Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

Markus B. Fröb

Universität Leipzig, Institut für Theoretische Physik

July 24, 2015

- 2 Matter loop corrections to the Riemann tensor correlator
- 3 The Weyl tensor correlator in cosmological spacetimes
- 4 Further results from conformal fields

5 Conclusions

Enric Verdaguer Barcelona

Albert Roura Ulm

Observables

 Mathematical description of physical theories contains often redundant information

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)
- Yang-Mills theories: $A^a_\mu \simeq A^a_\mu +
 abla_\mu \xi^a + \mathrm{i} g f^{abc} A^b_\mu \xi^c$

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)
- Yang-Mills theories: $A^a_\mu \simeq A^a_\mu +
 abla_\mu \xi^a + \mathrm{i} g f^{abc} A^b_\mu \xi^c$

Gravity:
$$g_{\mu\nu} \simeq g_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu} = g_{\mu\nu} + 2\nabla_{(\mu}\xi_{
u)}$$

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)
- Yang-Mills theories: $A^a_\mu \simeq A^a_\mu +
 abla_\mu \xi^a + \mathrm{i} g f^{abc} A^b_\mu \xi^c$

Gravity:
$$g_{\mu\nu} \simeq g_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu} = g_{\mu\nu} + 2\nabla_{(\mu}\xi_{
u)}$$

•
$$\mathcal{O} \equiv \{\text{Observables}\} \equiv \frac{\{\text{Field configurations}\}}{\{\text{Local gauge transformations}\}}$$

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)
- Yang-Mills theories: $A^a_\mu \simeq A^a_\mu +
 abla_\mu \xi^a + \mathrm{i} g f^{abc} A^b_\mu \xi^c$

Gravity:
$$g_{\mu
u} \simeq g_{\mu
u} + \mathcal{L}_{\xi}g_{\mu
u} = g_{\mu
u} + 2
abla_{(\mu}\xi_{
u)}$$

- $\mathcal{O} \equiv \{\text{Observables}\} \equiv \frac{\{\text{Field configurations}\}}{\{\text{Local gauge transformations}\}}$
- Example: QED on generic fixed manifold \mathcal{M}

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)
- Yang-Mills theories: $A^a_\mu \simeq A^a_\mu +
 abla_\mu \xi^a + \mathrm{i} g f^{abc} A^b_\mu \xi^c$

Gravity:
$$g_{\mu
u} \simeq g_{\mu
u} + \mathcal{L}_{\xi}g_{\mu
u} = g_{\mu
u} + 2
abla_{(\mu}\xi_{
u)}$$

- $\mathcal{O} \equiv \{\text{Observables}\} \equiv \frac{\{\text{Field configurations}\}}{\{\text{Local gauge transformations}\}}$
- Example: QED on generic fixed manifold \mathcal{M}
- $\mathcal{O} \equiv \{A_{\mu}\}/\{A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\xi \colon \operatorname{supp} \xi \text{ is compact}\}$

- Mathematical description of physical theories contains often redundant information
- Field configurations that only differ by a gauge transformation are physically indistinguishable (≃)
- Yang-Mills theories: $A^a_\mu \simeq A^a_\mu +
 abla_\mu \xi^a + \mathrm{i} g f^{abc} A^b_\mu \xi^c$

Gravity:
$$g_{\mu
u} \simeq g_{\mu
u} + \mathcal{L}_{\xi}g_{\mu
u} = g_{\mu
u} + 2
abla_{(\mu}\xi_{
u)}$$

- $\mathcal{O} \equiv \{\text{Observables}\} \equiv \frac{\{\text{Field configurations}\}}{\{\text{Local gauge transformations}\}}$
- Example: QED on generic fixed manifold \mathcal{M}
- $\mathcal{O} \equiv \{A_{\mu}\}/\{A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\xi \colon \operatorname{supp} \xi \text{ is compact}\}$
- It turns out that $\mathcal{O} = \{F_{\mu\nu}\} \otimes (\{\text{electric charges}\} \oplus \{\text{Aharonov-Bohm phases}\})$ Becker/Schenkel/Szabo '14

 \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult

- \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult
- Solution known for Yang-Mills theories, in perturbation theory, with a trivial background topology

- \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult
- Solution known for Yang-Mills theories, in perturbation theory, with a trivial background topology
- Use BV formalism (extension of BRST, which is extension of Fadeev-Popov) with Slavnov-Taylor differential \$

- \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult
- Solution known for Yang-Mills theories, in perturbation theory, with a trivial background topology
- Use BV formalism (extension of BRST, which is extension of Fadeev-Popov) with Slavnov-Taylor differential \$
- Gauge transformations with gauge parameter replaced by ghost: $\hat{s} A^a_\mu = \nabla_\mu c^a + igf^{abc} A^b_\mu c^c$

- \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult
- Solution known for Yang-Mills theories, in perturbation theory, with a trivial background topology
- Use BV formalism (extension of BRST, which is extension of Fadeev-Popov) with Slavnov-Taylor differential \$
- Gauge transformations with gauge parameter replaced by ghost: $\hat{s} A^a_\mu = \nabla_\mu c^a + igf^{abc} A^b_\mu c^c$
- Also action on ghost c^a, antighost c
 ^a, auxiliary field B^a, antifields (consistent treatment of EOM's), and s² = 0.

- \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult
- Solution known for Yang-Mills theories, in perturbation theory, with a trivial background topology
- Use BV formalism (extension of BRST, which is extension of Fadeev-Popov) with Slavnov-Taylor differential \$
- Gauge transformations with gauge parameter replaced by ghost: $\hat{s} A^a_\mu = \nabla_\mu c^a + igf^{abc} A^b_\mu c^c$
- Also action on ghost c^a, antighost c
 ^a, auxiliary field B^a, antifields (consistent treatment of EOM's), and s
 ² = 0.
- Observables are annihilated by ŝ, and two observables are identified if they differ by ŝ-exact term (cohomology of ŝ)

- \blacksquare In general, determination of ${\mathcal O}$ is extremely difficult
- Solution known for Yang-Mills theories, in perturbation theory, with a trivial background topology
- Use BV formalism (extension of BRST, which is extension of Fadeev-Popov) with Slavnov-Taylor differential \$
- Gauge transformations with gauge parameter replaced by ghost: $\hat{s} A^a_\mu = \nabla_\mu c^a + igf^{abc} A^b_\mu c^c$
- Also action on ghost c^a, antighost c
 ^a, auxiliary field B^a, antifields (consistent treatment of EOM's), and s
 ² = 0.
- Observables are annihilated by ŝ, and two observables are identified if they differ by ŝ-exact term (cohomology of ŝ)
- $\mathcal{O} = \{f(F^a_{\mu\nu}, \nabla_{\rho}F^a_{\mu\nu}, \ldots)\}$ for suitable f (e.g., smooth & trace) Barnich/Brandt/Henneaux '00

Observables

For gravity: hopeless in the general case, but examples

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor
- Perturbed background: $\tilde{g}_{\mu
 u} = g_{\mu
 u} + h_{\mu
 u}$

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor
- Perturbed background: $\tilde{g}_{\mu
 u} = g_{\mu
 u} + h_{\mu
 u}$
- Linearise curvature tensors around background: $\tilde{R}_{\mu\nu\rho\sigma}[\tilde{g}] = R_{\mu\nu\rho\sigma}[g] + R^{(1)}_{\mu\nu\rho\sigma}[g,h] + O(h^2)$

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor
- Perturbed background: $ilde{g}_{\mu
 u} = g_{\mu
 u} + h_{\mu
 u}$
- Linearise curvature tensors around background: $\tilde{R}_{\mu\nu\rho\sigma}[\tilde{g}] = R_{\mu\nu\rho\sigma}[g] + R^{(1)}_{\mu\nu\rho\sigma}[g,h] + O(h^2)$
- Under a gauge transformation of the metric we have $R^{(1)}_{\mu\nu\rho\sigma}[g,h] \rightarrow R^{(1)}_{\mu\nu\rho\sigma}[g,h] + \mathcal{L}_{\xi}R_{\mu\nu\rho\sigma}[g]$

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor
- Perturbed background: $\tilde{g}_{\mu
 u} = g_{\mu
 u} + h_{\mu
 u}$
- Linearise curvature tensors around background: $\tilde{R}_{\mu\nu\rho\sigma}[\tilde{g}] = R_{\mu\nu\rho\sigma}[g] + R^{(1)}_{\mu\nu\rho\sigma}[g,h] + O(h^2)$
- Under a gauge transformation of the metric we have $R^{(1)}_{\mu\nu\rho\sigma}[g,h] \rightarrow R^{(1)}_{\mu\nu\rho\sigma}[g,h] + \mathcal{L}_{\xi}R_{\mu\nu\rho\sigma}[g]$
- For conformally flat spacetimes: C_{μνρσ}[g] = 0, thus C⁽¹⁾_{μνρσ}[g, h] is gauge-invariant to linear order

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor
- Perturbed background: $ilde{g}_{\mu
 u} = g_{\mu
 u} + h_{\mu
 u}$
- Linearise curvature tensors around background: $\tilde{R}_{\mu\nu\rho\sigma}[\tilde{g}] = R_{\mu\nu\rho\sigma}[g] + R^{(1)}_{\mu\nu\rho\sigma}[g,h] + O(h^2)$
- Under a gauge transformation of the metric we have $R^{(1)}_{\mu\nu\rho\sigma}[g,h] \rightarrow R^{(1)}_{\mu\nu\rho\sigma}[g,h] + \mathcal{L}_{\xi}R_{\mu\nu\rho\sigma}[g]$
- For conformally flat spacetimes: C_{μνρσ}[g] = 0, thus C⁽¹⁾_{μνρσ}[g, h] is gauge-invariant to linear order
- For de Sitter: $R_{\mu\nu\rho\sigma}[g] = 2H^2 g_{\mu[\rho}g_{\sigma]\nu}$, thus $\mathcal{L}_{\xi}R^{\mu\nu}{}_{\rho\sigma} = 0$ and $R^{(1)\mu\nu}{}_{\rho\sigma}[g,h]$ is gauge-invariant to linear order

