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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

Observables

Observables

Mathematical description of physical theories contains often
redundant information

Field configurations that only differ by a gauge transformation are
physically indistinguishable (')

Yang-Mills theories: Aa
µ ' Aa

µ +∇µξa + igf abcAb
µξ

c

Gravity: gµν ' gµν + Lξgµν = gµν + 2∇(µξν)

O ≡ {Observables} ≡ {Field configurations}
{Local gauge transformations}

Example: QED on generic fixed manifold M
O ≡ {Aµ}/{Aµ → Aµ + ∂µξ : supp ξ is compact}
It turns out that
O = {Fµν} ⊗ ({electric charges} ⊕ {Aharonov-Bohm phases})
Becker/Schenkel/Szabo ’14
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Observables

Observables

In general, determination of O is extremely difficult

Solution known for Yang-Mills theories, in perturbation theory, with
a trivial background topology

Use BV formalism (extension of BRST, which is extension of
Fadeev-Popov) with Slavnov-Taylor differential ŝ

Gauge transformations with gauge parameter replaced by ghost:
ŝAa

µ = ∇µca + igf abcAb
µc

c

Also action on ghost ca, antighost c̄a, auxiliary field Ba, antifields
(consistent treatment of EOM’s), and ŝ2 = 0.

Observables are annihilated by ŝ, and two observables are identified
if they differ by ŝ-exact term (cohomology of ŝ)

O = {f (F a
µν ,∇ρF a

µν , . . .)} for suitable f (e.g., smooth & trace)
Barnich/Brandt/Henneaux ’00
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Observables are annihilated by ŝ, and two observables are identified
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ŝAa

µ = ∇µca + igf abcAb
µc

c

Also action on ghost ca, antighost c̄a, auxiliary field Ba, antifields
(consistent treatment of EOM’s), and ŝ2 = 0.
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Observables

Observables

For gravity: hopeless in the general case, but examples

For linearised gravity in conformally flat spacetimes, e.g. FLRW:
Weyl tensor, for de Sitter: Riemann tensor

Perturbed background: g̃µν = gµν + hµν

Linearise curvature tensors around background:

R̃µνρσ[g̃ ] = Rµνρσ[g ] + R
(1)
µνρσ[g , h] +O

(
h2
)

Under a gauge transformation of the metric we have

R
(1)
µνρσ[g , h]→ R

(1)
µνρσ[g , h] + LξRµνρσ[g ]

For conformally flat spacetimes: Cµνρσ[g ] = 0, thus C
(1)
µνρσ[g , h] is

gauge-invariant to linear order

For de Sitter: Rµνρσ[g ] = 2H2gµ[ρgσ]ν , thus LξRµνρσ = 0 and

R(1)µν
ρσ[g , h] is gauge-invariant to linear order

Further advantage: C
(1)
µνρσ and R(1)µν

ρσ depend locally on hµν
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Matter loop corrections to the Riemann tensor correlator

Interactions

Gravity perturbatively non-renormalizable: treat as effective field
theory Donoghue ’95

Two types: matter-graviton and graviton self-interactions (separate
via 1/N-expansion with N matter fields)

Use in-in (Schwinger-Keldysh) perturbation theory to obtain
expectation values instead of S-Matrix elements Higuchi/Lee ’09

Many example calculations in Poincaré patch, consistent treatment
of UV divergences Woodard/Tsamis/Prokopec/Park/Miao/... ’92-’15

Results generally have non-trivial time dependence and IR
divergences

Riemann correlator including loop corrections from conformal fields
is IR-finite MBF/Roura/Verdaguer ’12-’15
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Matter loop corrections to the Riemann tensor correlator

General matter loop corrections

In principle straightforward: integrate matter fields out, obtain
effective action for gravitons (self-energy), calculate graviton
correlator, apply differential operator to obtain Riemann correlator

Use CTP generating functional
Z =

∫
exp

(
iS [h+

µν , φ
+]− iS [h−µν , φ

−]
)
Dh±µνDφ± with

S [hµν , φ] = κ−2SEH[hµν ] + SHD[hµν ] + iSM[hµν , φ]
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

Matter loop corrections to the Riemann tensor correlator

General matter loop corrections

Solution: explore Bianchi identities

Graviton propagator inverts differential operator obtained from
linearising Einstein tensor, up to gauge terms

G
(1)
µν = Pµν

ρσhρσ:

Pµνρσ(x)G++
ρσαβ(x , x ′) = δ

(µ
α δ

(ν)
β δ(x , x ′) + gauge terms

Apply Pµνρσ to correction term for graviton Wightman function,
both at x and x ′

Local terms do not contribute for Wightman function, gauge terms
do not contribute because stress tensor is conserved〈
G̃µ

ν(x)G̃ ρ′
σ′(x ′)

