS-R + R-NS: $\mathbf{8}_{\nu} \otimes \mathbf{8}_{c} + \mathbf{8}_{c} \otimes \mathbf{8}_{\nu} \longrightarrow \Psi, \Psi_{\mu}$

 $\mathcal{N} = 1, D = 10$ supergravity has gravitational anomaly

Type I and IIB orientifolds closed sector

> at string level anomaly due to divergence in 1-loop Klein bottle amplitude

 $t \rightarrow 0$ in 1-loop $\equiv s \rightarrow \infty$ in tree channel

divergence due to tadpole of massless states

tadpoles

▷ in field theory: ● 1-point vertex

particle appears/disappears from/into the vacuum, so at momentum $k^{\mu} = 0$ $\sim \frac{1}{k^2 + M^2}$, $\frac{k^{\mu}=0}{M=0} \propto$ divergence due to tadpole of massless particle

▷ divergence in Klein bottle (KB) amplitude due to crosscap tadpole ▷ by Lorentz invariance the emitted massless states are the NS-NS $G_{\mu\nu}$ or φ , or the R-R 10-form C_{10} , which is non-propagating since $dC_{10} = 0$ in D = 10

▷ by supersymmetry the KB amplitude is zero but R-R tadpoles must cancel

in effective action C_{10} enters *only* in $Q_{crosscap} \int_{M_{10}} C_{10}$ eq. of motion for C_{10} would imply $Q_{crosscap} = 0$, but divergence in the R-R piece of the amplitude means $Q_{crosscap} \neq 0$ solution: C_{10} has other sources, naturally D9-branes \longrightarrow open strings

Type I and IIB orientifolds open sector $a - b = 1, \dots, N$

 \triangleright Neumann boundary conditions in all directions $\longrightarrow N$ D9-branes

$$\triangleright$$
 massless states: NS: $b_{-\frac{1}{2}}^{i}|ab\rangle\lambda_{ab}$, R: $|C,ab\rangle\lambda_{ab}$, $\mathbf{8}_{\nu}\oplus\mathbf{8}_{c}\longrightarrow A_{\mu}, \chi$

 $\mathcal{N} = 1, D = 10$ super Yang-Mills, gauge group U(N) for oriented open strings anomalous

 \triangleright projection $\frac{1}{2}(1+\Omega)$ gives invariant states, introduces unoriented topologies

 $\succ \ \Omega \text{ action: } b_{-\frac{1}{2}}^{i} |ab\rangle \rightarrow -b_{-\frac{1}{2}}^{i} |ab\rangle, \quad \lambda \rightarrow \gamma_{\Omega} \lambda^{T} \gamma_{\Omega}^{-1}, \quad a \leftrightarrow b$ $\gamma_{\Omega} \text{ is embedding of } \Omega \text{ in Chan-Paton factors, } \qquad \Omega^{2} = 1 \Rightarrow \gamma_{\Omega}^{T} = \pm \gamma_{\Omega}$

 \triangleright massless invariant states: if $\gamma_{\Omega} = \gamma_{\Omega}^{T} = \mathbf{1}_{N} \Rightarrow \lambda^{T} = -\lambda \Rightarrow SO(N)$ gauge group

$$\text{if } \gamma_{\Omega} = -\gamma_{\Omega}^{T} = i \begin{pmatrix} 0 & \mathbf{1}_{\frac{N}{2}} \\ -\mathbf{1}_{\frac{N}{2}} & 0 \end{pmatrix} \Rightarrow USp(N) \text{ gauge group } (N \text{ even})$$

in any case, $\mathcal{N}=1, D=10$ super Yang-Mills anomalous

Type I and IIB orientifolds open sector

> anomaly due to divergences in 1-loop cylinder and Moebius strip amplitudes

t
ightarrow 0 in 1-loop $\equiv s
ightarrow \infty$ in tree channel

divergences due to tadpoles of massless states

cylinder, Moebius and Klein tadpoles cancel for $\gamma_{\Omega}^{T} = \gamma_{\Omega}, \ N = 32$

massless fields of N = 1, D = 10 supergravity + SO(32) super Yang-Mills anomaly cancelled by Green-Schwarz mechanism

tadpole cancellation

 $\,\triangleright\,$ divergences due to crosscap and disk R-R tadpoles

ightarrow in effective action $(Q_{crosscap} + NQ_{disk}) \int_{M_{10}} C_{10}$

eq. of motion for $C_{10} \Longrightarrow Q_{crosscap} + NQ_{disk} = 0$

charges computed from amplitudes

 $\left(Q_{crosscap} + NQ_{disk}\right)^2 = 32^2 - 64 \operatorname{Tr} \gamma_{\Omega}^{-1} \gamma_{\Omega}^{T} + N^2 = 0 \Rightarrow \quad \gamma_{\Omega}^{T} = \gamma_{\Omega}, \ N = 32$