- For gravity: hopeless in the general case, but examples
- For linearised gravity in conformally flat spacetimes, e.g. FLRW: Weyl tensor, for de Sitter: Riemann tensor
- Perturbed background: $\tilde{g}_{\mu
 u} = g_{\mu
 u} + h_{\mu
 u}$
- Linearise curvature tensors around background: $\tilde{R}_{\mu\nu\rho\sigma}[\tilde{g}] = R_{\mu\nu\rho\sigma}[g] + R^{(1)}_{\mu\nu\rho\sigma}[g,h] + O(h^2)$
- Under a gauge transformation of the metric we have $R^{(1)}_{\mu\nu\rho\sigma}[g,h] \rightarrow R^{(1)}_{\mu\nu\rho\sigma}[g,h] + \mathcal{L}_{\xi}R_{\mu\nu\rho\sigma}[g]$
- For conformally flat spacetimes: C_{μνρσ}[g] = 0, thus C⁽¹⁾_{μνρσ}[g, h] is gauge-invariant to linear order
- For de Sitter: $R_{\mu\nu\rho\sigma}[g] = 2H^2 g_{\mu[\rho}g_{\sigma]\nu}$, thus $\mathcal{L}_{\xi}R^{\mu\nu}{}_{\rho\sigma} = 0$ and $R^{(1)\mu\nu}{}_{\rho\sigma}[g,h]$ is gauge-invariant to linear order
- Further advantage: $C^{(1)}_{\mu\nu\rho\sigma}$ and $R^{(1)\mu\nu}{}_{\rho\sigma}$ depend locally on $h_{\mu\nu}$

Interactions

 Gravity perturbatively non-renormalizable: treat as effective field theory Donoghue '95

- Gravity perturbatively non-renormalizable: treat as effective field theory Donoghue '95
- Two types: matter-graviton and graviton self-interactions (separate via 1/N-expansion with N matter fields)

- Gravity perturbatively non-renormalizable: treat as effective field theory Donoghue '95
- Two types: matter-graviton and graviton self-interactions (separate via 1/N-expansion with N matter fields)
- Use in-in (Schwinger-Keldysh) perturbation theory to obtain expectation values instead of S-Matrix elements Higuchi/Lee '09

- Gravity perturbatively non-renormalizable: treat as effective field theory Donoghue '95
- Two types: matter-graviton and graviton self-interactions (separate via 1/N-expansion with N matter fields)
- Use in-in (Schwinger-Keldysh) perturbation theory to obtain expectation values instead of S-Matrix elements Higuchi/Lee '09
- Many example calculations in Poincaré patch, consistent treatment of UV divergences Woodard/Tsamis/Prokopec/Park/Miao/... '92-'15

- Gravity perturbatively non-renormalizable: treat as effective field theory Donoghue '95
- Two types: matter-graviton and graviton self-interactions (separate via 1/N-expansion with N matter fields)
- Use in-in (Schwinger-Keldysh) perturbation theory to obtain expectation values instead of S-Matrix elements Higuchi/Lee '09
- Many example calculations in Poincaré patch, consistent treatment of UV divergences Woodard/Tsamis/Prokopec/Park/Miao/... '92-'15
- Results generally have non-trivial time dependence and IR divergences

- Gravity perturbatively non-renormalizable: treat as effective field theory Donoghue '95
- Two types: matter-graviton and graviton self-interactions (separate via 1/N-expansion with N matter fields)
- Use in-in (Schwinger-Keldysh) perturbation theory to obtain expectation values instead of S-Matrix elements Higuchi/Lee '09
- Many example calculations in Poincaré patch, consistent treatment of UV divergences Woodard/Tsamis/Prokopec/Park/Miao/... '92-'15
- Results generally have non-trivial time dependence and IR divergences
- Riemann correlator including loop corrections from conformal fields is IR-finite MBF/Roura/Verdaguer '12-'15

General matter loop corrections

 In principle straightforward: integrate matter fields out, obtain effective action for gravitons (self-energy), calculate graviton correlator, apply differential operator to obtain Riemann correlator

General matter loop corrections

 In principle straightforward: integrate matter fields out, obtain effective action for gravitons (self-energy), calculate graviton correlator, apply differential operator to obtain Riemann correlator

• Use CTP generating functional

$$Z = \int \exp\left(iS[h_{\mu\nu}^+, \phi^+] - iS[h_{\mu\nu}^-, \phi^-]\right) \mathcal{D}h_{\mu\nu}^{\pm} \mathcal{D}\phi^{\pm} \text{ with } S[h_{\mu\nu}, \phi] = \kappa^{-2}S_{\text{EH}}[h_{\mu\nu}] + S_{\text{HD}}[h_{\mu\nu}] + iS_{\text{M}}[h_{\mu\nu}, \phi]$$

General matter loop corrections

- In principle straightforward: integrate matter fields out, obtain effective action for gravitons (self-energy), calculate graviton correlator, apply differential operator to obtain Riemann correlator
- Use CTP generating functional $Z = \int \exp\left(iS[h_{\mu\nu}^+, \phi^+] - iS[h_{\mu\nu}^-, \phi^-]\right) \mathcal{D}h_{\mu\nu}^{\pm} \mathcal{D}\phi^{\pm} \text{ with }$ $S[h_{\mu\nu}, \phi] = \kappa^{-2}S_{\mathsf{EH}}[h_{\mu\nu}] + S_{\mathsf{HD}}[h_{\mu\nu}] + iS_{\mathsf{M}}[h_{\mu\nu}, \phi]$
- Integrate out matter fields, renormalise (same counterterms as in flat space!), obtain effective action for gravitons $S_{\text{eff}} = S_{\text{G}}[h_{\mu\nu}^{+}] - S_{\text{G}}[h_{\mu\nu}^{-}] + \Sigma[h_{\mu\nu}^{\pm}] \text{ with non-local part } \Sigma[h_{\mu\nu}^{\pm}] = 1/4 \iint h_{\mu\nu}^{\pm}(x) \langle T_{\pm}^{\mu\nu}(x) T_{\pm}^{\rho\sigma}(x') \rangle_{\text{c}} h_{\rho\sigma}^{\pm}(x') \sqrt{-g} \, \mathrm{d}^{4}x \sqrt{-g} \, \mathrm{d}^{4}x'$

General matter loop corrections

- In principle straightforward: integrate matter fields out, obtain effective action for gravitons (self-energy), calculate graviton correlator, apply differential operator to obtain Riemann correlator
- Use CTP generating functional $Z = \int \exp\left(iS[h_{\mu\nu}^+, \phi^+] - iS[h_{\mu\nu}^-, \phi^-]\right) \mathcal{D}h_{\mu\nu}^{\pm} \mathcal{D}\phi^{\pm} \text{ with }$ $S[h_{\mu\nu}, \phi] = \kappa^{-2}S_{\mathsf{EH}}[h_{\mu\nu}] + S_{\mathsf{HD}}[h_{\mu\nu}] + iS_{\mathsf{M}}[h_{\mu\nu}, \phi]$
- Integrate out matter fields, renormalise (same counterterms as in flat space!), obtain effective action for gravitons $S_{eff} = S_{G}[h_{\mu\nu}^{+}] S_{G}[h_{\mu\nu}^{-}] + \Sigma[h_{\mu\nu}^{\pm}] \text{ with non-local part } \Sigma[h_{\mu\nu}^{\pm}] = 1/4 \iint h_{\mu\nu}^{\pm}(x) \langle T_{\pm}^{\mu\nu}(x) T_{\pm}^{\rho\sigma}(x') \rangle_{c} h_{\sigma\sigma}^{\pm}(x') \sqrt{-g} d^{4}x \sqrt{-g} d^{4}x'$ Correction to graviton propagator is given by $\frac{2}{4} \int \int C_{\pm}^{\pm}(x) \langle T_{\pm}^{\mu\nu}(x) T_{\pm}^{\rho\sigma}(x') \rangle_{c} C_{\pm}^{\pm}(x') \langle T_{\pm}^{\mu\nu}(x) T_{\pm}^{\rho\sigma}(x') \rangle_{c} C_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x) T_{\pm}^{\mu\nu}(x') \rangle_{c} C_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \rangle_{c} C_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \rangle_{c} C_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \rangle_{c} C_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \rangle_{c} C_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \langle T_{\pm}^{\mu\nu}(x') \rangle_{c} C_{\pm}^{\mu\nu}$
 - $\kappa^2/4 \iint G^{\pm}_{\alpha\beta\mu\nu}(x,y) \langle T^{\mu\nu}_{\pm}(y) T^{\rho\sigma}_{\pm}(y') \rangle_c G^{\pm}_{\rho\sigma\gamma\delta}(y',x')$, where $G_{\alpha\beta\mu\nu}$ is the propagator in some favourite gauge (and local terms for time-/anti-timeordered correlators)
- In principle straightforward: integrate matter fields out, obtain effective action for gravitons (self-energy), calculate graviton correlator, apply differential operator to obtain Riemann correlator
- Use CTP generating functional $Z = \int \exp\left(iS[h_{\mu\nu}^+, \phi^+] - iS[h_{\mu\nu}^-, \phi^-]\right) \mathcal{D}h_{\mu\nu}^{\pm} \mathcal{D}\phi^{\pm} \text{ with }$ $S[h_{\mu\nu}, \phi] = \kappa^{-2}S_{\mathsf{EH}}[h_{\mu\nu}] + S_{\mathsf{HD}}[h_{\mu\nu}] + iS_{\mathsf{M}}[h_{\mu\nu}, \phi]$
- Integrate out matter fields, renormalise (same counterterms as in flat space!), obtain effective action for gravitons
 S_{eff} = S_G[h⁺_{µν}] - S_G[h⁻_{µν}] + Σ[h[±]_{µν}] with non-local part Σ[h[±]_{µν}] = 1/4 ∫∫ h[±]_{µν}(x) ⟨ T^{µν}_±(x) T^{ρσ}_±(x') ⟩_c h[±]_{ρσ}(x') √-g d⁴x √-g d⁴x'

 Correction to graviton propagator is given by
- $\kappa^2/4 \int \int G^{\pm}_{\alpha\beta\mu\nu}(x,y) \langle T^{\mu\nu}_{\pm}(y) T^{\rho\sigma}_{\pm}(y') \rangle_c G^{\pm}_{\rho\sigma\gamma\delta}(y',x')$, where $G_{\alpha\beta\mu\nu}$ is the propagator in some favourite gauge (and local terms for time-/anti-timeordered correlators)
- Calculation is long and unilluminating

General matter loop corrections

Solution: explore Bianchi identities

- Solution: explore Bianchi identities
- Graviton propagator inverts differential operator obtained from linearising Einstein tensor, up to gauge terms

- Solution: explore Bianchi identities
- Graviton propagator inverts differential operator obtained from linearising Einstein tensor, up to gauge terms

•
$$G_{\mu\nu}^{(1)} = P_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma}$$
:
 $P^{\mu\nu\rho\sigma}(x)G_{\rho\sigma\alpha\beta}^{++}(x,x') = \delta_{\alpha}^{(\mu}\delta_{\beta}^{(\nu)}\delta(x,x') + \text{gauge terms}$

- Solution: explore Bianchi identities
- Graviton propagator inverts differential operator obtained from linearising Einstein tensor, up to gauge terms
- G⁽¹⁾_{μν} = P_{μν}^{ρσ} h_{ρσ}: P^{μνρσ}(x)G⁺⁺_{ρσαβ}(x, x') = δ^{(μ}_αδ^(ν)_βδ(x, x') + gauge terms
 Apply P^{μνρσ} to correction term for graviton Wightman function, both at x and x'

