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I. The Standard Model
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Basics
The SM describes electromagnetic, weak and strong interactions.
It is a quantum field theory with gauge group

SU(3)︸ ︷︷ ︸
gluons G a

µ

× SU(2)× U(1)Y︸ ︷︷ ︸
W±µ , Zµ, Aµgauge bosons =⇒

(force carriers)

W± and Z massive due to spontaneous symmetry breaking, mEW ∼ 102 Gev

Matter particles: quarks + leptons in 3 families

Q i
L =

(
U i
L

D i
L

)
D i

R U i
R Li =

(
ν iL
E i
L

)
E i
R

(3, 2) 1
6

(3, 1) 1
3

(3, 1)− 2
3

(1, 2)− 1
2

(1, 1)1

i = 1, 2, 3

left-handed

Weyl spinors

Higgs scalar H =

(
H0

H−

)
(1, 2)− 1

2
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Higgs found at LHC, July 2012
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SM Lagrangian

Schematically

L =− 1

4
FµνF

µν + iψ̄i †σ̄µDµψ
i

+ |DµH|2 − V (H) Higgs

+ Yijψ
iψjH Yukawa interactions

only terms of mass dimension ≤ 4 ⇒ conservation of B and L
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Features of the SM

B 〈H〉 6= 0 ⇒ electroweak spontaneous symmetry breaking (EW SSB)

SU(2)× U(1)Y
〈H〉−→ U(1)EM

B the fermionic spectrum is chiral, i.e. left-handed and right-handed

fermions have different SU(2)× U(1)Y quantum numbers

B chiral fermions ⇒ Dirac masses m f̄R fL + h.c. not gauge invariant

B fermion masses due to EW SSB and Yukawa couplings

LYuk = Y L
ij L

iE j
RH + Y D

ij Q
i
LD

j
RH + Y U

ij Q
i
LU

j
RH
∗ + h.c.

LYuk
〈H〉−→ mL

ij L
iE j

R + mD
ij Q

i
LD

j
R + mU

ij Q
i
LU

j
R + h.c.

m = Y 〈H〉
VLmV †

R−→ diag(m1,m2,m3)

B couplings of W± to U- and D-quarks given by

VCKM = V U
L V D †

L Cabbibo-Kobayashi-Maskawa matrix
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Neutrino masses

In the SM mν = 0

but observed neutrino oscillations require non-zero tiny
mν ∼ 10−6me .

It can be explained introducing right-handed neutrinos νR

transforming as (1, 1)0 under SU(3)× SU(2)× U(1)Y

and implementing the see-saw mechanism via

LYuk ⊃ Y ν
ij L

iν jRH
∗ + Mijν

i
Rν

j
R + h.c.

with M � Y ν〈H〉

Alternatively, without νR , it can be explained allowing

lepton-number violating terms hij
M LiLjH∗H∗ + h.c.
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More open questions

B Many free parameters, e.g. three coupling constants, quark and
lepton masses.
In particular there is a flavor puzzle

observed values

quarks: (mu,mc ,mt) ∼ (0.003, 1.3, 170) GeV ; (md ,ms ,mb) ∼ (0.005, 0.1, 4) GeV

leptons: (me ,mµ,mτ ) ∼ (0.0005, 0.1, 1.8) GeV

|VCKM | ∼

d s b

0.97 0.23 0.004 u

0.23 0.97 0.04 c

0.008 0.04 0.99 t

∗ large hierarchies m3 ≫ m2 � m1

∗ small mixings Vsu ∼ ε, Vbc ∼ ε2, Vbu ∼ ε3
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More open questions

B EW hierarchy problem: Why is the Higgs mass mH not modified
by loop corrections ?

The problem is due to radiative corrections

q, l, ...

6m H
2

H H
~ 2h  R2

and the cutoff scale Λ could be as large as the Planck mass.

Supersymmetry gives a solution. For every fermion q, l , · · · there is
a scalar q̃, l̃ , · · · and the above loop diagram is cancelled by

~ ~
q, l, ...

