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Many Body Localization

Localization in the presence of interactions

Generically, interactions tend to cause delocalization in a 
system with single particle localization

Interactions

Interactions also tend to cause thermalization in isolated 
systems 

Thus, one would generally expect interacting thermal systems 
to be delocalized and thermal (diffusive)
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Many Body Localization
Many-Body Localized systems remain athermal even in the 

presence of interactions 

Memory of initial many-body state remains under Hamiltonian 
evolution 

Many-Body energy eigenfunctions are localized in Fock space
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Many Body Localization
Many-body localized systems

(Generally) All energy eigenstates have area law 
entanglement

In thermal systems, a typical state has volume law 
entanglement 

Many-body localized systems have an infinite number of 
conservation laws

Do not obey the Eigenstate Thermalization Hypothesis (ETH)
ETH - Deustch, PRA 43 2146 (1991); Srednicki, PRE 50 888 (1994); Rigol, 
Djunko & Olshanii, Nature 452 854 (2008)

Quantum Stat. Mech. does not apply !



Many Body Localization
Thermal phase Single-particle localized Many-body localized

Memory of initial conditions Some memory of local initial Some memory of local initial

‘hidden’ in global operators conditions preserved in local conditions preserved in local

at long times observables at long times observables at long times.

ETH true ETH false ETH false

May have non-zero DC conductivity Zero DC conductivity Zero DC conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum

Eigenstates with Eigenstates with Eigenstates with

volume-law entanglement area-law entanglement area-law entanglement

Power-law spreading of entanglement No spreading of entanglement Logarithmic spreading of entanglement

from non-entangled initial condition from non-entangled initial condition

Dephasing and dissipation No dephasing, no dissipation Dephasing but no dissipation

TABLE I: A list of some properties of the many-body-localized phase, contrasted with properties

of the thermal and the single-particle-localized phases. The spreading of entanglement is discussed

further in Sec.IV-C. Local spectra are discussed further in Sec.IV-D.

fermions in a random potential. An analogous argument can be constructed for objects

with more than two states, but we stick to this two-state example for specificity. Let us

further assume that the p-bits are governed by a Hamiltonian with quenched disorder and

strictly short-range interactions. For strong enough disorder, such a Hamiltonian can be

in the fully many-body localized (FMBL) regime, wherein all the many-body eigenstates of

the Hamiltonian are localized. It was argued in [21–24] that in this FMBL regime, one can

define a set of localized two-state degrees of freedom, with Pauli operators {~⌧
i

}, henceforth

called ‘l-bits’ (l=localized) such that the Hamiltonian when written in terms of these new

variables takes the form

H = E0 +
X

i

⌧ z
i

+
X

ij

J
ij

⌧ z
i

⌧ z
j

+
1X

n=1

X

i,j,{k}

K(n)
i{k}j⌧

z

i

⌧ z
k1
...⌧ z

kn
⌧ z
j

, (6)

where the sums are restricted so that each term appears only once, and E0 is some constant

energy o↵set which may be zero and which has no relevance for the closed system’s dynamics.

The typical magnitudes of the interactions J
ij

and K(n)
i{k}j fall o↵ exponentially with distance,

as do their probabilities of being large.

19

Nandkishore and Huse, Annual Review of Condensed Matter Physics, Vol. 
6: 15-38 (2015)  
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Model Hamiltonian

1D spinless fermions
H = �t

X

j

⇣
c†jcj+1 + h.c.

⌘
+
X

j

✏jnj + V
X

j

njnj+1

2

mann entropy S = �tr ⇢
A

log ⇢
A

= �tr ⇢
B

log ⇢
B

of the
reduced density matrix of either subsystem. We always
form the two bipartitions by dividing the system at the
center bond.

The type of evolution considered here can be viewed
as a “global quench” in the language of Calabrese and
Cardy [14] as the initial state is the ground state of an
artificial Hamiltonian with local fields. Evolution from an
initial product state with zero entanglement can be stud-
ied e�ciently via time-dependent matrix product state
methods until a time where the entanglement becomes
too large for a fixed matrix dimension. Since entangle-
ment cannot increase purely by local operations within
each subsystem, its growth results only from propagation
across the subsystem boundary, even though there is no
conserved current of entanglement.