- Solution: explore Bianchi identities
- Graviton propagator inverts differential operator obtained from linearising Einstein tensor, up to gauge terms
- $G_{\mu\nu}^{(1)} = P_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma}$: $P^{\mu\nu\rho\sigma}(x)G_{\rho\sigma\alpha\beta}^{++}(x,x') = \delta_{\alpha}^{(\mu}\delta_{\beta}^{(\nu)}\delta(x,x') + \text{gauge terms}$
- Apply $P^{\mu\nu\rho\sigma}$ to correction term for graviton Wightman function, both at x and x'
- Local terms do not contribute for Wightman function, gauge terms do not contribute because stress tensor is conserved

- Solution: explore Bianchi identities
- Graviton propagator inverts differential operator obtained from linearising Einstein tensor, up to gauge terms
- $G_{\mu\nu}^{(1)} = P_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma}$: $P^{\mu\nu\rho\sigma}(x)G_{\rho\sigma\alpha\beta}^{++}(x,x') = \delta_{\alpha}^{(\mu}\delta_{\beta}^{(\nu)}\delta(x,x') + \text{gauge terms}$
- Apply $P^{\mu\nu\rho\sigma}$ to correction term for graviton Wightman function, both at x and x'
- Local terms do not contribute for Wightman function, gauge terms do not contribute because stress tensor is conserved

$$\left\langle \tilde{G}^{\mu}{}_{\nu}(x)\tilde{G}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c} = \frac{\kappa^{4}}{4}\left\langle T^{\mu}{}_{\nu}(x)T^{\rho'}{}_{\sigma'}(x')\right\rangle_{c}$$

- Solution: explore Bianchi identities
- Graviton propagator inverts differential operator obtained from linearising Einstein tensor, up to gauge terms
- $G_{\mu\nu}^{(1)} = P_{\mu\nu}{}^{\rho\sigma}h_{\rho\sigma}$: $P^{\mu\nu\rho\sigma}(x)G_{\rho\sigma\alpha\beta}^{++}(x,x') = \delta_{\alpha}^{(\mu}\delta_{\beta}^{(\nu)}\delta(x,x') + \text{gauge terms}$
- Apply $P^{\mu\nu\rho\sigma}$ to correction term for graviton Wightman function, both at x and x'
- Local terms do not contribute for Wightman function, gauge terms do not contribute because stress tensor is conserved

$$\left\langle \tilde{G}^{\mu}{}_{\nu}(x)\tilde{G}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c} = \frac{\kappa^{4}}{4} \left\langle T^{\mu}{}_{\nu}(x)T^{\rho'}{}_{\sigma'}(x')\right\rangle_{c} \\ \left\langle \tilde{R}^{\mu}{}_{\nu}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c} = \frac{\kappa^{4}}{4} \left\langle \left[T^{\mu}{}_{\nu}(x) - \frac{1}{2}\delta^{\mu}{}_{\nu}T(x)\right]\left[T^{\rho'}{}_{\sigma'}(x') - \frac{1}{2}\delta^{\rho'}{}_{\sigma'}T(x')\right]\right\rangle_{c}$$

General matter loop corrections

 Invariance under spatial rotations and translations manifest throughout calculation

General matter loop corrections

• Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl
- Apply Bianchi identities: $\nabla_{\mu} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} = \left(\delta^{\nu}_{\alpha}\delta^{\beta}_{[\sigma} \frac{1}{6}\delta^{\beta}_{\alpha}\delta^{\nu}_{[\sigma} \right) \nabla_{\rho]} \left\langle \tilde{R}^{\alpha}{}_{\beta}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c}$

General matter loop corrections

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl
- Apply Bianchi identities: $\nabla_{\mu} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} = \left(\delta^{\nu}_{\alpha}\delta^{\beta}_{[\sigma} \frac{1}{6}\delta^{\beta}_{\alpha}\delta^{\nu}_{[\sigma} \right) \nabla_{\rho]} \left\langle \tilde{R}^{\alpha}{}_{\beta}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c}$

• Make most general ansatz for $\left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c}$

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl
- Apply Bianchi identities: $\nabla_{\mu} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} = \left(\delta^{\nu}_{\alpha}\delta^{\beta}_{[\sigma} \frac{1}{6}\delta^{\beta}_{\alpha}\delta^{\nu}_{[\sigma} \right) \nabla_{\rho]} \left\langle \tilde{R}^{\alpha}{}_{\beta}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c}$
- Make most general ansatz for $\left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c}$ compatible with manifestly preserved invariance under spatial rotations and translations

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl
- Apply Bianchi identities: $\nabla_{\mu} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} = \left(\delta^{\nu}_{\alpha}\delta^{\beta}_{[\sigma} \frac{1}{6}\delta^{\beta}_{\alpha}\delta^{\nu}_{[\sigma} \right) \nabla_{\rho]} \left\langle \tilde{R}^{\alpha}{}_{\beta}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c}$
- Make most general ansatz for $\left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c}$ compatible with manifestly preserved invariance under spatial rotations and translations, tensor symmetries

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl
- Apply Bianchi identities: $\nabla_{\mu} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} = \left(\delta^{\nu}_{\alpha}\delta^{\beta}_{[\sigma} \frac{1}{6}\delta^{\beta}_{\alpha}\delta^{\nu}_{[\sigma} \right) \nabla_{\rho]} \left\langle \tilde{R}^{\alpha}{}_{\beta}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c}$
- Make most general ansatz for $\left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c}$ compatible with manifestly preserved invariance under spatial rotations and translations, tensor symmetries
- Assume stress tensor two-point function is dS-invariant (satisfied at least – for all free theories)

- Invariance under spatial rotations and translations manifest throughout calculation – most general form of Riemann two-point function depends on η , η' and $(\mathbf{x} - \mathbf{x}')^2$, or alternatively on η , η' and $Z = [\eta^2 + (\eta')^2 - (\mathbf{x} - \mathbf{x}')^2]/(2\eta\eta')$
- Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and Weyl-Weyl
- Apply Bianchi identities: $\nabla_{\mu} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} = \left(\delta^{\nu}_{\alpha}\delta^{\beta}_{[\sigma} \frac{1}{6}\delta^{\beta}_{\alpha}\delta^{\nu}_{[\sigma} \right) \nabla_{\rho]} \left\langle \tilde{R}^{\alpha}{}_{\beta}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c}$
- Make most general ansatz for $\left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x')\right\rangle_{c}$ compatible with manifestly preserved invariance under spatial rotations and translations, tensor symmetries
- Assume stress tensor two-point function is dS-invariant (satisfied at least – for all free theories)
- Evaluating Bianchi identities gives dS-invariant result!

$$\langle T_{\mu\nu}(x) T_{\rho'\sigma'}(x') \rangle_{c} = g_{\mu\nu}g_{\rho'\sigma'}{}^{(1)}\mathcal{S}(Z) + (g_{\mu\nu}n_{\rho'}n_{\sigma'} + g_{\rho'\sigma'}n_{\mu}n_{\nu}){}^{(2)}\mathcal{S}(Z) + n_{\mu}n_{\nu}n_{\rho'}n_{\sigma'}{}^{(3)}\mathcal{S}(Z) + 4n_{(\mu}g_{\nu)(\rho'}n_{\sigma')}{}^{(4)}\mathcal{S}(Z) + 2g_{\mu(\rho'}g_{\sigma')\nu}{}^{(5)}\mathcal{S}(Z)$$

$$\langle T_{\mu\nu}(x) T_{\rho'\sigma'}(x') \rangle_{c} = g_{\mu\nu} g_{\rho'\sigma'}{}^{(1)} \mathcal{S}(Z) + (g_{\mu\nu} n_{\rho'} n_{\sigma'} + g_{\rho'\sigma'} n_{\mu} n_{\nu}) {}^{(2)} \mathcal{S}(Z) + n_{\mu} n_{\nu} n_{\rho'} n_{\sigma'}{}^{(3)} \mathcal{S}(Z) + 4 n_{(\mu} g_{\nu)(\rho'} n_{\sigma'}) {}^{(4)} \mathcal{S}(Z) + 2 g_{\mu(\rho'} g_{\sigma')\nu}{}^{(5)} \mathcal{S}(Z)$$

$$\begin{split} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma}(x)\tilde{R}^{\rho'}{}_{\sigma'}(x') \right\rangle_{c} \\ &= \frac{\kappa^{4}}{30} \bigg[2\delta^{\mu}_{[\rho}\delta^{\nu}_{\sigma]} \left(\delta^{\rho'}_{\sigma'} - n^{\rho'}n_{\sigma'} \right) - 6\delta^{[\mu}_{[\rho}n^{\nu]}n_{\sigma]}\delta^{\rho'}_{\sigma'} \\ &- 3\delta^{[\mu}_{[\rho} \left(n^{\nu]}g^{\rho'}_{\sigma]}n_{\sigma'} + n^{\nu]}g_{\sigma]\sigma'}n^{\rho'} + n_{\sigma]}g^{\nu]\rho'}n_{\sigma'} + n_{\sigma]}g^{\nu]}_{\sigma'}n^{\rho'} \bigg) \\ &- 3 \left(\delta^{[\mu}_{[\rho} - 2n^{[\mu}n_{[\rho}] \left(g^{\nu]\rho'}g_{\sigma]\sigma'} + g^{\nu]}_{\sigma'}g^{\rho'}_{\sigma]} \right) \bigg] \times \\ &\times \bigg[-^{(2)}\mathcal{S}(Z) - {}^{(3)}\mathcal{S}(Z) - (4 - 11Z){}^{(4)}\mathcal{S}(Z) + (1 - Z)(7 - 4Z){}^{(5)}\mathcal{S}(Z) \bigg] \end{split}$$

General matter loop corrections

• Apply Bianchi identities again: $\nabla_{[\alpha} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma]}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c} = \left(\delta^{\mu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\nu}_{\gamma} - \delta^{\nu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\mu}_{\gamma} + \frac{1}{3} \delta^{[\mu}_{[\alpha} \delta^{\nu]}_{\rho} \delta^{\beta}_{\sigma]} \delta^{\delta}_{\gamma} \right) \nabla_{\beta} \left\langle \tilde{R}^{\gamma}{}_{\delta}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c}$

- Apply Bianchi identities again: $\nabla_{[\alpha} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma]}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c} = \left(\delta^{\mu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\nu}_{\gamma} \delta^{\nu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\mu}_{\gamma} + \frac{1}{3} \delta^{[\mu}_{[\alpha} \delta^{\nu]}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\delta}_{\gamma} \right) \nabla_{\beta} \left\langle \tilde{R}^{\gamma}{}_{\delta}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c}$
- Again, make most general ansatz for the Weyl-Weyl correlator compatible with invariance under spatial rotations and translations

- Apply Bianchi identities again: $\nabla_{[\alpha} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma]}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c} = \left(\delta^{\mu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\nu}_{\gamma} \delta^{\nu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\mu}_{\gamma} + \frac{1}{3} \delta^{[\mu}_{[\alpha} \delta^{\nu]}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\delta}_{\gamma} \right) \nabla_{\beta} \left\langle \tilde{R}^{\gamma}{}_{\delta}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c}$
- Again, make most general ansatz for the Weyl-Weyl correlator compatible with invariance under spatial rotations and translations
- Evaluating Bianchi identities gives again dS-invariant result!