H H
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MSSM

Minimal Supersymmetric Standard Model:

extension of the SM with one additional Higgs and
supersymmetric partners (gauginos, squarks, sleptons, Higgsinos).

There are dim 4 couplings violating B and L, e.g. URDRD̃, LLẼ .
Such couplings lead to fast proton decay. They can be forbidden
imposing R-parity, a Z2 symmetry under which the SM particles
are even and the partners are odd. R-parity ensures that the
lightest supersymmetric particle is stable and is then a candidate
for dark matter.

Since the superpartners have not been detected, supersymmetry
must be broken above the electroweak scale but so far no evidence
has been found the LHC.
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More open questions

B Why GSM = SU(3)× SU(2)× U(1)Y and the specific matter
representations ?

Some simplification is achieved in Grand Unified Theories (GUTs).

The idea is that there is a bigger symmetry group GGUT ⊃ GSM

manifest at high energy scales MGUT ∼ 1016 Gev.

The GUT idea is supported by the unification of gauge couplings
ga, obtained extrapolating the lower scale experimental values
using the renormalization group equations,

4π

g2
a (Q2)

=
4π

g2
a (M2)

+
ba
4π

log
M2

Q2

The one-loop β-function coefficients ba depend on the group and
the matter content, e.g. for SU(3) b3 = −11 + 4

3Ngen.
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Gauge coupling unification

Figure from String Theory and Particle Physics: An Introduction to String Phenomenology L.E.Ibáñez, A.M. Uranga
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GUTs

GGUT = SU(5)

1 family = 10 + 5

SU(5) ⊃ SU(3)× SU(2)× U(1)Y

10 = (3, 2) 1
6

+ (3, 1)− 2
3

+ (1, 1)1

5 = (3, 1) 1
3

+ (2, 1)− 1
2

SU(5) broken to GSM by Higgs in the adjoint 24.

For EW SSB the Higgs is also in 5. Quark and lepton masses from

Yukawa couplings: 10 · 10 · 5 , 10 · 5 · 5

The triplets in the Higgs 5 can mediate proton decay so they must
be much more massive than the doublets.This is the doublet-triplet
splitting problem.
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Other GUTs

GGUT = SO(10)

1 family + νR= 16

SO(10) ⊃ SU(5)× U(1)

16 = 10 + 5 + 1

GGUT = E6

1 family + νR + exotics= 27

E6 ⊃ SO(10)× U(1)

27 = 16 + 10V + 1

E6 ⊃ SU(3)× SU(3)× SU(3)

27 = (3, 3, 1) + (3, 1, 3) + (1, 3, 3)
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More open questions

B How to include gravity ?

The scale at which gravitational interactions become important is
the Planck mass

MP =

√
~c
GN
∼ 1019 Gev

GN is the fundamental constant in Newton’s law Fgrav = GN
m1m2

r2
.

Since m ∼ E , GN ∼ 1/M2
P , the effective gravitational coupling is

αgrav = (E/MP)2 which grows quadratically with energy.

The perturbative expansion of gravity diverges.

An ultraviolet (UV) completion is needed =⇒ Strings ?!
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II. Strings
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Quick look/reminder

B extended objects open strings closed strings

string tension: T = 1/2πα′ string length, mass: `s ∼
√
α′, Ms ∼ 1/

√
α′

B vibration modes ⇒ particles graviton Gµν always in spectrum

B interactions gs = e〈ϕ〉, ϕ :dilaton

B perturbative expansion

no UV divergences

τ2 → 0 excluded by

modular invariance
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Bosonic strings 1

action S ∝ T · area of world-sheet

light-cone quantization: X 0 ± XD−1 non-dynamical

(due to reparametrization invariance)

X i (τ, σ), i = 1, · · · ,D − 2, satisfy wave equation

∂2X i

∂τ 2
=
∂2X i

∂σ2
=⇒ X i (τ, σ) = X i

L(τ + σ) + X i
R(τ − σ)

mode expansions: X i
L =

x i

2
+

pi

2p+
(τ + σ) + i

∑
n 6=0

αi
n

n
e−in(τ+σ)