〉
c

=
κ4

4

〈
Tµ

ν(x)T ρ′
σ′(x ′)

〉
c〈

R̃µν(x)R̃ρ
′
σ′(x ′)

〉
c

=

κ4

4

〈[
Tµ

ν(x)− 1
2δ
µ
νT (x)

] [
T ρ′

σ′(x ′)− 1
2δ
ρ′

σ′T (x ′)
]〉

c
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

Matter loop corrections to the Riemann tensor correlator

General matter loop corrections

Invariance under spatial rotations and translations manifest
throughout calculation

– most general form of Riemann two-point
function depends on η, η′ and (x − x ′)2, or alternatively on η, η′

and Z = [η2 + (η′)2 − (x − x ′)2]/(2ηη′)
Decompose Riemann tensor correlator in Ricci-Ricci, Ricci-Weyl and
Weyl-Weyl

Apply Bianchi identities: ∇µ
〈
C̃µνρσ(x)R̃ρ

′
σ′(x ′)

〉
c

=(
δναδ

β
[σ −

1
6δ
β
αδν[σ

)
∇ρ]

〈
R̃αβ(x)R̃ρ

′
σ′(x ′)

〉
c

Make most general ansatz for
〈
C̃µνρσ(x)R̃ρ

′
σ′(x ′)

〉
c

compatible

with manifestly preserved invariance under spatial rotations and
translations, tensor symmetries

Assume stress tensor two-point function is dS-invariant (satisfied –
at least – for all free theories)
Evaluating Bianchi identities gives dS-invariant result!
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Matter loop corrections to the Riemann tensor correlator

General matter loop corrections
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ν
σ]

(
δρ

′

σ′ − nρ
′
nσ′

)
− 6δ

[µ
[ρn

ν]nσ]δ
ρ′

σ′

− 3δ
[µ
[ρ

(
nν]gρ

′

σ]nσ′ + nν]gσ]σ′nρ
′

+ nσ]g
ν]ρ′nσ′ + nσ]g
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σ′n

ρ′
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(
δ
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[ρ − 2n[µn[ρ

)(
gν]ρ′gσ]σ′ + g

ν]
σ′g

ρ′

σ]
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×
[
−(2)S(Z )− (3)S(Z )− (4− 11Z )(4)S(Z ) + (1− Z )(7− 4Z )(5)S(Z )
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Matter loop corrections to the Riemann tensor correlator

General matter loop corrections

Apply Bianchi identities again: ∇[α

〈
C̃µνρσ](x)C̃µ

′ν′
ρ′σ′(x ′)

〉
c

=(
δµ[αδ

β
ρ δδσ]δ

ν
γ − δν[αδ

β
ρ δδσ]δ

µ
γ + 1

3δ
[µ
[αδ

ν]
ρ δ

β
σ]δ

δ
γ

)
∇β
〈
R̃γδ(x)C̃µ

′ν′
ρ′σ′(x ′)

〉
c

Again, make most general ansatz for the Weyl-Weyl correlator
compatible with invariance under spatial rotations and translations

Evaluating Bianchi identities gives again dS-invariant result!〈
C̃ ab

cd(x)C̃m′n′
p′q′(x

′)
〉

c
=∑3

k=1
(k)C[ab]

[cd ]
[m′n′]

[p′q′]
(k)D(Z (x , x ′))

(k)Dabcdm′n′p′q′ are maximally symmetric bitensors incorporating all
symmetries and tracelessness, e.g., (1)Dabcdm′n′p′q′ =
gacgbdgm′p′gn′q′ − 6gacgm′p′gb(n′gq′)d + 4ga(m′gp′)cgb(n′gq′)d
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

Matter loop corrections to the Riemann tensor correlator

General matter loop corrections

(k)D(Z ) are functions of the stress tensor components and function
(2)C(Z ), given by

(2)C(Z ) =
κ4

15(1 + Z )4

[
Z (1 + Z 2)

(1− Z )4

∫
(1−Z )4S(Z ) dZ−

∫
Z (1+Z 2)S(Z ) dZ

]
with S(Z ) certain combination of stress tensor components

Eliminate one integration constant by demanding that Weyl-Weyl
correlator is regular at antipodal points Z = 1

Other integration constant corresponds to adding arbitrary multiple
of tree level result

Fall-off behaviour similar to conformal matter case:
(k)D(Z ) ∼ κ2H6Z−2 + κ4H8

(
Z−2 + Z−3 lnZ

)
MBF/Roura/Verdaguer

’15
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes

Conformally flat gµν dxµ dxν = − dt2 + a2(t) dx2

Relevant for cosmology: quasi-dS expansion (slow-roll)
a(t) = exp(Ht) with Hubble parameter H(t) = ȧ/a and slow-roll
parameters ε(t) = −Ḣ/H2, δ(t) = ε̇/(2Hε), . . .

