

Many-body localization in the presence of a single particle mobility edge

Subroto Mukerjee Indian Institute of Science

Workshop on Quantum Non-Equilibrium Phenomena

International Institute of Physics

Jun. 16 2016

Ranjan Modak, IISc.

Ranjan Modak and Subroto Mukerjee, Phys. Rev. Lett. 115, 230401 (2015), arXiv:1602.02067 (2016)

Acknowledgments: Rahul Nandkishore, David Huse, Ehud Altman, Shriram Ganeshan and Diptiman Sen

Localization in the presence of interactions

Localization in the presence of interactions

Generically, interactions tend to cause delocalization in a system with single particle localization

Localization in the presence of interactions

Generically, interactions tend to cause delocalization in a system with single particle localization

Localization in the presence of interactions

Generically, interactions tend to cause delocalization in a system with single particle localization

Interactions also tend to cause thermalization in isolated systems

Localization in the presence of interactions

Generically, interactions tend to cause delocalization in a system with single particle localization

Interactions also tend to cause thermalization in isolated systems

Thus, one would generally expect interacting thermal systems to be delocalized and thermal (diffusive)

Many-Body Localized systems remain athermal even in the presence of interactions

Many-Body Localized systems remain athermal even in the presence of interactions

Many-Body energy eigenfunctions are localized in Fock space

Basko, Aleiner and Altshuler, Ann. Phys. 321, 1126 (2006)

Memory of initial many-body state remains under Hamiltonian evolution

Many-body localized systems

Many-body localized systems

Do not obey the Eigenstate Thermalization Hypothesis (ETH)

ETH - Deustch, PRA 43 2146 (1991); Srednicki, PRE 50 888 (1994); Rigol, Djunko & Olshanii, Nature 452 854 (2008)

Quantum Stat. Mech. does not apply !

Many-body localized systems

Do not obey the Eigenstate Thermalization Hypothesis (ETH)

ETH - Deustch, PRA 43 2146 (1991); Srednicki, PRE 50 888 (1994); Rigol, Djunko & Olshanii, Nature 452 854 (2008)

Quantum Stat. Mech. does not apply !

(Generally) All energy eigenstates have area law entanglement

In thermal systems, a typical state has volume law entanglement

Many-body localized systems

Do not obey the Eigenstate Thermalization Hypothesis (ETH)

ETH - Deustch, PRA 43 2146 (1991); Srednicki, PRE 50 888 (1994); Rigol, Djunko & Olshanii, Nature 452 854 (2008)

Quantum Stat. Mech. does not apply !

(Generally) All energy eigenstates have area law entanglement

In thermal systems, a typical state has volume law entanglement

Many-body localized systems have an infinite number of conservation laws

Thermal phase	Single-particle localized	Many-body localized	
Memory of initial conditions	Some memory of local initial	Some memory of local initial	
'hidden' in global operators	conditions preserved in local	conditions preserved in local	
at long times	observables at long times	observables at long times.	
ETH true	ETH false	ETH false	
May have non-zero DC conductivity	Zero DC conductivity	Zero DC conductivity	
Continuous local spectrum	Discrete local spectrum	Discrete local spectrum	
Eigenstates with	Eigenstates with	Eigenstates with	
volume-law entanglement	area-law entanglement	area-law entanglement	
Power-law spreading of entanglement	No spreading of entanglement	Logarithmic spreading of entanglement	
from non-entangled initial condition		from non-entangled initial condition	
Dephasing and dissipation	No dephasing, no dissipation	Dephasing but no dissipation	

Nandkishore and Huse, Annual Review of Condensed Matter Physics, Vol. 6: 15-38 (2015)

Many Body Localization Model Hamiltonian 1D spinless fermions $H = -t \sum_{j} \left(c_{j}^{\dagger} c_{j+1} + \text{h.c.} \right) + \sum_{j} \epsilon_{j} n_{j} + V \sum_{j} n_{j} n_{j+1}$ Many Body Localization Model Hamiltonian 1D spinless fermiona $H = -t \sum_{j} \left(c_{j}^{\dagger} c_{j+1} + \text{h.c.} \right) + \sum_{j} \epsilon_{j} n_{j} + V \sum_{j} n_{j} n_{j+1}$

TEBD (short times) and numerical ED (long times)

Many Body Localization Model Hamiltonian 1D spinless fermions $H = -t \sum_{j} \left(c_{j}^{\dagger} c_{j+1} + \text{h.c.} \right) + \sum_{j} \epsilon_{j} n_{j} + V \sum_{j} n_{j} n_{j+1}$

TEBD (short times) and numerical ED (long times)

MBL vs. Thermalization Weak interactions

MBL vs. Thermalization

Weak interactions

Ergodic system

Non-interacting limit

All states extended

Why is this interesting?