- Apply Bianchi identities again: $\nabla_{[\alpha} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma]}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c} = \left(\delta^{\mu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\nu}_{\gamma} \delta^{\nu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\mu}_{\gamma} + \frac{1}{3} \delta^{[\mu}_{[\alpha} \delta^{\nu]}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\delta}_{\gamma} \right) \nabla_{\beta} \left\langle \tilde{R}^{\gamma}{}_{\delta}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c}$
- Again, make most general ansatz for the Weyl-Weyl correlator compatible with invariance under spatial rotations and translations
- Evaluating Bianchi identities gives again dS-invariant result!

$$\left\{ \tilde{C}^{ab}{}_{cd}(x)\tilde{C}^{m'n'}{}_{p'q'}(x') \right\}_{c} = \sum_{k=1}^{3} {}^{(k)}\mathcal{C}^{[ab]}{}_{[cd]}{}^{[m'n']}{}_{[p'q']}{}^{(k)}\mathcal{D}(Z(x,x')) \right\}$$

General matter loop corrections

- Apply Bianchi identities again: $\nabla_{[\alpha} \left\langle \tilde{C}^{\mu\nu}{}_{\rho\sigma]}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c} = \left(\delta^{\mu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\nu}_{\gamma} \delta^{\nu}_{[\alpha} \delta^{\beta}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\mu}_{\gamma} + \frac{1}{3} \delta^{[\mu}_{[\alpha} \delta^{\nu]}_{\rho} \delta^{\delta}_{\sigma]} \delta^{\delta}_{\gamma} \right) \nabla_{\beta} \left\langle \tilde{R}^{\gamma}{}_{\delta}(x) \tilde{C}^{\mu'\nu'}{}_{\rho'\sigma'}(x') \right\rangle_{c}$
- Again, make most general ansatz for the Weyl-Weyl correlator compatible with invariance under spatial rotations and translations
- Evaluating Bianchi identities gives again dS-invariant result!

$$\left\{ \tilde{C}^{ab}{}_{cd}(x)\tilde{C}^{m'n'}{}_{p'q'}(x') \right\}_{c} = \sum_{k=1}^{3} {}^{(k)}\mathcal{C}^{[ab]}{}_{[cd]}{}^{[m'n']}{}_{[p'q']}{}^{(k)}\mathcal{D}(Z(x,x')) \right\}$$

• ${}^{(k)}\mathcal{D}_{abcdm'n'p'q'}$ are maximally symmetric bitensors incorporating all symmetries and tracelessness, e.g., ${}^{(1)}\mathcal{D}_{abcdm'n'p'q'} = g_{ac}g_{bd}g_{m'p'}g_{n'q'} - 6g_{ac}g_{m'p'}g_{b(n'}g_{q'})_d + 4g_{a(m'}g_{p'})_cg_{b(n'}g_{q'})_d$

General matter loop corrections

^(k)D(Z) are functions of the stress tensor components and function
 ⁽²⁾C(Z), given by

$${}^{(2)}\mathcal{C}(Z) = rac{\kappa^4}{15(1+Z)^4} igg[rac{Z(1+Z^2)}{(1-Z)^4} \int (1-Z)^4 S(Z) \, \mathrm{d}Z - \int Z(1+Z^2) S(Z) \, \mathrm{d}Z igg]$$

with S(Z) certain combination of stress tensor components

General matter loop corrections

^(k)D(Z) are functions of the stress tensor components and function
 ⁽²⁾C(Z), given by

$${}^{(2)}\mathcal{C}(Z) = rac{\kappa^4}{15(1+Z)^4} igg[rac{Z(1+Z^2)}{(1-Z)^4} \int (1-Z)^4 S(Z) \, \mathrm{d}Z - \int Z(1+Z^2) S(Z) \, \mathrm{d}Z igg]$$

with S(Z) certain combination of stress tensor components

Eliminate one integration constant by demanding that Weyl-Weyl correlator is regular at antipodal points Z = 1

General matter loop corrections

^(k)D(Z) are functions of the stress tensor components and function
 ⁽²⁾C(Z), given by

$${}^{(2)}\mathcal{C}(Z) = rac{\kappa^4}{15(1+Z)^4} igg[rac{Z(1+Z^2)}{(1-Z)^4} \int (1-Z)^4 S(Z) \, \mathrm{d}Z - \int Z(1+Z^2) S(Z) \, \mathrm{d}Z igg]$$

with S(Z) certain combination of stress tensor components

- Eliminate one integration constant by demanding that Weyl-Weyl correlator is regular at antipodal points Z = 1
- Other integration constant corresponds to adding arbitrary multiple of tree level result

General matter loop corrections

^(k)D(Z) are functions of the stress tensor components and function
 ⁽²⁾C(Z), given by

$${}^{(2)}\mathcal{C}(Z) = \frac{\kappa^4}{15(1+Z)^4} \left[\frac{Z(1+Z^2)}{(1-Z)^4} \int (1-Z)^4 S(Z) \, \mathrm{d}Z - \int Z(1+Z^2) S(Z) \, \mathrm{d}Z \right]$$

with S(Z) certain combination of stress tensor components

- Eliminate one integration constant by demanding that Weyl-Weyl correlator is regular at antipodal points Z = 1
- Other integration constant corresponds to adding arbitrary multiple of tree level result
- Fall-off behaviour similar to conformal matter case: ${}^{(k)}\mathcal{D}(Z) \sim \kappa^2 H^6 Z^{-2} + \kappa^4 H^8 (Z^{-2} + Z^{-3} \ln Z)$ MBF/Roura/Verdaguer '15

Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes

• Conformally flat $g_{\mu\nu} \,\mathrm{d} x^{\mu} \,\mathrm{d} x^{\nu} = -\,\mathrm{d} t^2 + a^2(t) \,\mathrm{d} x^2$

- Conformally flat $g_{\mu\nu} \,\mathrm{d} x^\mu \,\mathrm{d} x^
 u = -\,\mathrm{d} t^2 + a^2(t) \,\mathrm{d} x^2$
- Relevant for cosmology: quasi-dS expansion (slow-roll) $a(t) = \exp(Ht)$ with Hubble parameter $H(t) = \dot{a}/a$ and slow-roll parameters $\epsilon(t) = -\dot{H}/H^2$, $\delta(t) = \dot{\epsilon}/(2H\epsilon)$, ...

- Conformally flat $g_{\mu\nu} \,\mathrm{d} x^\mu \,\mathrm{d} x^
 u = -\,\mathrm{d} t^2 + a^2(t) \,\mathrm{d} x^2$
- Relevant for cosmology: quasi-dS expansion (slow-roll) $a(t) = \exp(Ht)$ with Hubble parameter $H(t) = \dot{a}/a$ and slow-roll parameters $\epsilon(t) = -\dot{H}/H^2$, $\delta(t) = \dot{\epsilon}/(2H\epsilon)$, ...
- Generally IR divergences worse, Fourier transform for MMC scalar and TTS graviton diverges like $\sim |\pmb{p}|^{-1-\epsilon}$

- Conformally flat $g_{\mu\nu} \,\mathrm{d} x^\mu \,\mathrm{d} x^
 u = -\,\mathrm{d} t^2 + a^2(t) \,\mathrm{d} x^2$
- Relevant for cosmology: quasi-dS expansion (slow-roll) $a(t) = \exp(Ht)$ with Hubble parameter $H(t) = \dot{a}/a$ and slow-roll parameters $\epsilon(t) = -\dot{H}/H^2$, $\delta(t) = \dot{\epsilon}/(2H\epsilon)$, ...
- Generally IR divergences worse, Fourier transform for MMC scalar and TTS graviton diverges like $\sim |\pmb{p}|^{-1-\epsilon}$
- Correlation functions of linearised Weyl tensor IR-finite for small
 ϵ MBF '14

- Conformally flat $g_{\mu\nu} \,\mathrm{d} x^\mu \,\mathrm{d} x^
 u = -\,\mathrm{d} t^2 + a^2(t) \,\mathrm{d} \mathbf{x}^2$
- Relevant for cosmology: quasi-dS expansion (slow-roll) $a(t) = \exp(Ht)$ with Hubble parameter $H(t) = \dot{a}/a$ and slow-roll parameters $\epsilon(t) = -\dot{H}/H^2$, $\delta(t) = \dot{\epsilon}/(2H\epsilon)$, ...
- Generally IR divergences worse, Fourier transform for MMC scalar and TTS graviton diverges like $\sim |\pmb{p}|^{-1-\epsilon}$
- \blacksquare Correlation functions of linearised Weyl tensor IR-finite for small ϵ MBF '14

Metric perturbations

$$\bullet \tilde{g}_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu})$$

Metric perturbations

$$\bullet \quad \tilde{g}_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu})$$

Decompose $h_{\mu\nu}$ into irreducible components under spatial rotations and translations: $h_{00} = s_1$, $h_{0k} = v_k^{T1} + \partial_k s_2$, $h_{kl} = h_{kl}^{TT} + 2\partial_{(k}v_{l)}^{T2} + \left(\partial_k\partial_l - \frac{\delta_{kl}\Delta}{n-1}\right)s_3 + \delta_{kl}s_4$

Metric perturbations

$$\bullet \quad \tilde{g}_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu})$$

- Decompose $h_{\mu\nu}$ into irreducible components under spatial rotations and translations: $h_{00} = s_1$, $h_{0k} = v_k^{T1} + \partial_k s_2$, $h_{kl} = h_{kl}^{TT} + 2\partial_{(k}v_{l)}^{T2} + \left(\partial_k\partial_l - \frac{\delta_{kl}\Delta}{n-1}\right)s_3 + \delta_{kl}s_4$
- Gauge symmetry at linear order: infinitesimal coordinate transformations $h_{\mu\nu} \rightarrow h_{\mu\nu} + 2\partial_{(\mu}\xi_{\nu)} 2Ha\eta_{\mu\nu}\xi_0$
Metric perturbations