The first question we seek to answer is whether there is
any qualitatively di↵erent behavior of physical quantities
when a small interaction

Hint = J
z

X

i

Sz

i

Sz

i+1 (2)

is added. With Heisenberg couplings between the spins
(J

z

= J?), the model is believed to have a dynami-
cal transition as a function of the dimensionless disor-
der strength ⌘/J

z

[4, 5, 7]. This transition is present
in generic eigenstates of the system and hence exists at
infinite temperature at some nonzero ⌘. The spin con-
ductivity, or equivalently particle conductivity after the
Jordan-Wigner transformation, is zero in the many-body
localized phase and nonzero for small enough ⌘/J

z

. How-
ever, with exact diagonalization the system size is so lim-
ited that it has not been possible to estimate the location
in the thermodynamic limit of the transition of eigen-
states or conductivities.

We find that entanglement growth shows a qualitative
change in behavior at infinitesimal J

z

. Instead of the ex-
pected behavior that a small interaction strength leads
to a small delay in saturation and a small increase in
final entanglement, we find that the increase of entan-
glement continues to times orders of magnitude larger
than the initial localization time in the J

z

= 0 case (Fig.
1). This slow growth of entanglement is consistent with
prior observations for shorter times and larger interac-
tions J

z

= 0.5J? and J
z

= J? [12, 13], although the
saturation behavior was unclear. Note that observing
a sudden e↵ect of turning on interactions requires large
systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to a↵ect
the behavior significantly. We next explain briefly the
methods enabling large systems to be studied.

Numerical methodology. – To simulate the quench, we
use the time evolving block decimation (TEBD) [15, 16]
method which provides an e�cient method to perform a
time evolution of quantum states, | (t)i = U(t)| (0)i, in
one-dimensional systems. The TEBD algorithm can be
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FIG. 1. (a) Entanglement growth after a quench starting
from a site factorized Sz eigenstate for di↵erent interaction
strengths J

z

(we consider a bipartition into two half chains of
equal size). All data is for ⌘ = 5 and L = 10, except for J

z

=
0.1 where L = 20 is shown for comparison.The inset shows
the same data but with a rescaled time axis and subtracted
J
z

= 0 values. (b) Saturation values of the entanglement
entropy as a function of L for di↵erent interaction strengths
J
z

. The inset shows the approach to saturation.

seen as a descendant of the density matrix renormaliza-
tion group [17] method and is based on a matrix product
state (MPS) representation [18, 19] of the wave functions.
We use a second-order Trotter decomposition of the short
time propagator U(�t) = exp(�i�tH) into a product of
term which acts only on two nearest-neighbor sites (two-
site gates). After each application, the dimension of the
MPS increases. To avoid an uncontrolled growth of the
matrix dimensions, the MPS is truncated by keeping only
the states which have the largest weight in a Schmidt de-
composition.

In order to control the error, we check that the ne-
glected weight after each step is small (< 10�6). Al-
gorithms of this type are e�cient because they exploit
the fact that the ground-state wave functions are only
slightly entangled which allows for an e�cient truncation.
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seen as a descendant of the density matrix renormaliza-
tion group [17] method and is based on a matrix product
state (MPS) representation [18, 19] of the wave functions.
We use a second-order Trotter decomposition of the short
time propagator U(�t) = exp(�i�tH) into a product of
term which acts only on two nearest-neighbor sites (two-
site gates). After each application, the dimension of the
MPS increases. To avoid an uncontrolled growth of the
matrix dimensions, the MPS is truncated by keeping only
the states which have the largest weight in a Schmidt de-
composition.

In order to control the error, we check that the ne-
glected weight after each step is small (< 10�6). Al-
gorithms of this type are e�cient because they exploit
the fact that the ground-state wave functions are only
slightly entangled which allows for an e�cient truncation.

Bardarson, Pollmann and Moore, PRL  109, 017202 (2012) 
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MBL with single particle mobility edge

Even a single protected delocalized state can thermalize a 
localized system coupled to it 

Nandkishore and Potter, PRB 90 195115 (2014)

If delocalized states are unprotected, they can be localized by 
the localized states, the “many-body proximity effect”

Nandkishore, Phys. Rev. B 92, 245141(2015)
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Non-interacting limit
Localized and extended states
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Why is this interesting?
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MBL with single particle mobility edge

How do we get a single particle mobility-edge in 1D?

How do we buck Anderson localization? 