X i
R =

x i

2
+

pi

2p+
(τ − σ) + i

∑
n 6=0

α̃i
n

n
e−in(τ−σ)

[αi
m, α

j
n] = [α̃i

m, α̃
j
n] = m δij δm,−n, [αi

m, α̃
j
n] = 0 infinite sets of harmonic oscillators

anhilation ops. αi
n, α̃

i
n, n > 0, creation ops. αi

−n, α̃
i
−n, n > 0
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Bosonic strings 2

vacuum: |0〉, αi
n|0〉 = α̃i

n|0〉 = 0, n > 0, i = 1, · · · , (D − 2)

excited states: chains of αi
−n, α̃

i
−n, n > 0, acting on |0〉

osc. numbers: N =
∞∑
n=1

αi
−nα

i
n, Ñ =

∞∑
n=1

α̃i
−nα̃

i
n, level-matching: N = Ñ

vacuum energies: E0 = Ẽ0= (D − 2)
1

2

∞∑
n=1

n
regularization−−−−−−−→ − (D − 2)

24

mass formula: α′M2 = 2(N + Ñ + E0 + Ẽ0)

spectrum: level 0: |0〉, α′M2 =4E0, level 1: αi
−1α̃

j
−1|0〉, α

′M2 =4(E0 + 1), . . .

Lorentz invariance =⇒ E0 = −1, D = 26

so at level 1, M = 0 and (D − 2)2 states fill rep. of massless little group SO(D − 2)

αi
−1α̃

j
−1|0〉 −→ graviton Gµν , dilaton ϕ, anti-symmetric tensor Bµν

|0〉 −→ tachyon
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Open strings and D-branes

δS = 0⇒ boundary conditions: δXµ∂σX
µ
∣∣∣π
0

= 0
0 π

Lorentz inv. in D dim. ⇒ Neumann (N) b.c. ∂σX
µ
∣∣

0,π
= 0, µ = 0, · · · ,D − 1

b.c. mix L- and R-movers: αi
n = α̃i

n, i = 1, · · · ,D − 2

spectrum: level 0: |0〉, α′M2 =E0, level 1: αi
−1|0〉, α′M2 =(E0 + 1), . . .

Lorentz inv. ⇒ E0 = −1, D = 26, so αi
−1|0〉 massless, vector of SO(D − 2)

αi
−1|0〉 −→ gauge vector Aµ

can consider fixed ends or Dirichlet (D) b.c. in some directions, i.e.

X 0, · · · ,X p (N) space-time X p+1, · · · ,X 25 (D)

string endpoints lie on a Dp-brane

αi
−1|0〉, i = 1, · · · , p − 1 massless vectors

αt
−1|0〉, t = p + 1, · · · , 25 massless scalars

Dp-branes required by T-duality
, 21/64



Chan-Paton labels and D-branes

a

b

b
c

a

c

a
b

a, b = 1, · · · ,Nnon-dynamical degrees of freedom at endpoints

consistent with symmetries and interactions

states carry extra labels, e.g. |0〉 becomes |ab〉

massless vectors: αi
−1|ab〉 → Aµab gauge fields

Chan-Paton factors: N × N matrices λ[ab, [ = 1, · · · ,N2∑
a,b

λ[ab α
i
−1|ab〉 −→ A[µ

0 π

U(N) gauge fields, for oriented strings
a

b
b

c

a d
d

c

1

2

3
4

∼ λ1
abλ

2
bcλ

3
cdλ

4
da

= Trλ1λ2λ3λ4a,b label D-branes at endpoints

1 2

|11〉

|12〉

|21〉
|22〉
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Superstrings 1

extra world-sheet d.o.f. ψµ(τ, σ) 2d fermions, µ = 0, 1, · · · ,D − 1

ψµ(τ, σ + 2π) = ∓ψµ(τ, σ) ; − Neveu-Schwarz(NS), + Ramond

/∂ψi (τ, σ) = 0 ⇒ ψi (τ, σ) =

(
ψi

R(τ − σ)
ψi

L(τ + σ)