Why is this interesting?

Even a single **protected** delocalized state can thermalize a localized system coupled to it

Why is this interesting?

Even a single **protected** delocalized state can thermalize a localized system coupled to it Nandkishore and Potter, PRB 90 195115 (2014)

Why is this interesting?

Even a single **protected** delocalized state can thermalize a localized system coupled to it Nandkishore and Potter, PRB 90 195115 (2014)

If delocalized states are unprotected, they can be localized by the localized states, the "many-body proximity effect"

Nandkishore, Phys. Rev. B 92, 245141(2015)

How do we get a single particle mobility-edge in 1D?

How do we get a single particle mobility-edge in 1D?

How do we buck Anderson localization?

How do we get a single particle mobility-edge in 1D?

How do we buck Anderson localization?

Ans: With appropriate quasi-particle potentials

How do we get a single particle mobility-edge in 1D? How do we buck Anderson localization?

Ans: With appropriate quasi-particle potentials

Completely correlated across sites but aperiodic

How do we get a single particle mobility-edge in 1D? How do we buck Anderson localization?

Ans: With appropriate quasi-particle potentials

Completely correlated across sites but aperiodic

In 3D uncorrelated disorder produces mobility edges generically

Aubry-Andre model

Aubry and Andre, Ann. Israel. Phys. Soc. 3, 1 (1980)

$$\begin{split} H &= -t \sum_{j} \left(c_{j}^{\dagger} c_{j+1} + \text{h.c.} + \epsilon_{j} n_{j} \right) \\ \epsilon_{j} &= h \cos(2\pi\alpha j) \qquad \alpha \text{ irrational} \\ \text{Quasi-periodic potential} \end{split}$$

Aubry-Andre model

Aubry and Andre, Ann. Israel. Phys. Soc. 3, 1 (1980)

MBL in the Aubrey-Andre model

spinless fermions

$$H = -t \sum_{j} \left(c_j^{\dagger} c_{j+1} + \text{h.c.} + \epsilon_j n_j + V n_j n_{j+1} \right)$$

Iyer, Oganesyan, Refael and Huse, PRB 87, 134202 (2013)

Experimental realization

cold atoms ⁴⁰K- spinful fermions

Schreiber et. al., Science, 349 842 (2015)

Modified Aubry-Andre models with mobility edges

Model I: $\epsilon_j = h \cos(2\pi \alpha j^{\nu})$ $0 < \nu < 1$

Modified Aubry-Andre models with mobility edges

Model I: $\epsilon_j = h \cos(2\pi \alpha j^{\nu})$ $0 < \nu < 1$

Griniasty and Fishman, PRL 60 1334 (1988) Das Sarma, He and Xie, PRB 41 5544 (1990)

Position of mobility edge independent of ν

Model II:
$$\epsilon_j = h \frac{1 - \cos(2\pi j\alpha)}{1 + \beta \cos(2\pi j\alpha)}$$

Model II:
$$\epsilon_j = h \frac{1 - \cos(2\pi j\alpha)}{1 + \beta \cos(2\pi j\alpha)}$$

Ganeshan, Pixley and Das Sarma, PRL 114 144601 (2015)

Mobility edge can be tuned as a function of β

Diagnostics

Diagnostics

- Level spacing statistics
- Entanglement entropy: Growth and saturation value
- Optical conductivity
- Return probability

Diagnostics

- Level spacing statistics
- Entanglement entropy: Growth and saturation value
- Optical conductivity
- Return probability

Technique

Numerical exact diagonalization on systems up to L = 16

Average over offset angle for better statistics

Level spacing distribution

$$\langle r \rangle = \frac{\min\left(\delta_n, \delta_{n+1}\right)}{\max\left(\delta_n, \delta_{n+1}\right)} \quad \delta_n = E_n - E_{n-1}$$