Ans: With appropriate quasi-particle potentials

Completely correlated across sites but aperiodic

In 3D uncorrelated disorder produces mobility edges 
generically



Models



Models
Aubry-Andre model

Quasi-periodic potential 

H = �t
X

j

⇣
c†jcj+1 + h.c.+ ✏jnj

⌘

↵ irrational

Aubry and Andre, Ann. Israel. Phys. Soc. 3, 1 (1980) 

✏j = h cos(2⇡↵j)
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Model II: ✏j = h
1� cos(2⇡j↵)

1 + � cos(2⇡j↵)

Ganeshan, Pixley and Das Sarma, PRL 114 144601 (2015)
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Numerical exact diagonalization on systems up to L = 16

Average over offset angle for better statistics
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2

appear to be consistent with regular MBL. We speculate
that the entanglement growth at long times prior to sat-
uration is governed by the dynamics of the single particle
delocalized states, which leads to a linear increase with
time.
We have studied two different interacting one-

dimensional models of spinless fermions, which in the
non-interacting limit have single particle mobility edges.
The first, which we shall refer to as model I is described
by the Hamiltonian

H =
∑

i

hini − t(c†i ci+1 + c†i+1ci) + V nini+1 (2)

where hi = h cos(2παin + φ) with 0 < n < 1. For V = 0
and n = 1, this is just the AA model. However, for n < 1
and V = 0, the model has a single-particle mobility edge
when h < 2t20,21. All single particle states with energy
between ±|2t − h| are delocalized and all other states
are localized. For h > 2t all single particle states are
localized as in the usual AA model.
The other model we have studied (which we refer to as

model II) is also of the form in Eqn. 2 but with

hi = h
1− cos(2πiα+ φ)

1 + β cos(2πiα+ φ)
,

where β can take any value between (−1, 1). When β = 0
and V = 0, this model also reduces to the AA model. For
V = 0, there is a mobility edge separating, localized and
extended states at an energy E given by βE = 2(t −
h/2)22.
We have studied both models using exact diagonaliza-

tion on finite-sized systems up to size L = 16 with open
boundaries and have averaged over the offset φ for bet-
ter statistics. We mostly show the data for L = 14 at

half-filling here and have set t = 1 and α =
√
5−1
2

in all
our calculations. We now discuss the numerical results
for each of the diagnostics employed.
Energy level spacing statistics: Energy level spacing

statistics is often used to characterize the MBL transi-
tion. There is a crossover from a Wigner-Dyson to Pois-
sonian distribution upon going from the ergodic to many-
body localized phase. A useful parameter to detect this
crossover is the ratio of successive gaps defined as9.

rn =
min(δn, δn+1)

max(δn, δn+1)
, (3)

where, δn = En+1−En, the difference in energy between
the nth and n+1st energy eigenvalues in the many-body
spectrum. For a Poissonian (Wigner-Dyson, specifically
of the Gaussian Orthogonal type) distribution, the mean
value of r is 2 ln(2) − 1 ≈ 0.386 (≈ 0.5295). The distri-
bution function P (r) → 0, as r → 0 in the presence of
level repulsion.
For model I, with V = 0 , h < 2 and n = 1, all sin-

gle particle states are delocalized. As V is increased, the
level spacing distribution starts to follow the Wigner-
Dyson distribution. For, n < 1, with a mobility edge,
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level statistics obey the Wigner-Dyson distribution, even
though there are localized states as shown in Fig. 1. Deep
in the localized phase,h >> 2 ,increasing V yields a Pois-
sonian distribution in both cases (n = 1.0 and n < 1.0)
Unlike for model I, the position of the mobility edge

in the non-interacting limit of model II can be tuned by
varying the parameters β and h22. We choose, h = 8 and
change β from -0.95 to 0 such that the fraction of single
particle localized states in the spectrum increases pro-
gressively. In contrast to model I, here the level spacing
distribution appears to be Poissonian with the interac-
tion as can be seen in Fig. 1.
Entanglement entropy: The entanglement entropy is

another diagnostic that can be used to distinguish be-

Level spacing distribution

hri = min (�n, �n+1)

max (�n, �n+1)
�n = En � En�1

hri = 0.386

hri = 0.523

Poissonian distribution (localized)
Wigner-Dyson (thermal)

Modak and Mukerjee, Phys. Rev. Lett. 115, 230401 (2015)
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uration is governed by the dynamics of the single particle
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and V = 0, this model also reduces to the AA model. For
V = 0, there is a mobility edge separating, localized and
extended states at an energy E given by βE = 2(t −
h/2)22.
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where, δn = En+1−En, the difference in energy between
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spectrum. For a Poissonian (Wigner-Dyson, specifically
of the Gaussian Orthogonal type) distribution, the mean
value of r is 2 ln(2) − 1 ≈ 0.386 (≈ 0.5295). The distri-
bution function P (r) → 0, as r → 0 in the presence of
level repulsion.
For model I, with V = 0 , h < 2 and n = 1, all sin-

gle particle states are delocalized. As V is increased, the
level spacing distribution starts to follow the Wigner-
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sonian distribution in both cases (n = 1.0 and n < 1.0)
Unlike for model I, the position of the mobility edge