)
, i = 1, · · · ,D − 2

ψi
L =

∑
r

bire
−ir(τ+σ), {bir , bjs} = δijδr ,−s , NS: r ∈ Z + 1

2
, Ramond: r ∈ Z

Lorentz invariance =⇒ D = 10 massless little group SO(8)

NS states: |0〉, bi− 1
2

|0〉 massless 8v , · · ·

Ramond states: |S〉, |C 〉 massless 8s , 8c , · · · {bi
0, b

j
0} = δij , Clifford algebra

GSO projection: (−1)F = 1, F = world-sheet fermion number

|0〉, |S〉 projected out, full spectrum is supersymmetric in D = 10

GSO projection is required by modular invariance
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Superstrings 2 massless spectra

IIB left-right symmetric

[8v ⊕ 8c ]L ⊗ [8v ⊕ 8c ]R = (1⊕ 35v ⊕ 28v )⊕ (1⊕ 28c ⊕ 35c)

⊕(8s ⊕ 56s ⊕ 8s ⊕ 56s)
massless fields of N = 2 IIB supergravity (chiral)

{ϕ,Gµν ,Bµν}+ {a,Cµν ,Cµναβ}+ {Ψ1,Ψ
µ
1 ,Ψ2,Ψ

µ
2 } anomaly-free

RR 0-,2-,4-forms

IIA

[8v ⊕ 8c ]L ⊗ [8v ⊕ 8s ]R = (1⊕ 35v ⊕ 28v )⊕ (8v ⊕ 56v )

⊕(8s ⊕ 56s ⊕ 8c ⊕ 56c)
massless fields of N = 2 IIA supergravity (non-chiral)

{ϕ,Gµν ,Bµν}+ {Cµ,Cµνα}+
{

Ψ+,Ψ+
µ ,Ψ

−,Ψ−µ
}

RR 1-,3-forms

IIA supergravity can be obtained from circle compactification of

11-dimensional supergravity with fields {GMN ,CMN ,ΨM}
massless fields of M-theory
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Type I and IIB orientifolds closed sector

B type I is a theory of unoriented closed and open superstrings,

it can be described as a quotient of IIB by world-sheet parity Ω

B Ω : σ → (2π − σ), exchanges left and right modes, reverses orientation

B IIB is symmetric under Ω, can take quotient type IIB/Ω “orientifold”

B projection 1
2
(1 + Ω) gives invariant states, introduces unoriented topologies
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unoriented world-sheets

e.g. Klein bottle

generic world-sheet is sphere with g handles, nb boundaries and nc crosscaps

Euler characteristic: χE = 2 - 2g - nb - nc

crosscap = disk with opposite sides identified = RP2

→
crosscap

Klein bottle is sphere with two crosscaps, has χE = 0, appears at 1-loop
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Type I and IIB orientifolds closed sector

B type I is a theory of unoriented closed and open superstrings,

it can be described as a quotient of IIB by world-sheet parity Ω

B Ω : σ → (2π − σ), exchanges left and right modes, reverses orientation

B IIB is symmetric under Ω, can take quotient type IIB/Ω “orientifold”

B projection 1
2
(1 + Ω) gives invariant states, introduces unoriented topologies

B massless states: NS-NS: 8v ⊗ 8v

∣∣
S
−→ ϕ,Gµν , R-R: 8c ⊗ 8c

∣∣
A
−→ Cµν

NS-R + R-NS: 8v ⊗ 8c + 8c ⊗ 8v −→ Ψ,Ψµ

N = 1,D = 10 supergravity has gravitational anomaly
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Type I and IIB orientifolds closed sector

B at string level anomaly due to divergence in 1-loop Klein bottle amplitude

=

2πt

2π

= =

2π

2πs

t =
1

4s1-loop

tree channel

s→∞−−−→

t → 0 in 1-loop ≡ s →∞ in tree channel

divergence due to tadpole of massless states
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tadpoles