Generally IR divergences worse, Fourier transform for MMC scalar
and TTS graviton diverges like ∼ |p|−1−ε

Correlation functions of linearised Weyl tensor IR-finite for small ε
MBF ’14

For large enough ε, Bunch-Davies vacuum probably not physical:
create more regular states by, e.g., matching from spacetimes
without IR divergences Janssen/Prokopec ’09
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Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes

Conformally flat gµν dxµ dxν = − dt2 + a2(t) dx2

Relevant for cosmology: quasi-dS expansion (slow-roll)
a(t) = exp(Ht) with Hubble parameter H(t) = ȧ/a and slow-roll
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

Metric perturbations

g̃µν = a2(η)(ηµν + hµν)

Decompose hµν into irreducible components under spatial rotations
and translations: h00 = s1 , h0k = vT1

k + ∂ks2 , hkl =

hTT
kl + 2∂(kv

T2
l) +

(
∂k∂l − δkl4

n−1

)
s3 + δkls4

Gauge symmetry at linear order: infinitesimal coordinate
transformations hµν → hµν + 2∂(µξν) − 2Haηµνξ0

On irreducible components: δs1 = 2ξ′0 + 2Haξ0 , δs2 =
ξ0 + ∂k

4 ξ
′
k , δs3 = 2∂k4 ξk , δs4 = 2

(n−1)∂kξk − 2Haξ0 , δvT1
k =

ξ′k −
∂k∂l
4 ξ′l , δvT2

k = ξk − ∂k∂l
4 ξl , δhTT

kl = 0

Four gauge-invariant combinations: Hkl = hTT
kl , Vk = vT1

k − vT2′
k ,

S = s1 − (2s2 − s ′3)′ − Ha(2s2 − s ′3),
Σ = s4 − 1

n−1 4 s3 + Ha(2s2 − s ′3)
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

Linearised Weyl tensor

Linearised Weyl tensor only involves gauge-invariant combinations
(Πkl = δkl − (n − 1)∂k∂l4 ):

2(n − 2)C 0j
0l = (n − 3)H j

l
′′ +4H j

l − (n − 3)
(
∂jV ′l + ∂lV

j ′)
− n − 3

n − 1
Πj
l 4 (S + Σ) ,

C 0j
kl = ∂[kH

j
l ]
′ − ∂j∂[kVl ] +

1

n − 2
δj[k 4 Vl ] ,

C ij
kl = −2∂[i∂[kH

j]
l ] +

2

n − 2
δ

[i
[k

(
∂2H

j]
l ] + ∂j]V ′l ] + ∂l ]V

j]′
)

+
2

(n − 1)(n − 2)
Π

[i
[kδ

j]
l ] 4 (S + Σ)

Can be inversed, e.g.
42Hkl = 24 C 0k

0l − 2∂j∂(kC
0j

0l) − ∂jC 0k ′
jl − ∂jC 0l ′

jk − 2∂i∂jC
ik
jl
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The Weyl tensor correlator in cosmological spacetimes

Weyl tensor correlator

Now assume slow-roll: 0 ≤ ε� 1, 0 ≤ δ � 1, work to first order in
ε and δ and in 4D

Result (Pkl = ηkl − ∂k∂l
4 ):

〈C0i0j(x)C0k0l(x
′)〉 =

[
Pk(iPj)l 42 −1

2PklPij42
]
I2 + ΠijΠkl 42 I1

I1 = κ4/(64π2)εH2/(27r)
[

(r + η − η′)3 ln (i(r + η − η′)) +

(r − η + η′)3 ln (−i(r − η + η′))
]

I2 = κ4/(16π2)H(η′)H(η)
[
(1− Z )−1 + ε/(1 + Z ) ln

(
1−Z

2

)
+

ε (η − η′) /r ln ((η − η′ + r)/(η − η′ − r))
]

with

Z = 1− r2−(1+2ε)(τ−τ ′)2

2ττ ′ and τ = −1/[H(η)a(η)]

Other components are similar, give correct dS limit
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

What have we gained? What have we lost?

Weyl tensor is manifestly gauge-invariant (at linear order) and local

In contrast, tensor part hTT
kl is gauge-invariant but non-local

Given general perturbation hµν , we have

hTT
kl = 4−2

[
42 hkl − 24 ∂m∂(khl)m + n−3

n−2∂k∂l∂
m∂nhmn +

1
n−2∂k∂l 4 δmnhmn − δkl

n−2 4 (4δmnhmn − ∂m∂nhmn)
]

Definition involves 4−2, and thus needs boundary conditions to be
fully specified

Reconstruction of tensor part from Weyl tensor is not worse:
hTT
kl = 4−2Jkl =

4−2
[
24 C 0k

0l − 2∂j∂(kC
0j

0l) − ∂jC 0k ′
jl − ∂jC 0l ′

jk − 2∂i∂jC
ik
jl

]
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

What have we gained? What have we lost?