in the non-interacting limit of model II can be tuned by
varying the parameters β and h22. We choose, h = 8 and
change β from -0.95 to 0 such that the fraction of single
particle localized states in the spectrum increases pro-
gressively. In contrast to model I, here the level spacing
distribution appears to be Poissonian with the interac-
tion as can be seen in Fig. 1.
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another diagnostic that can be used to distinguish be-
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tween the ergodic and many-body localized phases. We
have studied the time evolution of the entropy staring
by sampling the initial states at random over the entire
energy spectrum, which is equivalent to working at in-
finite temperature16. The growth of the entropy with
time has been argued to be linear in the ergodic phase
and much slower (logarithmic) in the many-body local-
ized phase23,25. We study how the entropy increases with
time in the presence of a single-particle mobility edge.
The system is divided into two equal parts A and B.

Let, subsystem A refer to lattice sites 0,1,...L
2
− 1 and B

to the remaining sites of the chain. The reduced density
matrix ρA(t) for subsystem A is obtained by tracing out
the degrees of freedom corresponding to B from the full
density matrix, ρ(t) = |ψ(t)⟩⟨ψ(t)| of the system. Here
|ψ(t)⟩ is the state of the whole system at time t. The
order 2 Renyi entropy of A is given by26,

S2(t) = − log2(TrAρA(t)
2) (4)

S2 is computationally less expensive than the more con-
ventional von-Neumann entropy and so we choose to
work with it instead. In the ergodic phase, S2(t) ∼ t
at long times and saturates to the infinite temperature
thermal value while for the usual many-body localized
phase with weak interactions, S2(t) ∼ ζ log(t), where ζ is
the localization length of the single particle eigenstates.
It saturates to a value much smaller than the thermal
value, but which is still extensive in system size. For our
system, the infinite temperature S2 ∼ L

2
− 1.2 for system

size L16.
For model I with a single-particle mobility edge, S2(t)

increases linearly with time but then appears to saturate
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to the thermal value as shown in Fig.2. However, for
model II, S2 grows linearly with time but then appears to
saturate to a value, much smaller than the thermal value.
This can be seen from Fig. 2, where the time evolution
of S2 has been plotted for model II for V = 0.2 , h = 8
and β = −0.95 ,−0.75 and −0.6, with progressively in-
creasing fractions of single-particle localized states. The
saturation value depends on the number of localized sin-
gle particle states: As, ν increases, so does the saturation
value.
To confirm the linear growth of Renyi entropy as

a function of time, we have plotted δS = S2(t, V ) −
S2(t, V = 0). in Fig. 3 as a function of time. At very
early times S2(t, V ) and S2(t, V = 0) tend to coincide,
reflecting the formation of short range entanglement at
the cut between the sub systems. Then, for the non-
interacting system, S2(t, V = 0) saturates but for the
interacting one, S2 starts growing with time as shown in
Fig. 3. At intermediate times, as long as there is a mobil-
ity edge in the single particle spectrum, δS fits quite well
with a functional form δS ∼ t. When all single particle
states are localized, the growth of δS as a function of t
is much slower than linear and possibly logarithmic. At
longs times, δS saturates to a sub-thermal value in all
cases.
We have also plotted the saturation value of S2 as a

function of system size L. As shown in the inset of Fig. 3
Ssat
2 ∼ L for the ergodic phase as well as for the model

with a mobility edge. This plot also shows that the Ssat
2

curve for the system with the single particle mobility edge
system does not intersect the curve for the ergodic system
when extrapolated to the thermodynamic limit. Thus,
the saturation of the entropy to a sub-thermal value is
not a finite-size effect.

Entanglement entropy

S saturates to thermal (subthermal) value indicates 
thermalization (localization)

S(t)not logarithmic in time even for localized system!
Length scale L(t) ⇠ t↵

Modak and Mukerjee, Phys. Rev. Lett. 115, 230401 (2015)
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tween the ergodic and many-body localized phases. We
have studied the time evolution of the entropy staring
by sampling the initial states at random over the entire
energy spectrum, which is equivalent to working at in-
finite temperature16. The growth of the entropy with
time has been argued to be linear in the ergodic phase
and much slower (logarithmic) in the many-body local-
ized phase23,25. We study how the entropy increases with
time in the presence of a single-particle mobility edge.
The system is divided into two equal parts A and B.