B in field theory: 1-point vertex

particle appears/disappears from/into the vacuum, so at momentum kµ = 0

∼ 1

k2 + M2
,

kµ=0−−−→
M=0

∞ divergence due to tadpole of massless particle

B divergence in Klein bottle (KB) amplitude due to crosscap tadpole

B by Lorentz invariance the emitted massless states are the NS-NS Gµν or ϕ,

or the R-R 10-form C10, which is non-propagating since dC10 = 0 in D = 10

B by supersymmetry the KB amplitude is zero but R-R tadpoles must cancel

in effective action C10 enters only in Qcrosscap

∫
M10

C10

eq. of motion for C10 would imply Qcrosscap = 0,

but divergence in the R-R piece of the amplitude means Qcrosscap 6= 0

solution: C10 has other sources, naturally D9-branes −→ open strings
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Type I and IIB orientifolds open sector a b
a, b = 1, · · · ,N

B Neumann boundary conditions in all directions −→ N D9-branes

B massless states: NS: bi
− 1

2
|ab〉λab, R: |C , ab〉λab, 8v ⊕ 8c −→ Aµ, χ

N = 1,D = 10 super Yang-Mills, gauge group U(N) for oriented open strings
anomalous

B projection 1
2
(1 + Ω) gives invariant states, introduces unoriented topologies

B Ω action: bi
− 1

2
|ab〉 → −bi

− 1
2
|ab〉, λ→ γΩλ

Tγ−1
Ω , a↔ b

γΩ is embedding of Ω in Chan-Paton factors, Ω2 = 1⇒ γT
Ω = ±γΩ

B massless invariant states: if γΩ = γT
Ω = 1N ⇒ λT = −λ⇒ SO(N) gauge group

if γΩ = −γT
Ω = i

(
0 1 N

2

−1 N
2

0

)
⇒ USp(N) gauge group (N even)

in any case, N = 1,D = 10 super Yang-Mills anomalous
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Type I and IIB orientifolds open sector

B anomaly due to divergences in 1-loop cylinder and Moebius strip amplitudes

=

2πt

π

= =

2π

2πs

t =
1

2s

1-loop tree channel

cylinder

s→∞−−−→

=

2πt

π

= =

2π

2πs

t =
1

8s
1-loop

Moebius strip

tree channel

s→∞−−−→

t → 0 in 1-loop ≡ s →∞ in tree channel

divergences due to tadpoles of massless states

cylinder, Moebius and Klein tadpoles cancel for γT
Ω = γΩ, N = 32

massless fields of N = 1,D = 10 supergravity + SO(32) super Yang-Mills

anomaly cancelled by Green-Schwarz mechanism
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tadpole cancellation

B divergences due to crosscap and disk R-R tadpoles
C10 C10

B in effective action (Qcrosscap + NQdisk)

∫
M10

C10

eq. of motion for C10 =⇒ Qcrosscap + NQdisk = 0

B charges computed from amplitudes

(Qcrosscap + NQdisk)2 = 322 − 64Trγ−1
Ω γT

Ω + N2 = 0⇒ γTΩ = γΩ, N = 32

Qdisk = 1, Qcrosscap = −32, i.e. QD9 = 1, QO9 = −32

orientifold 9-plane
, 28/64



Heterotic strings 1

world-sheet degrees of freedom (fermionic formulation SO(32))

right R

Xµ
R , ψµ 2d fermions

µ = 0, · · · , 9 , i = 1, · · · , 8 light-cone

left L

Xµ
L , λA 2d fermions

A = 1, · · · , 32

ψµ(τ, σ + 2π) = ∓ψµ(τ, σ) ; λA(τ, σ + 2π) = ∓λA(τ, σ) ; − Neveu-Schwarz(NS), + Ramond

massless states |R〉 ⊗ |L〉 NS ⊗ NS

M2
R = ÑX + Ñψ − 1

2e.g. bi− 1
2

|0〉 ⊗ λA− 1
2

λB− 1
2

|0〉
M2

L = NX + Nλ − 1

496 gauge vectors of SO(32) in 10d (gauginos in Ramond ⊗ NS )
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Heterotic strings 2