 $Q_{disk} = 1$, $Q_{crosscap} = -32$, i.e. $Q_{D9} = 1$, $Q_{O9} = -32$ orientifold 9-plane C_{10}

Heterotic strings 1

world-sheet degrees of freedom (fermionic formulation *SO*(32))

right R

 $X^{\mu}_{\scriptscriptstyle P}$, ψ^{μ} 2d fermions $\mu = 0, \cdots, 9$, $i = 1, \cdots, 8$ light-cone left L X^{μ}_{I} , λ^{A} 2d fermions $A = 1, \cdots, 32$ $\psi^{\mu}(\tau, \sigma + 2\pi) = \mp \psi^{\mu}(\tau, \sigma)$; $\lambda^{A}(\tau, \sigma + 2\pi) = \mp \lambda^{A}(\tau, \sigma)$; - Neveu-Schwarz(NS), + Ramond massless states $|R\rangle \otimes |L\rangle$ NS 🛞 NS $M_R^2 = \tilde{N}_X + \tilde{N}_{\psi} - \frac{1}{2}$ $egin{array}{c|c} b^i_{-rac{1}{2}} \left| 0
ight
angle \ \otimes \ \lambda^A_{-rac{1}{2}} \,\lambda^B_{-rac{1}{2}} \left| 0
ight
angle \end{array}$ e.g. $M_L^2 = N_X + N_\lambda - 1$

496 gauge vectors of SO(32) in 10d (gauginos in Ramond \otimes NS)

Heterotic strings 2 Full massless spectrum $R \otimes L$ in light cone $[(\mathbf{8}_{v} \oplus \mathbf{8}_{s}, \mathbf{1})]_{R} \otimes [(\mathbf{8}_{v}, \mathbf{1}) \oplus (\mathbf{1}, \mathbf{496})]_{L}$ $= (1 \oplus 35_{\nu} \oplus 28_{\nu} + 8_{c} + 56_{s}, 1) \oplus (8_{\nu} \oplus 8_{s}, 496)$ massless fields $\{\varphi, G_{\mu\nu}, B_{\mu\nu}, \Psi, \Psi_{\mu}\} \oplus \{A^{\mu}_{\nu}, \chi_{k}\} \quad k = 1, \dots, \dim G_{het}$ D = 10, N = 1 supergravity \oplus super Yang-Mills G_{het} $G_{\text{het}} = E_8 \times E_8, SO(32)$ Gauge and gravitational anomalies are cancelled by the Green-Schwarz mechanism

Dualities

III. String Phenomenology overview

Aim

- Study how to embed the SM in string/M-theory and address the open questions.
 - Identify classes of constructions that realize characteristic features: chirality, family replication, EW SB, flavor structure, ...
 - Extract generic properties and look for mechanisms behind.
 - Obtain and analyze explicit models.

A main difference with conventional model building is that after specifying the starting setup, for instance the internal space or the D-brane content, the particle spectrum and the interactions are fixed.

$\mathsf{String}/\mathsf{M}\text{-}\mathsf{theory}$

To begin we have the 10d string theories: $\textit{E}_8 \times \textit{E}_8$ heterotic,

SO(32) heterotic , type I, type IIA and type IIB.

There is also the 11d M-theory.

They are now thought to be all manifestations of one theory.

A brief history

In the period 1985-1995 attention mostly focused on compactifications of the $E_8 \times E_8$ heterotic.

In this theory gauge multiplets are already present in 10d and give rise to e.g. E_6 GUTs and chiral fermions in 4d.

A brief history

After the advent of D-branes in 1995 it was understood how the SM could be reproduced in the context of type I and type II strings.

At present all corners of the underlying theory are being explored.

Figures from Sumary Talk, String Pheno 2014 by L.E.Ibáñez

Classes of models

Preview

In these lectures we will study realizations of the SM via:

- Compactification of the heterotic string on orbifolds and Calabi-Yau (CY) manifolds.
- D-brane constructions.

Some generic properties that are found:

- Chiral fermionic spectrum.
- Family replication.
- Gauge coupling unification, with or without GUT.
- Existence of moduli, i.e. massless scalars whose undetermined vacuum expectation values (vevs) give coupling constants.