•
$$\tilde{g}_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu})$$

- Decompose $h_{\mu\nu}$ into irreducible components under spatial rotations and translations: $h_{00} = s_1$, $h_{0k} = v_k^{T1} + \partial_k s_2$, $h_{kl} = h_{kl}^{TT} + 2\partial_{(k}v_{l)}^{T2} + \left(\partial_k\partial_l - \frac{\delta_{kl}\triangle}{n-1}\right)s_3 + \delta_{kl}s_4$
- Gauge symmetry at linear order: infinitesimal coordinate transformations $h_{\mu\nu} \rightarrow h_{\mu\nu} + 2\partial_{(\mu}\xi_{\nu)} 2Ha\eta_{\mu\nu}\xi_0$
- On irreducible components: $\delta s_1 = 2\xi'_0 + 2Ha\xi_0$, $\delta s_2 = \xi_0 + \frac{\partial_k}{\Delta}\xi'_k$, $\delta s_3 = 2\frac{\partial_k}{\Delta}\xi_k$, $\delta s_4 = \frac{2}{(n-1)}\partial_k\xi_k 2Ha\xi_0$, $\delta v_k^{T1} = \xi'_k \frac{\partial_k\partial_l}{\Delta}\xi'_l$, $\delta v_k^{T2} = \xi_k \frac{\partial_k\partial_l}{\Delta}\xi_l$, $\delta h_{kl}^{TT} = 0$

Metric perturbations

$$\tilde{g}_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu})$$

- Decompose $h_{\mu\nu}$ into irreducible components under spatial rotations and translations: $h_{00} = s_1$, $h_{0k} = v_k^{T1} + \partial_k s_2$, $h_{kl} = h_{kl}^{TT} + 2\partial_{(k}v_{l)}^{T2} + \left(\partial_k\partial_l - \frac{\delta_{kl}\triangle}{n-1}\right)s_3 + \delta_{kl}s_4$
- Gauge symmetry at linear order: infinitesimal coordinate transformations $h_{\mu\nu} \rightarrow h_{\mu\nu} + 2\partial_{(\mu}\xi_{\nu)} 2Ha\eta_{\mu\nu}\xi_0$
- On irreducible components: $\delta s_1 = 2\xi'_0 + 2Ha\xi_0$, $\delta s_2 = \xi_0 + \frac{\partial_k}{\Delta}\xi'_k$, $\delta s_3 = 2\frac{\partial_k}{\Delta}\xi_k$, $\delta s_4 = \frac{2}{(n-1)}\partial_k\xi_k 2Ha\xi_0$, $\delta v_k^{\mathsf{T1}} = \xi'_k \frac{\partial_k\partial_l}{\Delta}\xi'_l$, $\delta v_k^{\mathsf{T2}} = \xi_k \frac{\partial_k\partial_l}{\Delta}\xi_l$, $\delta h_{kl}^{\mathsf{TT}} = 0$
- Four gauge-invariant combinations: $H_{kl} = h_{kl}^{TT}$, $V_k = v_k^{T1} v_k^{T2'}$, $S = s_1 - (2s_2 - s'_3)' - Ha(2s_2 - s'_3)$, $\Sigma = s_4 - \frac{1}{n-1} \bigtriangleup s_3 + Ha(2s_2 - s'_3)$

Linearised Weyl tensor

• Linearised Weyl tensor only involves gauge-invariant combinations $(\prod_{kl} = \delta_{kl} - (n-1)\frac{\partial_k \partial_l}{\Delta})$:

$$\begin{split} 2(n-2)C^{0j}{}_{0l} &= (n-3)H^{j\prime\prime}_{l} + \triangle H^{j}_{l} - (n-3)\left(\partial^{j}V'_{l} + \partial_{l}V^{j\prime}\right) \\ &- \frac{n-3}{n-1}\Pi^{j}_{l} \bigtriangleup \left(S + \Sigma\right) \,, \\ C^{0j}{}_{kl} &= \partial_{[k}H^{j}{}_{l]} - \partial^{j}\partial_{[k}V_{l]} + \frac{1}{n-2}\delta^{j}_{[k} \bigtriangleup V_{l]} \,, \\ C^{ij}{}_{kl} &= -2\partial^{[i}\partial_{[k}H^{j]}_{l]} + \frac{2}{n-2}\delta^{[i}_{[k}\left(\partial^{2}H^{j]}_{l]} + \partial^{j}V^{\prime}_{l]} + \partial_{l]}V^{j]\prime} \right) \\ &+ \frac{2}{(n-1)(n-2)}\Pi^{[i}_{[k}\delta^{j]}_{l]} \bigtriangleup \left(S + \Sigma\right) \end{split}$$

Linearised Weyl tensor

• Linearised Weyl tensor only involves gauge-invariant combinations $(\prod_{kl} = \delta_{kl} - (n-1)\frac{\partial_k \partial_l}{\Delta})$:

$$\begin{split} 2(n-2)C^{0j}{}_{0l} &= (n-3)H^{j\prime\prime}_{l} + \triangle H^{j}_{l} - (n-3)\left(\partial^{j}V'_{l} + \partial_{l}V^{j\prime}\right) \\ &- \frac{n-3}{n-1}\Pi^{j}_{l} \triangle \left(S + \Sigma\right) \,, \\ C^{0j}{}_{kl} &= \partial_{[k}H^{j\prime}_{l]} - \partial^{j}\partial_{[k}V_{l]} + \frac{1}{n-2}\delta^{j}_{[k} \triangle V_{l]} \,, \\ C^{ij}{}_{kl} &= -2\partial^{[i}\partial_{[k}H^{j]}_{l]} + \frac{2}{n-2}\delta^{[i}_{[k}\left(\partial^{2}H^{j]}_{l]} + \partial^{j}V^{\prime}_{l]} + \partial_{l]}V^{j]\prime} \right) \\ &+ \frac{2}{(n-1)(n-2)}\Pi^{[i}_{[k}\delta^{j]}_{l]} \triangle \left(S + \Sigma\right) \end{split}$$

• Can be inversed, e.g. $\triangle^2 H_{kl} = 2 \triangle C^{0k}{}_{0l} - 2\partial_j \partial_{(k} C^{0j}{}_{0l}) - \partial_j C^{0k'}{}_{jl} - \partial_j C^{0l'}{}_{jk} - 2\partial_i \partial_j C^{ik}{}_{jl}$

Weyl tensor correlator

■ Now assume slow-roll: $0 \le \epsilon \ll 1$, $0 \le \delta \ll 1$, work to first order in ϵ and δ and in 4D

Weyl tensor correlator

- Now assume slow-roll: $0 \le \epsilon \ll 1$, $0 \le \delta \ll 1$, work to first order in ϵ and δ and in 4D
- Result $(P_{kl} = \eta_{kl} \frac{\partial_k \partial_l}{\Delta})$: $\langle C_{0i0j}(x) C_{0k0l}(x') \rangle = \left[P_{k(i}P_{j)l} \bigtriangleup^2 - \frac{1}{2} P_{kl} P_{ij} \bigtriangleup^2 \right] I_2 + \prod_{ij} \prod_{kl} \bigtriangleup^2 I_1$

Weyl tensor correlator

- Now assume slow-roll: $0 \le \epsilon \ll 1$, $0 \le \delta \ll 1$, work to first order in ϵ and δ and in 4D
- Result $(P_{kl} = \eta_{kl} \frac{\partial_k \partial_l}{\Delta})$: $\langle C_{0i0j}(x) C_{0k0l}(x') \rangle = \left[P_{k(i}P_{j)l} \Delta^2 - \frac{1}{2} P_{kl} P_{ij} \Delta^2 \right] I_2 + \Pi_{ij} \Pi_{kl} \Delta^2 I_1$ I₁ = $\kappa^4 / (64\pi^2) \epsilon H^2 / (27r) \left[(r + \eta - \eta')^3 \ln (i(r + \eta - \eta')) + (r - \eta + \eta')^3 \ln (-i(r - \eta + \eta')) \right]$

Weyl tensor correlator

■ Now assume slow-roll: $0 \le \epsilon \ll 1$, $0 \le \delta \ll 1$, work to first order in ϵ and δ and in 4D

Result
$$(P_{kl} = \eta_{kl} - \frac{\partial_k \partial_l}{\Delta})$$
:
 $\langle C_{0i0j}(x) C_{0k0l}(x') \rangle = \left[P_{k(i}P_{j)l} \Delta^2 - \frac{1}{2} P_{kl} P_{ij} \Delta^2 \right] I_2 + \Pi_{ij} \Pi_{kl} \Delta^2 I_1$

 $I_1 = \kappa^4 / (64\pi^2) \epsilon H^2 / (27r) \left[(r + \eta - \eta')^3 \ln (i(r + \eta - \eta')) + (r - \eta + \eta')^3 \ln (-i(r - \eta + \eta')) \right]$

 $I_2 = \kappa^4 / (16\pi^2) H(\eta') H(\eta) \left[(1 - Z)^{-1} + \epsilon / (1 + Z) \ln (\frac{1 - Z}{2}) + \epsilon (\eta - \eta') / r \ln ((\eta - \eta' + r) / (\eta - \eta' - r)) \right]$ with
 $Z = 1 - \frac{r^2 - (1 + 2\epsilon)(\tau - \tau')^2}{2\tau \tau'}$ and $\tau = -1/[H(\eta)a(\eta)]$

Weyl tensor correlator

■ Now assume slow-roll: $0 \le \epsilon \ll 1$, $0 \le \delta \ll 1$, work to first order in ϵ and δ and in 4D

Result
$$(P_{kl} = \eta_{kl} - \frac{\partial_k \partial_l}{\Delta})$$
:
 $\langle C_{0i0j}(x) C_{0k0l}(x') \rangle = [P_{k(i}P_{j)l} \Delta^2 - \frac{1}{2}P_{kl}P_{ij}\Delta^2] I_2 + \Pi_{ij}\Pi_{kl} \Delta^2 I_1$

 $I_1 = \kappa^4/(64\pi^2)\epsilon H^2/(27r) [(r + \eta - \eta')^3 \ln(i(r + \eta - \eta')) + (r - \eta + \eta')^3 \ln(-i(r - \eta + \eta'))]$

 $I_2 = \kappa^4/(16\pi^2)H(\eta')H(\eta) [(1 - Z)^{-1} + \epsilon/(1 + Z) \ln(\frac{1-Z}{2}) + \epsilon(\eta - \eta')/r \ln((\eta - \eta' + r)/(\eta - \eta' - r))]$ with
 $Z = 1 - \frac{r^2 - (1 + 2\epsilon)(\tau - \tau')^2}{2\tau\tau'}$ and $\tau = -1/[H(\eta)a(\eta)]$

Other components are similar, give correct dS limit

What have we gained? What have we lost?