Full massless spectrum

R ⊗ L in light cone

[(8v ⊕ 8s , 1)]R ⊗ [(8v , 1)⊕ (1, 496)]L

= (1⊕ 35v ⊕ 28v + 8c + 56s , 1) ⊕ (8v ⊕ 8s , 496)

massless fields

{ϕ,Gµν ,Bµν ,Ψ,Ψµ} ⊕
{
Aµk , χk

}
k = 1, . . . , dimGhet

D = 10, N =1 supergravity ⊕ super Yang-Mills Ghet

Ghet = E8 × E8, SO(32)

Gauge and gravitational anomalies are cancelled

by the Green-Schwarz mechanism
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Dualities
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III. String Phenomenology overview
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Aim

Study how to embed the SM in string/M-theory and address
the open questions.

Identify classes of constructions that realize characteristic
features: chirality, family replication, EW SB, flavor structure,
. . .

Extract generic properties and look for mechanisms behind.

Obtain and analyze explicit models.

A main difference with conventional model building is that after
specifying the starting setup, for instance the internal space or the
D-brane content, the particle spectrum and the interactions are
fixed.
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String/M-theory

To begin we have the 10d string theories: E8 × E8 heterotic,

SO(32) heterotic , type I, type IIA and type IIB.

There is also the 11d M-theory.

They are now thought to be all manifestations of one theory.
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A brief history

In the period 1985-1995 attention mostly focused on

compactifications of the E8 × E8 heterotic.

In this theory gauge multiplets are already present in 10d

and give rise to e.g. E6 GUTs and chiral fermions in 4d.

, 35/64



A brief history

After the advent of D-branes in 1995 it was understood how the
SM could be reproduced in the context of type I and type II strings.

At present all corners of the underlying theory are being explored.

Figures from Sumary Talk, String Pheno 2014 by L.E.Ibáñez
, 36/64



Classes of models
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Preview

In these lectures we will study realizations of the SM via:

Compactification of the heterotic string on orbifolds
and Calabi-Yau (CY) manifolds.

D-brane constructions.

Some generic properties that are found:

Chiral fermionic spectrum.

Family replication.

Gauge coupling unification, with or without GUT.

Existence of moduli, i.e. massless scalars whose undetermined
vacuum expectation values (vevs) give coupling constants.
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Compactifications of the heterotic string 1985

Kaluza-Klein idea: M10 =M4 × K6

9x

0x , x ,1 2x , 3x

. . . ,x ,4R

Gauge vectors in 10d : Ak
M ,

M = 0, . . . , 9, k = 1, . . . , dimGhet, Ghet = E8 × E8 or SO(32)

Compactifying on K6 = T6 gives fields in 4d :

Ak
µ, µ = 0, . . . , 3 gauge vectors ⊕ Ak

m, m = 4, . . . , 9 6 charged scalars

10d gauginos give susy partners in 4d

N =4 theory, non-chiral fermions

This problem is avoided if K6 has SU(3) holonomy as in CYs and orbifolds.
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D-branes and gauge theories
1995

degrees of freedom:

open superstrings

, ... ,

, ... ,

Dp−brane world−volume

X0

X X

X X

1 p

p+1 9

massless states:
gauge multiplet, charged multiplets

example: susy Yang-Mills in D7-branes

bi− 1
2

|0〉 , i = 1, · · · , 6, b8
− 1

2

|0〉 , b9
− 1

2

|0〉 massless Neveu-Schwarz states

fields AM , Φ, en 8 dim (Φ : complex scalar ∼ transverse degrees of freedom)

gauginos λ ⇐ massless Ramond states

similar: 4d ,N =4 susy Yang-Mills in D3-branes
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charged massive matter

gauge fields

1 2

|12>

|21>

|11>

|22>

y

U(1)× U(1)
y=0−−→ U(2)

Higgs mechanism = brane separation

Φ ∼ y (transverse d.o.f.)

〈Φ〉 6= 0 ⇐⇒ y 6= 0

(N,M)  +  (N,M)

N

M

U(N) x U(M)

group

bifundamentals

(massless at intersection)
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Intersecting D-brane models

Madrid model
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Global vs. local models

Heterotic models are global. Full knowledge of the internal
space is needed. All phenomenological questions have to be
addressed at once.