Let, subsystem A refer to lattice sites 0,1,...L
2
− 1 and B

to the remaining sites of the chain. The reduced density
matrix ρA(t) for subsystem A is obtained by tracing out
the degrees of freedom corresponding to B from the full
density matrix, ρ(t) = |ψ(t)⟩⟨ψ(t)| of the system. Here
|ψ(t)⟩ is the state of the whole system at time t. The
order 2 Renyi entropy of A is given by26,

S2(t) = − log2(TrAρA(t)
2) (4)

S2 is computationally less expensive than the more con-
ventional von-Neumann entropy and so we choose to
work with it instead. In the ergodic phase, S2(t) ∼ t
at long times and saturates to the infinite temperature
thermal value while for the usual many-body localized
phase with weak interactions, S2(t) ∼ ζ log(t), where ζ is
the localization length of the single particle eigenstates.
It saturates to a value much smaller than the thermal
value, but which is still extensive in system size. For our
system, the infinite temperature S2 ∼ L
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to the thermal value as shown in Fig.2. However, for
model II, S2 grows linearly with time but then appears to
saturate to a value, much smaller than the thermal value.
This can be seen from Fig. 2, where the time evolution
of S2 has been plotted for model II for V = 0.2 , h = 8
and β = −0.95 ,−0.75 and −0.6, with progressively in-
creasing fractions of single-particle localized states. The
saturation value depends on the number of localized sin-
gle particle states: As, ν increases, so does the saturation
value.
To confirm the linear growth of Renyi entropy as

a function of time, we have plotted δS = S2(t, V ) −
S2(t, V = 0). in Fig. 3 as a function of time. At very
early times S2(t, V ) and S2(t, V = 0) tend to coincide,
reflecting the formation of short range entanglement at
the cut between the sub systems. Then, for the non-
interacting system, S2(t, V = 0) saturates but for the
interacting one, S2 starts growing with time as shown in
Fig. 3. At intermediate times, as long as there is a mobil-
ity edge in the single particle spectrum, δS fits quite well
with a functional form δS ∼ t. When all single particle
states are localized, the growth of δS as a function of t
is much slower than linear and possibly logarithmic. At
longs times, δS saturates to a sub-thermal value in all
cases.
We have also plotted the saturation value of S2 as a

function of system size L. As shown in the inset of Fig. 3
Ssat
2 ∼ L for the ergodic phase as well as for the model

with a mobility edge. This plot also shows that the Ssat
2

curve for the system with the single particle mobility edge
system does not intersect the curve for the ergodic system
when extrapolated to the thermodynamic limit. Thus,
the saturation of the entropy to a sub-thermal value is
not a finite-size effect.

Optical conductivity as T ! 1

T�(!) ⇠ !a

(
0 < a < 1 for thermal

1 < a < 2 for localized,

after appropriate subtraction
Modak and Mukerjee, Phys. Rev. Lett. 115, 230401 (2015)
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Results
Model I appears to thermalize 

Model II does not thermalize

However, non-ergodicity of model II is not like for MBL: the 
entropy increases faster than logarithmically with time

Consistent with the existence of non-ergodic metal proposed 
in these systems

Also Li, Ganeshan, Pixley and Das Sarma, Phys. Rev. Lett. 115, 186601 
(2015)
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Model I thermalizes but model II does not 

What decides if a given model with a single particle mobility 
edge displays thermalizes upon the introduction of weak 

interactions?
Ans: How strongly localized the localized states are relative to 

how strongly delocalized the delocalized ones are.

Modak and Mukerjee, arXiv:1602.02067 (2016)

How do we quantify this?

Criterion for Non-ergodicity
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Criterion for non-ergodicity

✏ =
⌘(1�MPRD/L)

(MPRL � 1)

⌘ ratio of # of localized to delocalized states

MPRD mean participation ratio of delocalized states

MPRL mean participation ratio of localized states

L system size



Criterion for non-ergodicity

✏ =
⌘(1�MPRD/L)

(MPRL � 1)

⌘ ratio of # of localized to delocalized states

MPRD mean participation ratio of delocalized states

MPRL mean participation ratio of localized states

L system size

✏ > 1(MBL) ✏ < 1(Thermal)

Modak and Mukerjee, arXiv:1602.02067 (2016)
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delocalized states in the non-interacting model, i.e. how
strongly localized the localized states are compared to
how strongly delocalized the delocalized ones are. Our
main result is that the system remains localized (ther-
malizes) upon the introduction of weak interactions when
✏ > (< 1). This also serves as a criterion to detect the
thermal-MBL transition in these systems, based on the
properties of the non-interacting system. We also com-
ment on whether the exponent ⌫ defined in the previous
paragraph is significant in determining whether MBL oc-
curs in systems with mobility edges.

We have studied five di↵erent interacting one-
dimensional models of spinless fermions, which have
single-particle mobility edges in the non-interacting limit
(V = 0) . Three of the models are of the form

H =
X

i

h
i

n
i

� t(c†
i

c
i+1

+ c†
i+1

c
i

) + V n
i

n
i+1

, (2)

where where c (c†) annihilates (creates) spinless fermions,
t is the hopping, and h

i

is a quasi-periodic potential. V
is the interaction between the fermions on neighboring
sites. The models di↵er in the specific form of h

i

but all
of them involve an irrational number ↵ and o↵set �.