Compactifications of the heterotic string

Kaluza-Klein idea: $\mathcal{M}_{10} = \mathcal{M}_4 \times K_6$

1985

Gauge vectors in $10d : A_M^k$,

 $M=0,\ldots,9,\quad k=1,\ldots, {\sf dim}\; G_{\sf het},\quad G_{\sf het}=E_8 imes E_8\; {\sf or}\; SO(32)$

Compactifying on $K_6 = T^6$ gives fields in 4*d*:

 $A^k_\mu, \ \mu=0,\ldots,3$ gauge vectors $\oplus A^k_m, \ m=4,\ldots,9$ 6 charged scalars 10d gauginos give susy partners in 4d

 $\mathcal{N}=4$ theory, non-chiral fermions

This problem is avoided if K_6 has SU(3) holonomy as in CYs and orbifolds.

D-branes and gauge theories

degrees of freedom:

massless states: gauge multiplet, charged multiplets

example: susy Yang-Mills in D7-branes

 $b_{-\frac{1}{2}}^{i}|0\rangle$, $i = 1, \dots, 6$, $b_{-\frac{1}{2}}^{8}|0\rangle$, $b_{-\frac{1}{2}}^{9}|0\rangle$ massless Neveu-Schwarz states fields A_{M} , Φ , en 8 dim (Φ : complex scalar \sim transverse degrees of freedom) gauginos λ \Leftarrow massless Ramond states similar: 4d, $\mathcal{N} = 4$ susy Yang-Mills in D3-branes

$$U(1) \times U(1) \xrightarrow{y=0} U(2)$$

Higgs mechanism = brane separation

 $\Phi \sim y$ (transverse d.o.f.) $\langle \Phi \rangle \neq 0 \iff y \neq 0$

Global vs. local models

- Heterotic models are global. Full knowledge of the internal space is needed. All phenomenological questions have to be addressed at once.
- D-branes allow for localized SM. Questions like gauge group, chiral spectrum, Yukawa couplings, can be addressed one by one, i.e. in a bottom-up approach. In the end it is necessary to embed in full compactification.

The string scale $M_s = 1/\sqrt{lpha'}$ and $M_P \sim 10^{19} {
m GeV}$

In perturbative heterotic

effective action in 10d

$$S_{10} \sim M_s^8 \int d^{10}x \sqrt{-G} e^{-2\varphi} \left(\mathcal{R} + M_s^{-2} F_{MN}^2\right) + \cdots$$

compactification $\mathcal{M}_{10} = \mathcal{M}_4 \times \textit{K}_6~$ gives effective action in 4d

$$S_4 \sim \int d^4x \sqrt{-g} \left(M_P^2 \mathcal{R}_4 + \frac{1}{g_{YM}^2} F_{\mu\nu}^2 \right) + \cdots$$

$$M_P^2 \sim {M_s^8 V_6 \over g_s^2}$$
 ; ${1 \over g_{
m YM}^2} \sim {M_s^6 V_6 \over g_s^2}$

 $V_6 = {
m Vol}(K_6) \;, \, g_s = e^{\langle arphi
angle}$

 $M_s \sim g_{
m YM} M_P \sim 10^{18} {
m GeV}$

In D-brane constructions

Recall that on a D*p*-brane gauge fields propagate only on the (p+1)-dim world-surface, so they must wrap only a (p-3)-cycle in K_6 . The relation between $g_{\rm YM}$ and M_s involves only the volume of this cycle. E.g. for a D3-brane

1

1

$$\frac{1}{g_{YM}^2} \sim \frac{1}{g_s}$$
As before $M_P^2 \sim \frac{M_s^8 V_6}{g_s^2}$. Then, for a D3-brane
$$M_s^8 \sim \frac{M_P^2 g_{YM}^4}{V_6}$$

Now it is possible $M_s \ll M_P$ by having large extra dimensions transverse to the brane.