D-branes allow for localized SM. Questions like gauge group,
chiral spectrum, Yukawa couplings, can be addressed one by
one, i.e. in a bottom-up approach. In the end it is necessary
to embed in full compactification.

, 43/64



The string scale Ms = 1/
√
α′ and MP ∼ 1019GeV

In perturbative heterotic

effective action in 10d

S10 ∼ M8
s

∫
d10x
√
−Ge−2ϕ

(
R + M−2

s F 2
MN

)
+ · · ·

compactification M10 =M4 × K6 gives effective action in 4d

S4 ∼
∫

d4x
√
−g
(
M2

PR4 +
1

g2
YM

F 2
µν

)
+ · · ·

M2
P ∼

M8
s V6

g2
s

;
1

g2
YM

∼ M6
s V6

g2
s

V6 = Vol(K6) , gs = e〈ϕ〉

Ms ∼ gYMMP ∼ 1018GeV
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In D-brane constructions

Recall that on a Dp-brane gauge fields propagate only on the
(p + 1)-dim world-surface, so they must wrap only a (p − 3)-cycle
in K6. The relation between gYM and Ms involves only the volume
of this cycle. E.g. for a D3-brane

1

g2
YM

∼ 1

gs

As before M2
P ∼

M8
s V6

g2
s

. Then, for a D3-brane

M8
s ∼

M2
P g4

YM

V6

Now it is possible Ms � MP by having large extra dimensions
transverse to the brane.
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IV. Heterotic model building
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Compactification on Calabi-Yau (CY) manifolds

Recall fields in 10d

{ϕ,GMN ,BMN ,Ψ,ΨM} ⊕
{
AM
a , χa

}
, a = 1, . . . , dim Ghet Ghet = E8 × E8, SO(32)

Compactification M10 =M4 × K6 ds2 = Gµνdx
µdxν + Gmndx

mdxn

Supersymmetry in 4d ⇒ DMε = 0 ⇒ RMN = 0 Rµν = 0,Rmn = 0

K6 Ricci-flat ⇒ holonomy SU(3) Dmη = 0 K6 is CY

Furthermore, K6 is Kähler (complex with special property of the metric)

xm −→ z i , z̄ ī k-forms: ωm1...mk
(p, q)-forms: ωi1...ip j̄1...j̄q

Betti numbers bk = # closed (mod exact) k-forms = # harmonic k-forms

Hodge numbers

hp,q = # closed (mod exact) (p, q)-forms = # harmonic (p, q)-forms

bk =
k∑

p=0

hp,k−p
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Hodge diamond of a CY X

χ = 2(h1,1 − h1,2) Euler characteristic of X
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Hodge plot

Taken from arXiv:1207.4792, based on the Kreuzer-Skarke list
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Orbifolds

O =M/Γ ; Γ = discrete group of isometries of M

T2 R2= / R

e1

e2

2/
N

R2 ZN/

singularidadpunto fijo

cono
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T2/Z2 orbifold

T2 = R2/Λ, Λ = SO(4) root lattice

Z2 = {1, θ}, θ = rotation by π

• : fixed points −→ singularities
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Closed strings on orbifolds M/Γ Dixon, Harvey, Vafa, Witten

∗
untwisted sector twisted sector

e2

e1

e2

e1

−→
X (τ, σ + 2π) =

−→
X (τ, σ) + ni

−→ei
−→
X (τ, σ + 2π) = g

−→
X (τ, σ) + ni

−→ei
g ∈ Γ admits fixed points

∗ Orbifold projection: physical states are invariant under Γ

Both conditions are required by modular invariance
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Toroidal orbifolds T6/ZN