For the first model (model I), h
i

= h cos(2⇡i↵+�)

1�� cos(2⇡i↵+�)

,

iwith � 2 (�1, 1) . When � = 0 and V = 0, it reduces
to the AA model. For V = 0 and � 6= 0, there is a
mobility edge separating, localized and extended states
at an energy E given by �E = 2sgn(h)(|t|� |h|/2) [27] .

The second model (model II) is described by h
i

=

h 1�cos(2⇡i↵+�)

1+� cos(2⇡i↵+�)

, with � 2 (�1, 1). When V = 0,
this model also reduces to the AA model for � = 0
and for � 6= 0, there is a mobility edge separating, lo-
calized and extended states at an energy E given by
�E = 2sgn(h)(|t|� |h|/2) [27].

The third model (model III) is described by h
i

=
h cos(2⇡↵in + �) with 0 < n < 1. For V = 0 and
n = 1, this is just the AA model. However, for n < 1
and V = 0, the model has a single-particle mobility edge
when h < 2t [25, 26]. All single particle states with
energy between ±|2t � h| are delocalized and all other
states are localized. For h > 2t all single particle states
are localized as in the usual AA model.

The fourth model (model IV) is also of the form of
Eqn. 2 with h

i

= h cos(2⇡↵i+ �) but with an additional
next-nearest neighbor hopping term �t0(c†

i

c
i+2

+ c†
i+2

c
i

).
This model has both localized and delocalized states in
certain range of parameters for V = 0 [33].

The fifth model (model V) is also of the form of
Eqn. 2 but without a quasi-periodic potential. In-

stead h
i

=
P

L/2

k=1

(k��(2⇡/L)(1��))1/2 cos(2⇡ik/L + �
k

)
. �

k

are L/2 independent random phases uniformly dis-
tributed in the interval [0, 2⇡] and we use the normaliza-
tion

p
(< h2

i

> � < h
i

>2) = 1. Unlike the other mod-
els, this one has long-range correlated disorder. This
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FIG. 1: (Color Online) The variation of the mean of the
ratio between adjacent gaps in the spectrum with the

strength of incommensurate potential h for
L = 10, 12, 14, 16 at half filling for (left) model I (V = 1

and � = �0.6) and (right) model II (V = 1 and
� = �0.75). The thermal to MBL transition can be

estimated from from the crossing of the di↵erent curves
and is at h ⇡ 2 for model I and h ⇡ 6 for model II.

model has both localized and delocalized states for � > 2
and V = 0 [28].
We have studied all five models using exact diagonal-

ization on finite-sized systems up to size L = 16 and
have averaged over the o↵set � for better statistics. We

set t = 1 and ↵ =
p
5�1

2

and all our calculations are done
at half filling.
We first determine which of the above models have

MBL phases and locate the thermal-MBL transition in
them. We do this by studying the energy level-spacing
distribution and scaling of the entanglement entropy of
mid-spectrum states as explained below.
Energy level spacing statistics: Energy level spacing

statistics can be used to estimate the location of the
MBL transition. At the transition the statistics change
from being Wigner-Dyson-like (characteristic of the er-
godic phase) to Poissonian (characteristic of the MBL
phase) and can be tracked by the ratio of successive gaps,

r
n

= min(�n,�n+1)

max(�n,�n+1)
[9], where �

n

= E
n+1

� E
n

, the di↵er-

ence in energy between the nth and n+1st energy eigen-
values. For a Poissonian distribution the mean value of
r is 2 ln 2� 1 ⇡ 0.386 while for a Wigner-Dyson-like dis-
trbution, specifically of the Gaussian Orthogonal (GOE)
type) distribution as is appropriate here, it is ⇡ 0.5295.
The distribution function P (r) ! 0, as r ! 0 in the
presence of level repulsion.
For model I, with V = 1 and � = �0.6 and model

II, with V = 1 and � = �0.75 as h is increased,
the level spacing distribution changes from the GOE
distribution to Poissonian distribution for system size
L = 10, 12, 14, 16 as shown in Fig. 1 . The data for
di↵erent system sizes cross near h ⇠ 2 for model I and
h ⇠ 6 for model II. Hence, h = 2 and h = 6 can be con-
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FIG. 2: (Color Online) The variation of the mean of the
ratio between adjacent gaps in the spectrum (left) with
the strength of incommensurate potential h for L = 16
at half filling for model III (V = 1 and n = 0.5) and
model IV (V = 1 and t0 = 0.1) and (right) with � for
model V. Blue and Pink dashed lines correspond to
Poissonian and GOE ensemble. It can be seen that

unlike models I and II, models III, IV and V are always
in the thermal phase.
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FIG. 3: (Color Online) Variation of (S
2