 $\langle r \rangle = 0.386$ Poissonian distribution (localized) $\langle r \rangle = 0.523$ Wigner-Dyson (thermal)

Modak and Mukerjee, Phys. Rev. Lett. 115, 230401 (2015)

Entanglement entropy

S saturates to thermal (subthermal) value indicates thermalization (localization)

 $S(t)\,{\rm not}\,\log{\rm arithmic}$ in time even for localized system! Length scale $L(t)\sim t^{\alpha}$

Modak and Mukerjee, Phys. Rev. Lett. 115, 230401 (2015)

Optical conductivity as $T \to \infty$

Model I appears to thermalize

Model I appears to thermalize

Model II does not thermalize

Model I appears to thermalize

Model II does not thermalize

However, non-ergodicity of model II is not like for MBL: the entropy increases faster than logarithmically with time

Model I appears to thermalize

Model II does not thermalize

However, non-ergodicity of model II is not like for MBL: the entropy increases faster than logarithmically with time

Consistent with the existence of non-ergodic metal proposed in these systems

Also Li, Ganeshan, Pixley and Das Sarma, Phys. Rev. Lett. 115, 186601 (2015)

What decides if a given model with a single particle mobility edge displays thermalizes upon the introduction of weak interactions?

Ans: How strongly localized the localized states are relative to how strongly delocalized the delocalized ones are.

Model I thermalizes but model II does not

What decides if a given model with a single particle mobility edge displays thermalizes upon the introduction of weak interactions?

Ans: How strongly localized the localized states are relative to how strongly delocalized the delocalized ones are.

Model I thermalizes but model II does not

What decides if a given model with a single particle mobility edge displays thermalizes upon the introduction of weak interactions?

Ans: How strongly localized the localized states are relative to how strongly delocalized the delocalized ones are.

How do we quantify this?

Modak and Mukerjee, arXiv:1602.02067 (2016)

$$\epsilon = \frac{\eta (1 - MPR_D/L)}{(MPR_L - 1)}$$

 η ratio of # of localized to delocalized states

 MPR_D mean participation ratio of delocalized states

 MPR_L mean participation ratio of localized states

L system size

$$\epsilon = \frac{\eta (1 - MPR_D/L)}{(MPR_L - 1)}$$

 η ratio of # of localized to delocalized states

 MPR_D mean participation ratio of delocalized states

 MPR_L mean participation ratio of localized states

L system size

 $\epsilon > 1(\text{MBL})$ $\epsilon < 1(\text{Thermal})$

Modak and Mukerjee, arXiv:1602.02067 (2016)

Modak and Mukerjee, arXiv: 1602.02067 (2016)

Model	Non-ergodic phase	Ergodic phase	ν	ϵ
Model I	Yes	Yes	< 1	> 1 (Non-ergodic phase) and < 1 (Ergodic phase)
Model II	Yes	Yes	< 1	> 1 (Non-ergodic phase) and < 1 (Ergodic phase)
Model III	No	Yes	1	< 1
Model IV	No	Yes	< 1	< 1
Model V	No	Yes	> 1	< 1

$\epsilon > 1 (MBL)$ $\epsilon < 1 (Thermal)$

Modak and Mukerjee, arXiv:1602.02067 (2016)

Non-ergodicity and localization

	Ergodic conductor	Non-ergodic conductor	Non-ergodic insulator
ETH	Yes	No	No
Eigenstate entanglement	$\sim L \text{ (thermal)}$	$\sim L \text{ (sub-thermal)}$	$\sim L^0$
Energy level statistics	Level repulsion	No level repulsion	No level repulsion
S(t)	Linear growth	Linear growth	Logarithmic growth
$S(t \to \infty)$	Thermal	Sub-thermal	Sub-thermal
Integrals of motion	None	Non-local (???)	Local

Non-ergodic conductor shares features with traditional integrable systems

Also

Li, Ganeshan, Pixley and Das Sarma, Phys. Rev. Lett. 115, 186601 (2015)

Li, Pixley, Deng, Ganeshan and Das Sarma, Phys. Rev. B 93, 184204 (2016)

Conclusions and questions

- Non-ergodic physics can occur in the presence of a single particle mobility edge but not always
- Criterion for occurrence of the non-ergodicity for weak interactions can be quantified using the single particle spectrum
- How do the local degrees of freedom interact?