• Weyl tensor is manifestly gauge-invariant (at linear order) and local

- Weyl tensor is manifestly gauge-invariant (at linear order) and local
- In contrast, tensor part h_{kl}^{TT} is gauge-invariant but non-local

- Weyl tensor is manifestly gauge-invariant (at linear order) and local
- In contrast, tensor part h_{kl}^{TT} is gauge-invariant but non-local
- Given general perturbation $h_{\mu\nu}$, we have $h_{kl}^{\mathsf{TT}} = \triangle^{-2} \Big[\triangle^2 h_{kl} - 2 \triangle \partial^m \partial_{(k} h_{l)m} + \frac{n-3}{n-2} \partial_k \partial_l \partial^m \partial^n h_{mn} + \frac{1}{n-2} \partial_k \partial_l \triangle \delta^{mn} h_{mn} - \frac{\delta_{kl}}{n-2} \triangle (\triangle \delta^{mn} h_{mn} - \partial^m \partial^n h_{mn}) \Big]$

- Weyl tensor is manifestly gauge-invariant (at linear order) and local
- In contrast, tensor part h_{kl}^{TT} is gauge-invariant but non-local
- Given general perturbation $h_{\mu\nu}$, we have $h_{kl}^{\mathsf{TT}} = \triangle^{-2} \Big[\triangle^2 h_{kl} - 2 \triangle \partial^m \partial_{(k} h_{l)m} + \frac{n-3}{n-2} \partial_k \partial_l \partial^m \partial^n h_{mn} + \frac{1}{n-2} \partial_k \partial_l \triangle \delta^{mn} h_{mn} - \frac{\delta_{kl}}{n-2} \triangle (\triangle \delta^{mn} h_{mn} - \partial^m \partial^n h_{mn}) \Big]$
- \blacksquare Definition involves $\triangle^{-2},$ and thus needs boundary conditions to be fully specified

- Weyl tensor is manifestly gauge-invariant (at linear order) and local
- In contrast, tensor part h_{kl}^{TT} is gauge-invariant but non-local
- Given general perturbation $h_{\mu\nu}$, we have $h_{kl}^{\mathsf{TT}} = \triangle^{-2} \Big[\triangle^2 h_{kl} - 2 \triangle \partial^m \partial_{(k} h_{l)m} + \frac{n-3}{n-2} \partial_k \partial_l \partial^m \partial^n h_{mn} + \frac{1}{n-2} \partial_k \partial_l \triangle \delta^{mn} h_{mn} - \frac{\delta_{kl}}{n-2} \triangle (\triangle \delta^{mn} h_{mn} - \partial^m \partial^n h_{mn}) \Big]$
- \blacksquare Definition involves $\triangle^{-2},$ and thus needs boundary conditions to be fully specified
- Reconstruction of tensor part from Weyl tensor is not worse: $h_{kl}^{\mathsf{TT}} = \triangle^{-2} J_{kl} = \\ \triangle^{-2} \Big[2 \triangle C^{0k}{}_{0l} - 2\partial_j \partial_{(k} C^{0j}{}_{0l}) - \partial_j C^{0k}{}'_{jl} - \partial_j C^{0l}{}'_{jk} - 2\partial_i \partial_j C^{ik}{}_{jl} \Big]$

Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

— The Weyl tensor correlator in cosmological spacetimes

What have we gained? What have we lost?

• Especially: reconstruct tensor power spectrum $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = \frac{|\boldsymbol{k}|^3}{4(2\pi)^3} \delta^{ik} \delta^{jl} \int \left\langle h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{x}) h_{kl}^{\mathsf{TT}}(\eta, 0) \right\rangle \mathrm{e}^{-\mathrm{i}\boldsymbol{k}\boldsymbol{x}} \, \mathrm{d}^3 \boldsymbol{x}$ Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

What have we gained? What have we lost?

• Especially: reconstruct tensor power spectrum $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = \frac{|\boldsymbol{k}|^3}{4(2\pi)^3} \delta^{ik} \delta^{jl} \int \left\langle h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{x}) h_{kl}^{\mathsf{TT}}(\eta, 0) \right\rangle e^{-i\boldsymbol{k}\boldsymbol{x}} \, \mathrm{d}^3 \boldsymbol{x}$

Insert reconstruction of h_{ij}^{TT} from Weyl tensor: $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = (32\pi^3 |\boldsymbol{k}|^5)^{-1} \int J_{kl}(\eta, \boldsymbol{y}) J_{kl}(\eta, 0) \mathrm{e}^{-\mathrm{i}\boldsymbol{k}\boldsymbol{y}} \mathrm{d}^3 y$ Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

- Especially: reconstruct tensor power spectrum $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = \frac{|\boldsymbol{k}|^3}{4(2\pi)^3} \delta^{ik} \delta^{jl} \int \left\langle h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{x}) h_{kl}^{\mathsf{TT}}(\eta, 0) \right\rangle e^{-i\boldsymbol{k}\boldsymbol{x}} \, \mathrm{d}^3 \boldsymbol{x}$
- Insert reconstruction of h_{ij}^{TT} from Weyl tensor: $\mathcal{P}_{T}(|\mathbf{k}|,\eta) = (32\pi^{3}|\mathbf{k}|^{5})^{-1} \int J_{kl}(\eta,\mathbf{y}) J_{kl}(\eta,0) e^{-i\mathbf{k}\mathbf{y}} d^{3}y$
- Gives standard result by construction, but completely detached from graviton propagator

- Especially: reconstruct tensor power spectrum $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = \frac{|\boldsymbol{k}|^3}{4(2\pi)^3} \delta^{ik} \delta^{jl} \int \left\langle h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{x}) h_{kl}^{\mathsf{TT}}(\eta, 0) \right\rangle e^{-i\boldsymbol{k}\boldsymbol{x}} \, \mathrm{d}^3 \boldsymbol{x}$
- Insert reconstruction of h_{ij}^{TT} from Weyl tensor: $\mathcal{P}_{T}(|\mathbf{k}|,\eta) = (32\pi^{3}|\mathbf{k}|^{5})^{-1} \int J_{kl}(\eta,\mathbf{y}) J_{kl}(\eta,0) e^{-i\mathbf{k}\mathbf{y}} d^{3}y$
- Gives standard result by construction, but completely detached from graviton propagator
- Not very practical definition, but clear conceptual separation between propagator (tool, gauge-dependent) and observable:

- Especially: reconstruct tensor power spectrum $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = \frac{|\boldsymbol{k}|^3}{4(2\pi)^3} \delta^{ik} \delta^{jl} \int \left\langle h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{x}) h_{kl}^{\mathsf{TT}}(\eta, 0) \right\rangle e^{-i\boldsymbol{k}\boldsymbol{x}} \, \mathrm{d}^3 \boldsymbol{x}$
- Insert reconstruction of h_{ij}^{TT} from Weyl tensor: $\mathcal{P}_{T}(|\mathbf{k}|,\eta) = (32\pi^{3}|\mathbf{k}|^{5})^{-1} \int J_{kl}(\eta,\mathbf{y}) J_{kl}(\eta,0) e^{-i\mathbf{k}\mathbf{y}} d^{3}y$
- Gives standard result by construction, but completely detached from graviton propagator
- Not very practical definition, but clear conceptual separation between propagator (tool, gauge-dependent) and observable: *every* graviton propagator that has been checked so far gives the *same* Weyl tensor correlator ⇒ same power spectrum

- Especially: reconstruct tensor power spectrum $\mathcal{P}_{\mathsf{T}}(|\boldsymbol{k}|,\eta) = \frac{|\boldsymbol{k}|^3}{4(2\pi)^3} \delta^{ik} \delta^{jl} \int \left\langle h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{x}) h_{kl}^{\mathsf{TT}}(\eta, 0) \right\rangle e^{-i\boldsymbol{k}\boldsymbol{x}} \, \mathrm{d}^3 \boldsymbol{x}$
- Insert reconstruction of h_{ij}^{TT} from Weyl tensor: $\mathcal{P}_{T}(|\mathbf{k}|,\eta) = (32\pi^{3}|\mathbf{k}|^{5})^{-1} \int J_{kl}(\eta,\mathbf{y}) J_{kl}(\eta,0) e^{-i\mathbf{k}\mathbf{y}} d^{3}y$
- Gives standard result by construction, but completely detached from graviton propagator
- Not very practical definition, but clear conceptual separation between propagator (tool, gauge-dependent) and observable: *every* graviton propagator that has been checked so far gives the *same* Weyl tensor correlator ⇒ same power spectrum
- Gauge-invariant parts of metric perturbation can be reconstructed from Weyl tensor, but are non-local and need boundary conditions, while Weyl tensor is local

Higher orders

• At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$

- At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$
- Gauge transformation at second order involves $h_{\mu\nu}$ itself: $\delta h_{\mu\nu} = 2\nabla_{(\mu}\xi_{\nu)} + \xi^{\alpha} \left(\nabla_{\alpha}h_{\mu\nu} - 2\nabla_{(\mu}h_{\nu)\alpha}\right)$

- At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$
- Gauge transformation at second order involves $h_{\mu\nu}$ itself: $\delta h_{\mu\nu} = 2\nabla_{(\mu}\xi_{\nu)} + \xi^{\alpha} \left(\nabla_{\alpha}h_{\mu\nu} - 2\nabla_{(\mu}h_{\nu)\alpha}\right)$
- Possible generalisation: find parts of metric perturbations which are invariant to second order $H_{kl} \rightarrow H_{kl}^{(2)} = H_{kl} + \mathcal{O}(h_{\mu\nu}^2), \ldots$, starting from work of Bruni/Matarrese/Mollerach/Sonego '97

- At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$
- Gauge transformation at second order involves $h_{\mu\nu}$ itself: $\delta h_{\mu\nu} = 2\nabla_{(\mu}\xi_{\nu)} + \xi^{\alpha} \left(\nabla_{\alpha}h_{\mu\nu} - 2\nabla_{(\mu}h_{\nu)\alpha} \right)$
- Possible generalisation: find parts of metric perturbations which are invariant to second order $H_{kl} \rightarrow H_{kl}^{(2)} = H_{kl} + \mathcal{O}(h_{\mu\nu}^2), \ldots$, starting from work of Bruni/Matarrese/Mollerach/Sonego '97
- Define observable by replacing $H_{kl} \rightarrow H_{kl}^{(2)}$ in Weyl tensor

- At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$
- Gauge transformation at second order involves $h_{\mu\nu}$ itself: $\delta h_{\mu\nu} = 2\nabla_{(\mu}\xi_{\nu)} + \xi^{\alpha} \left(\nabla_{\alpha}h_{\mu\nu} - 2\nabla_{(\mu}h_{\nu)\alpha}\right)$
- Possible generalisation: find parts of metric perturbations which are invariant to second order $H_{kl} \rightarrow H_{kl}^{(2)} = H_{kl} + \mathcal{O}(h_{\mu\nu}^2), \ldots$, starting from work of Bruni/Matarrese/Mollerach/Sonego '97
- Define observable by replacing $H_{kl} \rightarrow H_{kl}^{(2)}$ in Weyl tensor, but physical interpretation unclear