+ 1.2)/L (where
S
2

is the Renyi entropy) of a typical mid-gap state for
L = 10, 12, 14, 16 at half filling for for (left) model I

(V = 1 and � = �0.6) and (right) model II (V = 1 and
� = �0.75). The thermal-MBL transition can be

estimated from the point where the curves for di↵erent
values of L appear to separate from one another. This
is seen to be at h ⇡ 2 for model I and h ⇡ 6 for model
II consistent with the values obtained from the energy

level spacing distribution.

sidered as the locations of the thermal-MBL transition
for models I and II respectively.

On the other hand, model III , model IV and model
V do not show a thermal-MBL transition and the level
spacing distributions of these models are of the GOE type
as shown in Fig. 2. Even though the non-interacting ver-
sions of these models have single particle mobility edges,
switching on interactions causes them to thermalize.
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FIG. 4: (Color Online) Variation of (S
2

+ 1.2)/L (where
S
2

is the Renyi entropy) of a typical mid-gap state for
L = 10, 12, 14, 16 at half filling for for (left) model III
(V = 1 and n = 0.5) and (right) model IV (V = 1 and
t0 = 0.1). The entanglement entropy always appears to
be proportional to L (volume law) which indicates
thermalization as opposed to the behavior seen for
models I and II. This is consistent with the results
obtained from the energy level spacing distribution.

Eigenstate entanglement entropy: The entanglement
entropy can also be used to distinguish between the ther-
mal and many-body localized phases of a model. For a
typical eigenstate (i.e. one from the middle of the spec-
trum), it obeys a volume law in the thermal phase and
an area law in the MBL phase. We calculate the or-
der 2 Renyi entropy S

2

= � log
2

(Tr
A

⇢
A

2) between the
two halves A and B of a system of length L [34]. This is
computationally less expensive to calculate than the von-
Neumann entropy and has also recently been measured
in experiments [35]. ⇢

A

is the reduced density matrix
of A obtained by tracing out the degrees of freedom of
B from the density matrix of the full system in an mid-
spectrum state. For a one dimensional lattice system of
spinless fermions in the ergodic phase, S

2

⇠ L

2

� 1.2 for
system size L [21] and in the many-body localized phase,
S
2

⇠ L0. Hence, the variation of (S
2

+ 1.2)/L with h
can be used an e�cient diagnostic to detect the thermal
and MBL phases and the transition between them. This
quantity is finite in the thermal phase and goes to zero
in the MBL phase with increasing system size.
For model I with V = 1 and � = �0.6 and model II,

with V = 1 and � = �0.75 as h is increased (S
2

+1.2)/L
decreases as shown in Fig.3. From the data the location
of the thermal-MBL transition for the two models can
be estimated and is consistent with their locations as ob-
tained from energy-level spacing statistics. On the other
hand, models III, IV and V do not display a thermal-
MBL transition as shown in Fig. 4.
Criterion for the occurrence of MBL: Table. I sum-

marizes the results of our calculations and the fifth col-
umn lists the values of ✏ defined in Eqn. 1. The en-
ergy level spacing and entanglement entropy show that a
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FIG. 5: (Color Online) The variation of ✏ defined in
Eqn. 1 with h as obtained for L = 50, 100, 500, 1000 for
(top left) model I ( � = �0.6) , (top right) model II (
� = �0.75) without interactions (V = 0). The dashed
lines correspond to ✏ = 1. The thermal-MBL transition
for model I (II) has been estimated to be at h ⇡ 2(6)
from the level spacing statistics and entanglement

entropy of typical mid-spectrum states. It can be seen
that ✏ < 1 for h below the transition value (thermal

phase) and ✏ > 1 for h above the transition value (MBL
phase). (Bottom) ✏ as a function of h for model III (
n = 0.5) for V = 0. Model III always thermalizes upon
introducing interactions. It can be seen that ✏ < 1 for

this model for all values of h.

thermal-MBL transition occurs in models I and II but not
models III, IV and V, which only have thermal phases.
At the MBL transition for models I and II, ✏ ⇠ 1 as shown
in Fig. 5 and in the MBL (thermal) phases ✏ > (<)1. On
the other for model III ✏ < 1 and this model always ther-
malizes. Similar values of ✏(< 1) are also obtained for
models IV and V with V = 0 which also always ther-
malize upon the introduction of interactions. Thus, our
study shows that the quantity ✏ can be used as a diagnos-
tic to determine whether a system with a single particle
mobility edge will display MBL upon the introduction of
interactions. Further, the criterion for MBL to occur is
✏ > 1.