IV. Heterotic model building

Compactification on Calabi-Yau (CY) manifolds

Recall fields in 10d

 $\left\{\varphi, \, \mathcal{G}_{MN}, \, \mathcal{B}_{MN}, \Psi, \Psi_M\right\} \ \oplus \ \left\{\mathcal{A}_{a}^{M}, \, \chi_{a}\right\}, \ {}_{a=1, \ldots, \, \text{dim} \, \mathcal{G}_{\text{het}}} \ {}_{\mathsf{G}_{\text{het}}} = {}_{\mathsf{E}_8 \times {}_{\mathsf{E}_8}, \, \mathsf{SO}(32)$

Compactification $\mathcal{M}_{10} = \mathcal{M}_4 \times K_6$ $ds^2 = G_{\mu\nu} dx^{\mu} dx^{\nu} + G_{mn} dx^m dx^n$ Supersymmetry in $4d \Rightarrow D_M \epsilon = 0 \Rightarrow R_{MN} = 0$ $R_{\mu\nu} = 0, R_{mn} = 0$ K_6 Ricci-flat \Rightarrow holonomy SU(3) $D_m \eta = 0$ K_6 is CY Furthermore, K_6 is Kähler (complex with special property of the metric) $x^m \longrightarrow z^i, \overline{z}^{\overline{i}}$ k-forms: $\omega_{m_1...m_k}$ (p,q)-forms: $\omega_{i_1...i_p\overline{j_1}...\overline{j_q}}$ Betti numbers $b_k = \#$ closed (mod exact) k-forms = # harmonic k-forms Hodge numbers

 $h^{p,q} = \#$ closed (mod exact) (p,q)-forms = # harmonic (p,q)-forms

$$b_k = \sum_{p=0}^k h^{p,k-p}$$

Hodge diamond of a CY X

$$\begin{array}{c|c} h^{0,0} = 1 \\ h^{1,0} = 0 \\ h^{2,0} = 0 \\ h^{2,0} = 0 \\ h^{3,0} = 1 \\ h^{2,1} \\ h^{3,1} = 0 \\ h^{2,2} = h^{1,1} \\ h^{1,2} = h^{2,1} \\ h^{0,3} = 1 \\ h^{3,3} = 1 \\ h^{3,2} = 0 \\ h^{2,3} = 0 \\ h^{2,3} = 0 \\ h^{3,3} = 1 \\ X \\ complex conjugation \\ \end{array}$$

 $\chi = 2(h^{1,1} - h^{1,2})$ Euler characteristic of X

Hodge plot

Figure 1: The Hodge plot for the list or reflexive 4-polytopes. The Euler number $\chi = 2 (h^{1,1} - h^{1,2})$ is plotted against the height $y = h^{1,1} + h^{1,2}$. The oblique axes correspond to $h^{1,1} = 0$ and $h^{1,2} = 0$.

Taken from arXiv:1207.4792, based on the Kreuzer-Skarke list

Orbifolds

 $\mathcal{O}=\mathcal{M}/\Gamma \quad ; \quad \ \ \Gamma=\text{discrete group of isometries of } \mathcal{M}$

T^2/\mathbb{Z}_2 orbifold

$$\mathsf{T}^2 = \mathbb{R}^2 / \Lambda, \quad \Lambda = SO(4)$$
 root lattice
 $\mathbb{Z}_2 = \{\mathbf{1}, \theta\}, \quad \theta = ext{rotation by } \pi$

 $\bullet:\mathsf{fixed}\ \mathsf{points}\ \longrightarrow\ \mathsf{singularities}$

* Orbifold projection: physical states are invariant under Γ

Both conditions are required by modular invariance

Toroidal orbifolds T^6/\mathbb{Z}_N

$$\mathsf{T}^6 = \mathbb{R}^6 / \Lambda, \quad \mathbb{Z}_N = \{\mathbf{1}, heta, \dots, heta^{N-1}\}, \; heta \in \mathcal{SO}(6)$$

crystallographic action: $W \in \Lambda$, $\theta W \in \Lambda$

 $\theta^N = \mathbf{1} \Rightarrow \theta$ has eigenvalues $e^{\pm 2\pi i v_i}$, $v_i = \frac{k_i}{N}$, $k_i \in \mathbb{Z}$, i = 1, 2, 3

complex internal coordinates
$$Z^i=rac{1}{\sqrt{2}}\left(X^{2i+2}+iX^{2i+3}
ight), \quad heta Z^i=e^{2\pi i v_i}Z^i$$

 $\theta = \exp 2\pi i (v_1 J_{12} + v_2 J_{34} + v_3 J_{56}), J_{2i-1,2i}: SO(6)$ Cartan generator

action on spinor representation

$$heta|\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2}\rangle = e^{i\pi(\pm v_1\pm v_2\pm v_3)}|\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2}\rangle$$

supersymmetry $\Rightarrow \pm v_1 \pm v_2 \pm v_3 = even$

 $\theta^N = \mathbf{1}$ acting on fermions $\Rightarrow N(v_1 + v_2 + v_3) = even$