T6 = R6/Λ, ZN = {1, θ, . . . , θN−1}, θ ∈ SO(6)

crystallographic action: W ∈ Λ, θW ∈ Λ

θN = 1⇒ θ has eigenvalues e±2πivi , vi =
ki
N
, ki ∈ Z, i = 1, 2, 3

complex internal coordinates Z i = 1√
2

(
X 2i+2 + iX 2i+3

)
, θZ i = e2πiviZ i

θ = exp 2πi(v1J12 + v2J34 + v3J56), J2i−1,2i : SO(6) Cartan generator

action on spinor representation

θ| ± 1
2 ,±

1
2 ,±

1
2〉 = e iπ(±v1±v2±v3)| ± 1

2 ,±
1
2 ,±

1
2〉

supersymmetry ⇒ ±v1 ± v2 ± v3 = even

θN = 1 acting on fermions ⇒ N(v1 + v2 + v3) = even
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Example: T6/Z3 orbifold

T6 = R6/Λ, Λ = product of three SU(3) root lattices

Z3 = {1, θ, θ2}, θ = rotation by 2π
3 in each sub-lattice

(v1, v2, v3) = ( 1
3 ,

1
3 , -

2
3 )

•, ◦,× : fixed points altogether 3× 3× 3 = 27 fixed points
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Action on 2d fermions

right movers
θ-twisted sector

Ψi = 1√
2

(
ψ2i+2 + iψ2i+3

)
, Ψi (τ, σ + 2π) = ∓e2πivi Ψi (τ, σ + 2π)

left movers give gauge degrees of freedom

λA± = 1√
2

(
λ2A−1 ± iλ2A

)
, A = 1, . . . , 16

for E8 × E8 divide in two groups: λA±, λ
′A
± , A = 1, . . . , 8

Modular invariance requires that λA transforms under θ. The action can be

realized by rotation γ with eigenvalues e±2πiVA , VA = KA

N , KA ∈ Z.

γN = 1⇒ N(V1 + . . .+ V16) = even

Gauge shift vector: V = (V1, . . . ,V8)× (V ′1, . . . ,V
′
8), E8 × E8

Modular invariance (level-matching) further requires N(V 2 − v2) = even

Standard Embedding: V = (v1, v2, v3, 0, . . . , 0)× (0, . . . , 0)
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V. D-brane constructions
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D-branes and the SM

• D-branes support gauge theories with gauge group U(N) so its
natural to use them to realize the SM group SU(3)× SU(2)× U(1).

• Chirality can be obtained via:

? Branes at singularities.

? Intersecting branes.

? Magnetized branes.

In these lectures we will describe two simple examples that can be
worked out using basic tools.
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Example 1: D3-branes at a C3/Z3 singularity
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Example 2: Intersecting D6-branes

Chap. 21, A First Course in String Theory, B. Zwiebach, CUP 2009.
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VI. Flux compactifications and moduli stabilization
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Moduli

Moduli are free parameters of the compactification that change the
size and shape of the internal manifold but not its topology. E.g.:

In circle compactification the radius R is a modulus.

In T2 compactification there is one Kähler modulus (T )

and one complex structure modulus (U).

U = −i Ry

Rx
e iθ, T = RxRy sin θ + iBxy (in heterotic)

In 4d the moduli correspond to massless scalars Φ,

also called moduli, with a flat potential.

Another important example is the dilaton ϕ.

(Recall that the effective action is invariant under

ϕ→ ϕ+ const.)

\

V
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Stabilization

It is necessary to generate a potential and give masses to the
moduli.

• Massless moduli would mediate unphysical long-range fifth forces.

• Vacuum expectation values (vevs) of moduli must be fixed or
“stabilized”. Coupling constants in the low-energy theory depend
on these vevs.

Moduli stabilization can be achieved in flux compactifications
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Fluxes

Fluxes are non-trivial backgrounds for YM, NSNS and RR field strengths.

e.g. Maxwell flux ∫
Π2

〈F2〉 = g 6= 0

e.g. NSNS flux∫
Π3

〈H3〉 = h 6= 0 (H3 = dB2)

Fluxes thread non-trivial cycles Πn in the extra dimensions.
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Flux induced potentials

S10 = M8
s

∫
d10x

√
−G

{
e−2ϕ

[
R− H2

MNP

]
+ · · ·

}
∫

Π3

〈H3〉 = h ⇒ V ∼ h2e2ϕ

R12
potential in 4d

vol(K6) = R6
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