Conclusions and discussion: We have investigated
the e↵ect of interactions on di↵erent models with mo-
bility edges in the non-interacting limit using numerical
exact diagonalization. We have demonstrated that MBL
occurs in some of them (models I and II) but not in the

Model MBL phase Thermal phase ⌫ ✏

Model I Yes Yes < 1 > 1 (in MBL
phase) and < 1
(in thermal
phase)

Model II Yes Yes < 1 > 1 (in MBL
phase) and < 1
(in thermal
phase)

Model III No Yes 1 < 1

Model IV No Yes < 1 < 1

Model V No Yes > 1 < 1

TABLE I: A list of the models we study along which
also shows whether they have thermal and MBL phases.
The values of ⌫ and ✏ for di↵erent models from exact

diagonalization on systems of size L = 1000. The values
of ⌫ agree with analytical results for the models for
which they are available. The precise values of ⌫ can
depend on specific parameters of the di↵erent models
(see the Supplemental Material [36]) but they are

always bounded in the way shown in the above table.

others (models III, IV and V) and have proposed a crite-
rion for whether MBL occurs in a model with a single par-
ticle mobility edge upon the introduction of interactions.
The relevant quantity to calculate is ✏, the weighted ra-
tio of participation ratios of the delocalized and localized
states as given in Eqn. 1 and the criterion is that MBL
occurs when ✏ > 1 and the system thermalizes for ✏ < 1.
As mentioned earlier, it has been argued that the cri-
terion for MBL to occur in a 1D system with a single
particle mobility edge and a protected band of delocal-
ized states upon introducing interactions is ⌫ � 1 [29].
It is thus interesting to ask whether a similar criterion
applies even to the models we study with no protected
delocalized states. We have calculated ⌫ for these mod-
els for V = 0 (listed in the fourth column of table I)
using numerical exact diagonalization on systems up to
L = 1000 or known analytical results [26, 28, 30](see the
Supplemental Material [36]) .

The actual value of ⌫ depends on the specific param-
eters of the model but is always bounded by or equal to
1 as indicated. It can be seen that both models I and II
have ⌫ < 1 but show a thermal to MBL transition as a
function of h at a fixed value of the filling for fixed V . We
have verified that such a transition holds down to values
of V as low as 0.2 below which finite-size e↵ects become
pronounced (see the Supplemental Material [36]). Sig-
nificantly, ⌫ is independent of h (which is the parameter
that is tuned to e↵ect a the thermal-MBL transition in
models I and II) in the models we have studied . It thus
follows that there is no critical value ⌫

c

such that models
with ⌫ > ⌫

c

exist in one phase and those with ⌫ < ⌫
c

in

Modak and Mukerjee, arXiv:
1602.02067 (2016)

Criterion for non-ergodicity 



Model Non-ergodic phase Ergodic phase ⌫ ✏
Model I Yes Yes < 1 > 1 (Non-ergodic phase) and < 1 (Ergodic phase)

Model II Yes Yes < 1 > 1 (Non-ergodic phase) and < 1 (Ergodic phase)

Model III No Yes 1 < 1

Model IV No Yes < 1 < 1

Model V No Yes > 1 < 1

Criterion for non-ergodicity

✏ > 1(MBL) ✏ < 1(Thermal)

Modak and Mukerjee, arXiv:1602.02067 (2016)



Non-ergodicity and localization

Ergodic conductor Non-ergodic conductor Non-ergodic insulator
ETH Yes No No

Eigenstate entanglement ⇠ L (thermal) ⇠ L (sub-thermal) ⇠ L0

Energy level statistics Level repulsion No level repulsion No level repulsion
S(t) Linear growth Linear growth Logarithmic growth

S(t ! 1) Thermal Sub-thermal Sub-thermal
Integrals of motion None Non-local (???) Local

Li, Ganeshan, Pixley and Das Sarma, Phys. Rev. Lett. 115, 186601 (2015)

Li, Pixley, Deng, Ganeshan and Das Sarma, Phys. Rev. B 93, 184204 
(2016) 

Non-ergodic conductor shares features with traditional 
integrable systems

Also



Conclusions and questions

• Non-ergodic physics can occur in the presence of a single 
particle mobility edge but not always 

!
• Criterion for occurrence of the non-ergodicity for weak 

interactions can be quantified using the single particle 
spectrum 

!
• How do the local degrees of freedom interact? 