Example: T^6/\mathbb{Z}_3 orbifold

$$\begin{split} \mathsf{T}^6 &= \mathbb{R}^6 / \Lambda, \quad \Lambda = \text{product of three } SU(3) \text{ root lattices} \\ \mathbb{Z}_3 &= \{\mathbf{1}, \theta, \theta^2\}, \quad \theta = \text{rotation by } \frac{2\pi}{3} \text{ in each sub-lattice} \\ (v_1, v_2, v_3) &= (\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}) \end{split}$$

 \bullet, \circ, \times : fixed points

altogether $3 \times 3 \times 3 = 27$ fixed points

Action on 2d fermions

right movers $\Psi^{i} = \frac{1}{\sqrt{2}} \left(\psi^{2i+2} + i\psi^{2i+3} \right), \qquad \Psi^{i}(\tau, \sigma + 2\pi) = \mp e^{2\pi i v_{i}} \Psi^{i}(\tau, \sigma + 2\pi)$ left movers give gauge degrees of freedom $\lambda_{+}^{A} = \frac{1}{\sqrt{2}} \left(\lambda^{2A-1} \pm i\lambda^{2A} \right), \qquad A = 1, \dots, 16$

for ${\it E}_8 \times {\it E}_8$ divide in two groups: $~\lambda^{\cal A}_\pm,~\lambda^{\prime A}_\pm,~{\it A}=1,\ldots,8$

Modular invariance requires that λ^A transforms under θ . The action can be realized by rotation γ with eigenvalues $e^{\pm 2\pi i V_A}$, $V_A = \frac{K_A}{N}$, $K_A \in \mathbb{Z}$.

 $\gamma^{N} = \mathbf{1} \Rightarrow N(V_{1} + \ldots + V_{16}) = even$

Gauge shift vector: $V = (V_1, \ldots, V_8) \times (V_1', \ldots, V_8'), \ E_8 \times E_8$

Modular invariance (level-matching) further requires $N(V^2 - v^2) =$ even Standard Embedding: $V = (v_1, v_2, v_3, 0, ..., 0) \times (0, ..., 0)$

V. D-brane constructions

D-branes and the SM

- D-branes support gauge theories with gauge group U(N) so its natural to use them to realize the SM group $SU(3) \times SU(2) \times U(1)$.
- Chirality can be obtained via:
- * Branes at singularities.
- * Intersecting branes.
- * Magnetized branes.

In these lectures we will describe two simple examples that can be worked out using basic tools.

Example 1: D3-branes at a $\mathbb{C}^3/\mathbb{Z}_3$ singularity

Example 2: Intersecting D6-branes

Chap. 21, A First Course in String Theory, B. Zwiebach, CUP 2009.

VI. Flux compactifications and moduli stabilization

Moduli

Moduli are free parameters of the compactification that change the size and shape of the internal manifold but not its topology. E.g.:

In circle compactification the radius R is a modulus.

In T^2 compactification there is one Kähler modulus (*T*) and one complex structure modulus (*U*).

$$U = -i \frac{R_y}{R_x} e^{i\theta}, \quad T = R_x R_y \sin \theta + i B_{xy}$$
 (in heterotic)

In 4d the moduli correspond to massless scalars Φ , also called moduli, with a flat potential.

Another important example is the dilaton φ . (Recall that the effective action is invariant under $\varphi \rightarrow \varphi + \text{const.}$)

Stabilization

It is necessary to generate a potential and give masses to the moduli.

- Massless moduli would mediate unphysical long-range fifth forces.
- Vacuum expectation values (vevs) of moduli must be fixed or "stabilized". Coupling constants in the low-energy theory depend on these vevs.

Moduli stabilization can be achieved in flux compactifications

Fluxes

Fluxes are non-trivial backgrounds for YM, NSNS and RR field strengths.

e.g. Maxwell flux

$$\int_{\Pi_2} \langle \mathcal{F}_2 \rangle = g \neq 0$$

e.g. NSNS flux

$$\int_{\Pi_3} \langle H_3 \rangle = h \neq 0 \qquad (H_3 = dB_2)$$

Fluxes thread non-trivial cycles Π_n in the extra dimensions.

Flux induced potentials

$$S_{10} = M_s^8 \int d^{10}x \sqrt{-G} \left\{ e^{-2\varphi} \left[\mathcal{R} - H_{MNP}^2 \right] + \cdots \right\}$$

$$\int_{\Pi_3} \langle H_3 \rangle = h \qquad \Rightarrow \qquad V \sim \frac{h^2 e^{2\varphi}}{R^{12}} \quad \text{potential in } 4d$$

 $\operatorname{vol}(K_6) = R^6$