- At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$
- Gauge transformation at second order involves $h_{\mu\nu}$ itself: $\delta h_{\mu\nu} = 2\nabla_{(\mu}\xi_{\nu)} + \xi^{\alpha} \left(\nabla_{\alpha}h_{\mu\nu} - 2\nabla_{(\mu}h_{\nu)\alpha} \right)$
- Possible generalisation: find parts of metric perturbations which are invariant to second order $H_{kl} \rightarrow H_{kl}^{(2)} = H_{kl} + \mathcal{O}(h_{\mu\nu}^2), \ldots$, starting from work of Bruni/Matarrese/Mollerach/Sonego '97
- Define observable by replacing $H_{kl} \rightarrow H_{kl}^{(2)}$ in Weyl tensor, but physical interpretation unclear
- Other possibility: correlation functions at fixed geodesic separation as in Woodard '83

- At second order, Weyl tensor is no longer gauge-invariant: $\mathcal{L}_{\xi} C^{(2)}_{\mu\nu\rho\sigma} = C^{(1)}_{\mu\nu\rho\sigma} \neq 0$
- Gauge transformation at second order involves $h_{\mu\nu}$ itself: $\delta h_{\mu\nu} = 2\nabla_{(\mu}\xi_{\nu)} + \xi^{\alpha} \left(\nabla_{\alpha}h_{\mu\nu} - 2\nabla_{(\mu}h_{\nu)\alpha} \right)$
- Possible generalisation: find parts of metric perturbations which are invariant to second order $H_{kl} \rightarrow H_{kl}^{(2)} = H_{kl} + \mathcal{O}(h_{\mu\nu}^2), \ldots$, starting from work of Bruni/Matarrese/Mollerach/Sonego '97
- Define observable by replacing $H_{kl} \rightarrow H_{kl}^{(2)}$ in Weyl tensor, but physical interpretation unclear
- Other possibility: correlation functions at fixed geodesic separation as in Woodard '83, but extremely complicated already in flat space

Further results from conformal fields

Semiclassical Einstein equation

 CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: Z[h⁺_{μν}, h⁻_{μν}] (calculated for general FLRW) Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h_{\mu\nu}^+, h_{\mu\nu}^-]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$

-Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h_{\mu\nu}^+, h_{\mu\nu}^-]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$
- Semiclassical Friedman equation: $6(a')^2 2\Lambda a^4 = 3\alpha\kappa^2 a^{-4}(a')^4 + 3\beta\kappa^2 a^{-3} [2aa'a''' a(a'')^2 4(a')^2 a'']$

Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h_{\mu\nu}^+, h_{\mu\nu}^-]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$
- Semiclassical Friedman equation: $6(a')^2 2\Lambda a^4 = 3\alpha\kappa^2 a^{-4}(a')^4 + 3\beta\kappa^2 a^{-3} [2aa'a''' a(a'')^2 4(a')^2 a'']$
- $\alpha = N/(2880\pi^2)$, β is arbitrary finite part of counterterm R^2

-Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h_{\mu\nu}^+, h_{\mu\nu}^-]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$
- Semiclassical Friedman equation: $6(a')^2 2\Lambda a^4 = 3\alpha\kappa^2 a^{-4}(a')^4 + 3\beta\kappa^2 a^{-3} [2aa'a''' a(a'')^2 4(a')^2 a'']$
- $\alpha = N/(2880\pi^2)$, β is arbitrary finite part of counterterm R^2
- Unstable runaway solution which lies outside the validity of effective field theory can be eliminated by order reduction: substitute $a' = \sqrt{\Lambda/3}a^2 + \mathcal{O}(\kappa^2)$ in right-hand side

- Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h^+_{\mu\nu}, h^-_{\mu\nu}]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$
- Semiclassical Friedman equation: $6(a')^2 2\Lambda a^4 = 3\alpha\kappa^2 a^{-4}(a')^4 + 3\beta\kappa^2 a^{-3} [2aa'a''' a(a'')^2 4(a')^2 a'']$
- $\alpha = N/(2880\pi^2)$, β is arbitrary finite part of counterterm R^2
- Unstable runaway solution which lies outside the validity of effective field theory can be eliminated by order reduction: substitute $a' = \sqrt{\Lambda/3}a^2 + \mathcal{O}(\kappa^2)$ in right-hand side and obtain $3(a')^2 = \Lambda (1 + 1/6\alpha\kappa^2\Lambda) a^4 + \mathcal{O}(\kappa^2)$

- Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h^+_{\mu\nu}, h^-_{\mu\nu}]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$
- Semiclassical Friedman equation: $6(a')^2 2\Lambda a^4 = 3\alpha\kappa^2 a^{-4}(a')^4 + 3\beta\kappa^2 a^{-3} [2aa'a''' a(a'')^2 4(a')^2 a'']$
- $\alpha = N/(2880\pi^2)$, β is arbitrary finite part of counterterm R^2
- Unstable runaway solution which lies outside the validity of effective field theory can be eliminated by order reduction: substitute $a' = \sqrt{\Lambda/3}a^2 + \mathcal{O}(\kappa^2)$ in right-hand side and obtain $3(a')^2 = \Lambda (1 + 1/6\alpha\kappa^2\Lambda) a^4 + \mathcal{O}(\kappa^2) = \Lambda_{\text{eff}}a^4 + \mathcal{O}(\kappa^4)$

- Further results from conformal fields

- CTP effective action, after integrating out matter fields and performing renormalisation, is an action for gravitons only: $Z[h_{\mu\nu}^+, h_{\mu\nu}^-]$ (calculated for general FLRW)
- Semiclassical Einstein equations can be obtained from variation w.r.t. $h^+_{\mu\nu}$ and setting $h_{\mu\nu} = 0$
- Semiclassical Friedman equation: $6(a')^2 2\Lambda a^4 = 3\alpha\kappa^2 a^{-4}(a')^4 + 3\beta\kappa^2 a^{-3} [2aa'a''' a(a'')^2 4(a')^2 a'']$
- $\alpha = N/(2880\pi^2)$, β is arbitrary finite part of counterterm R^2
- Unstable runaway solution which lies outside the validity of effective field theory can be eliminated by order reduction: substitute $a' = \sqrt{\Lambda/3}a^2 + \mathcal{O}(\kappa^2)$ in right-hand side and obtain $3(a')^2 = \Lambda (1 + 1/6\alpha\kappa^2\Lambda) a^4 + \mathcal{O}(\kappa^2) = \Lambda_{\text{eff}}a^4 + \mathcal{O}(\kappa^4)$
- Solution is given by $a = (-H\eta)^{-1}$ with $H = \sqrt{\Lambda_{\rm eff}/3}$ de Sitter

-Further results from conformal fields

Semiclassical backreaction

• Further backreaction: consider perturbations around the background by setting $h^+_{\mu\nu}=h^-_{\mu\nu}$ after variation
Semiclassical backreaction

- Further backreaction: consider perturbations around the background by setting $h^+_{\mu\nu} = h^-_{\mu\nu}$ after variation
- Obtained equations are real and causal, and thus have well-defined initial value problem

Semiclassical backreaction

- Further backreaction: consider perturbations around the background by setting $h^+_{\mu\nu} = h^-_{\mu\nu}$ after variation
- Obtained equations are real and causal, and thus have well-defined initial value problem

$$0 = \left[1 - (\alpha + 2\beta) \kappa^2 H^2\right] a^2 \Box h_{ij}^{\mathsf{TT}} - 2 \left[1 - (\alpha + 2\beta) \kappa^2 H^2\right] Ha^3 h_{ij}^{\prime\mathsf{TT}} + 3\alpha \kappa^2 H^2 a^2 \left[2h_{ij}^{\prime\prime\mathsf{TT}} + \Box h_{ij}^{\mathsf{TT}}\right] - 6\alpha \kappa^2 Ha \Box h_{ij}^{\prime\mathsf{TT}} + 3\alpha \kappa^2 \int \left(\Box \Box h_{ij}^{\mathsf{TT}}(x')\right) \left(H(x - x'; \bar{\mu}) + \delta^4(x - x') \ln a\right) \mathrm{d}^4 x'.$$

Semiclassical backreaction

- Further backreaction: consider perturbations around the background by setting $h^+_{\mu\nu} = h^-_{\mu\nu}$ after variation
- Obtained equations are real and causal, and thus have well-defined initial value problem

$$0 = \left[1 - (\alpha + 2\beta) \kappa^2 H^2\right] a^2 \Box h_{ij}^{\mathsf{TT}} - 2 \left[1 - (\alpha + 2\beta) \kappa^2 H^2\right] H a^3 h_{ij}'^{\mathsf{TT}} + 3\alpha \kappa^2 H^2 a^2 \left[2h_{ij}''^{\mathsf{TT}} + \Box h_{ij}^{\mathsf{TT}}\right] - 6\alpha \kappa^2 H a \Box h_{ij}'^{\mathsf{TT}} + 3\alpha \kappa^2 \int \left(\Box \Box h_{ij}^{\mathsf{TT}}(x')\right) \left(H(x - x'; \bar{\mu}) + \delta^4(x - x') \ln a\right) d^4x'.$$

■ H(x - x'; µ) is a non-local causal kernel coming from the integration over matter fields, ln a comes from conformal anomaly

Semiclassical backreaction

- Further backreaction: consider perturbations around the background by setting $h^+_{\mu\nu} = h^-_{\mu\nu}$ after variation
- Obtained equations are real and causal, and thus have well-defined initial value problem

$$0 = \left[1 - (\alpha + 2\beta) \kappa^2 H^2\right] a^2 \Box h_{ij}^{\mathsf{TT}} - 2 \left[1 - (\alpha + 2\beta) \kappa^2 H^2\right] H a^3 h_{ij}^{\prime\mathsf{TT}} + 3\alpha \kappa^2 H^2 a^2 \left[2h_{ij}^{\prime\prime\mathsf{TT}} + \Box h_{ij}^{\mathsf{TT}}\right] - 6\alpha \kappa^2 H a \Box h_{ij}^{\prime\mathsf{TT}} + 3\alpha \kappa^2 \int \left(\Box \Box h_{ij}^{\mathsf{TT}}(x')\right) \left(H(x - x'; \bar{\mu}) + \delta^4(x - x') \ln a\right) \mathrm{d}^4 x'.$$

- H(x x'; µ) is a non-local causal kernel coming from the integration over matter fields, ln a comes from conformal anomaly
- Similar equations for vector and scalar parts of metric perturbation

Semiclassical backreaction

Eliminate again unphysical solutions by order reduction: $h_{ij}^{\prime\prime TT} - 2/\eta (1 - \nu) h_{ij}^{\prime TT} - (1 - 2\nu) \bigtriangleup h_{ij}^{TT} = O(\kappa^4)$ with $\nu = 3\alpha \kappa^2 H^2$

Semiclassical backreaction

Eliminate again unphysical solutions by order reduction: $h_{ij}^{\prime\prime TT} - 2/\eta (1 - \nu) h_{ij}^{\prime TT} - (1 - 2\nu) \bigtriangleup h_{ij}^{TT} = O(\kappa^4)$ with $\nu = 3\alpha \kappa^2 H^2$

• Solution
$$h_{ij}^{\text{TT}}(\eta, \boldsymbol{p}) = e_{ij}^{\pm}(\boldsymbol{p})g^{\pm}(\eta, \boldsymbol{p})$$
 with
 $g^{\pm} = (-\omega\eta)^{\frac{3}{2}-\nu} \left[C_1^{\pm}J_{\frac{3}{2}-\nu}(-\omega\eta) + C_2^{\pm}Y_{\frac{3}{2}-\nu}(-\omega\eta) \right]$ and
 $\omega^2 = (1-2\nu)\boldsymbol{p}^2$

Semiclassical backreaction

Eliminate again unphysical solutions by order reduction: $h_{ij}^{\prime\prime TT} - 2/\eta (1 - \nu) h_{ij}^{\prime TT} - (1 - 2\nu) \bigtriangleup h_{ij}^{TT} = O(\kappa^4)$ with $\nu = 3\alpha \kappa^2 H^2$

• Solution
$$h_{ij}^{\text{TT}}(\eta, \boldsymbol{p}) = e_{ij}^{\pm}(\boldsymbol{p})g^{\pm}(\eta, \boldsymbol{p})$$
 with
 $g^{\pm} = (-\omega\eta)^{\frac{3}{2}-\nu} \left[C_1^{\pm}J_{\frac{3}{2}-\nu}(-\omega\eta) + C_2^{\pm}Y_{\frac{3}{2}-\nu}(-\omega\eta) \right]$ and
 $\omega^2 = (1-2\nu)\boldsymbol{p}^2$

• At late times $\eta \to 0$, we get $g^{\pm} = \text{const} + \mathcal{O}(\omega \eta)$, $(g^{\pm})' = \text{const} + \mathcal{O}(\omega \eta)$

Semiclassical backreaction

Eliminate again unphysical solutions by order reduction: $h_{ij}^{\prime\prime TT} - 2/\eta (1 - \nu) h_{ij}^{\prime TT} - (1 - 2\nu) \bigtriangleup h_{ij}^{TT} = O(\kappa^4)$ with $\nu = 3\alpha \kappa^2 H^2$

Solution
$$h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{p}) = e_{ij}^{\pm}(\boldsymbol{p})g^{\pm}(\eta, \boldsymbol{p})$$
 with
 $g^{\pm} = (-\omega\eta)^{\frac{3}{2}-\nu} \left[C_1^{\pm}J_{\frac{3}{2}-\nu}(-\omega\eta) + C_2^{\pm}Y_{\frac{3}{2}-\nu}(-\omega\eta)\right]$ and
 $\omega^2 = (1-2\nu)\boldsymbol{p}^2$

- At late times $\eta \to 0$, we get $g^{\pm} = \text{const} + \mathcal{O}(\omega \eta)$, $(g^{\pm})' = \text{const} + \mathcal{O}(\omega \eta)$
- However, linearised Riemann tensor involves η(g[±])' and η²g[±] and thus decays at late times

Semiclassical backreaction

Eliminate again unphysical solutions by order reduction: $h_{ij}^{\prime\prime TT} - 2/\eta (1 - \nu) h_{ij}^{\prime TT} - (1 - 2\nu) \bigtriangleup h_{ij}^{TT} = O(\kappa^4)$ with $\nu = 3\alpha \kappa^2 H^2$

Solution
$$h_{ij}^{\mathsf{TT}}(\eta, \boldsymbol{p}) = e_{ij}^{\pm}(\boldsymbol{p})g^{\pm}(\eta, \boldsymbol{p})$$
 with
 $g^{\pm} = (-\omega\eta)^{\frac{3}{2}-\nu} \left[C_1^{\pm}J_{\frac{3}{2}-\nu}(-\omega\eta) + C_2^{\pm}Y_{\frac{3}{2}-\nu}(-\omega\eta)\right]$ and
 $\omega^2 = (1-2\nu)\boldsymbol{p}^2$

- At late times $\eta \to 0$, we get $g^{\pm} = \text{const} + \mathcal{O}(\omega \eta)$, $(g^{\pm})' = \text{const} + \mathcal{O}(\omega \eta)$
- However, linearised Riemann tensor involves $\eta(g^{\pm})'$ and $\eta^2 g^{\pm}$ and thus decays at late times
- Scalar and vector parts are constrained and have vanishing solutions

Perturbed initial state

• Generate a large class of non-vacuum initial states at $\eta = \eta_0$ by evolving an asymptotic BD state in a fixed perturbed geometry, asymptotically dS as $\eta \to -\infty$ and smoothly connected to the dynamics at $\eta = \eta_0$ Pérez-Nadal/Roura/Verdaguer '08

Perturbed initial state

- Generate a large class of non-vacuum initial states at $\eta = \eta_0$ by evolving an asymptotic BD state in a fixed perturbed geometry, asymptotically dS as $\eta \to -\infty$ and smoothly connected to the dynamics at $\eta = \eta_0$ Pérez-Nadal/Roura/Verdaguer '08
- Since perturbed geometry does not satisfy any EOM, non-local term does not vanish and gives contribution in the form of a stress tensor correction $\delta T_{\mu\nu}(\eta, \mathbf{x}) = 3\alpha a^{-2}(\eta) \int_{-\infty}^{\eta_0} A_{\mu\nu}(x') H(x x'; \bar{\mu}) d^4x'$

Perturbed initial state

- Generate a large class of non-vacuum initial states at $\eta = \eta_0$ by evolving an asymptotic BD state in a fixed perturbed geometry, asymptotically dS as $\eta \to -\infty$ and smoothly connected to the dynamics at $\eta = \eta_0$ Pérez-Nadal/Roura/Verdaguer '08
- Since perturbed geometry does not satisfy any EOM, non-local term does not vanish and gives contribution in the form of a stress tensor correction δT_{μν}(η, **x**) = 3αa⁻²(η) ∫^η_{-∞} A_{μν}(x')H(x x'; μ) d⁴x'
 Equation for tensor modes:
 - $h_{ij}^{\prime\prime TT} 2/\eta \left(1 \nu\right) h_{ij}^{\prime TT} (1 2\nu) \bigtriangleup h_{ij}^{TT} = \delta T_{ij} + \mathcal{O}\left(\kappa^{4}\right)$

Perturbed initial state

- Generate a large class of non-vacuum initial states at $\eta = \eta_0$ by evolving an asymptotic BD state in a fixed perturbed geometry, asymptotically dS as $\eta \to -\infty$ and smoothly connected to the dynamics at $\eta = \eta_0$ Pérez-Nadal/Roura/Verdaguer '08
- Since perturbed geometry does not satisfy any EOM, non-local term does not vanish and gives contribution in the form of a stress tensor correction $\delta T_{\mu\nu}(\eta, \mathbf{x}) = 3\alpha a^{-2}(\eta) \int_{-\infty}^{\eta_0} A_{\mu\nu}(\mathbf{x}') H(\mathbf{x} \mathbf{x}'; \bar{\mu}) d^4 \mathbf{x}'$
- Equation for tensor modes:

$$h_{ij}^{\prime\prime \mathsf{TT}}-2/\eta\left(1-
u
ight)h_{ij}^{\prime\mathsf{TT}}-\left(1-2
u
ight)\bigtriangleup h_{ij}^{\mathsf{TT}}=\delta {T}_{ij}+\mathcal{O}\left(\kappa^{4}
ight)$$

• Corrections due to δT_{ij} decay faster than in the vacuum case! (similar for vector and scalar)

Perturbed initial state

- Generate a large class of non-vacuum initial states at $\eta = \eta_0$ by evolving an asymptotic BD state in a fixed perturbed geometry, asymptotically dS as $\eta \to -\infty$ and smoothly connected to the dynamics at $\eta = \eta_0$ Pérez-Nadal/Roura/Verdaguer '08
- Since perturbed geometry does not satisfy any EOM, non-local term does not vanish and gives contribution in the form of a stress tensor correction $\delta T_{\mu\nu}(\eta, \mathbf{x}) = 3\alpha a^{-2}(\eta) \int_{-\infty}^{\eta_0} A_{\mu\nu}(x') H(x x'; \bar{\mu}) d^4x'$
- Equation for tensor modes:

$$h_{ij}^{\prime \mathsf{TT}} - 2/\eta \left(1 - \nu\right) h_{ij}^{\prime \mathsf{TT}} - \left(1 - 2\nu\right) \bigtriangleup h_{ij}^{\mathsf{TT}} = \delta T_{ij} + \mathcal{O}\left(\kappa^{4}\right)$$

- Corrections due to δT_{ij} decay faster than in the vacuum case! (similar for vector and scalar)
- Poincaré patch is thus stable for arbitrary linear perturbations due to conformal fields, including arbitrary, spatial inhomogeneous (but sufficiently small) perturbations of initial state

Fröb/Papadopoulos/Roura/Verdaguer '13

Conclusions

 \blacksquare Classifying the space of observables ${\cal O}$ is difficult

- Classifying the space of observables O is difficult
- For linearised gravity in cosmological spacetimes, (linearised) Weyl tensor is a good observable; for de Sitter, even Riemann tensor

- Classifying the space of observables O is difficult
- For linearised gravity in cosmological spacetimes, (linearised) Weyl tensor is a good observable; for de Sitter, even Riemann tensor
- Both are IR-finite, including matter loop corrections in de Sitter

- Classifying the space of observables O is difficult
- For linearised gravity in cosmological spacetimes, (linearised) Weyl tensor is a good observable; for de Sitter, even Riemann tensor
- Both are IR-finite, including matter loop corrections in de Sitter
- Obtain metric correlation functions including matter loop corrections without ever evaluating an integral, through Riemann tensor correlator and Bianchi identities (in dS)

- Classifying the space of observables O is difficult
- For linearised gravity in cosmological spacetimes, (linearised) Weyl tensor is a good observable; for de Sitter, even Riemann tensor
- Both are IR-finite, including matter loop corrections in de Sitter
- Obtain metric correlation functions including matter loop corrections without ever evaluating an integral, through Riemann tensor correlator and Bianchi identities (in dS)
- Status of graviton self-interactions (or internal graviton lines) unclear: no good observables known

- Classifying the space of observables O is difficult
- For linearised gravity in cosmological spacetimes, (linearised) Weyl tensor is a good observable; for de Sitter, even Riemann tensor
- Both are IR-finite, including matter loop corrections in de Sitter
- Obtain metric correlation functions including matter loop corrections without ever evaluating an integral, through Riemann tensor correlator and Bianchi identities (in dS)
- Status of graviton self-interactions (or internal graviton lines) unclear: no good observables known
- Poincaré patch stable under quantum perturbations (terms and conditions apply)

Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

- Conclusions

Thanks for your attention

Questions?

Funded partially by ERC starting grant QC&C 259562

References: arXiv:1205.3097, arXiv:1301.5261, arXiv:1403.3335, arXiv:1409.7964, arXiv:1509.????