Especially: reconstruct tensor power spectrum

PT(|k |, η) = |k|3
4(2π)3 δ

ikδjl
∫ 〈

hTT
ij (η, x)hTT

kl (η, 0)
〉

e−ikx d3x

Insert reconstruction of hTT
ij from Weyl tensor:

PT(|k |, η) = (32π3|k |5)−1
∫
Jkl(η, y)Jkl(η, 0)e−iky d3y

Gives standard result by construction, but completely detached from
graviton propagator

Not very practical definition, but clear conceptual separation
between propagator (tool, gauge-dependent) and observable:

every
graviton propagator that has been checked so far gives the same
Weyl tensor correlator ⇒ same power spectrum

Gauge-invariant parts of metric perturbation can be reconstructed
from Weyl tensor, but are non-local and need boundary conditions,
while Weyl tensor is local
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

The Weyl tensor correlator in cosmological spacetimes

Higher orders

At second order, Weyl tensor is no longer gauge-invariant:

LξC
(2)
µνρσ = C

(1)
µνρσ 6= 0

Gauge transformation at second order involves hµν itself:
δhµν = 2∇(µξν) + ξα

(
∇αhµν − 2∇(µhν)α

)
Possible generalisation: find parts of metric perturbations which are

invariant to second order Hkl → H
(2)
kl = Hkl +O(h2

µν), . . . , starting
from work of Bruni/Matarrese/Mollerach/Sonego ’97

Define observable by replacing Hkl → H
(2)
kl in Weyl tensor

, but
physical interpretation unclear

Other possibility: correlation functions at fixed geodesic separation
as in Woodard ’83

, but extremely complicated already in flat space
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Matter loop corrections and the linearised Weyl tensor as an observable in cosmological spacetimes

Further results from conformal fields

Semiclassical Einstein equation

CTP effective action, after integrating out matter fields and
performing renormalisation, is an action for gravitons only:
Z [h+

µν , h
−
µν ] (calculated for general FLRW)

Semiclassical Einstein equations can be obtained from variation
w.r.t. h+

µν and setting hµν = 0

Semiclassical Friedman equation: 6(a′)2 − 2Λa4 =
3ακ2a−4(a′)4 + 3βκ2a−3

[
2aa′a′′′ − a(a′′)2 − 4(a′)2a′′

]
α = N/(2880π2), β is arbitrary finite part of counterterm R2

Unstable runaway solution which lies outside the validity of effective
field theory can be eliminated by order reduction: substitute
a′ =

√
Λ/3a2 +O(κ2) in right-hand side

and obtain
3(a′)2 = Λ

(
1 + 1/6ακ2Λ

)
a4 +O(κ2) = Λeffa

4 +O(κ4)

Solution is given by a = (−Hη)−1 with H =
√

Λeff/3 – de Sitter
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Further results from conformal fields

Semiclassical backreaction

Further backreaction: consider perturbations around the background
by setting h+

µν = h−µν after variation

Obtained equations are real and causal, and thus have well-defined
initial value problem

0 =
[
1− (α + 2β)κ2H2

]
a2�hTT

ij − 2
[
1− (α + 2β)κ2H2

]
Ha3h′TT

ij

+ 3ακ2H2a2
[
2h′′TT

ij + �hTT
ij

]
− 6ακ2Ha�h′TT

ij

+ 3ακ2

∫ (
��hTT

ij (x ′)
) (

H(x − x ′; µ̄) + δ4(x − x ′) ln a
)

d4x ′.

H(x − x ′; µ̄) is a non-local causal kernel coming from the integration
over matter fields, ln a comes from conformal anomaly

Similar equations for vector and scalar parts of metric perturbation
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Further results from conformal fields

Semiclassical backreaction

Eliminate again unphysical solutions by order reduction:
h′′TT
ij − 2/η (1− ν) h′TT

ij − (1− 2ν)4 hTT
ij = O

(
κ4
)

with

ν = 3ακ2H2

Solution hTT
ij (η,p) = e±ij (p)g±(η,p) with

g± = (−ωη)
3
2
−ν
[
C±1 J 3

2
−ν(−ωη) + C±2 Y 3

2
−ν(−ωη)

]
and

ω2 = (1− 2ν)p2

At late times η → 0, we get g± = const +O(ωη),
(g±)′ = const +O(ωη)

However, linearised Riemann tensor involves η(g±)′ and η2g± and
thus decays at late times

Scalar and vector parts are constrained and have vanishing solutions
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Further results from conformal fields

Perturbed initial state

Generate a large class of non-vacuum initial states at η = η0 by
evolving an asymptotic BD state in a fixed perturbed geometry,
asymptotically dS as η → −∞ and smoothly connected to the
dynamics at η = η0 Pérez-Nadal/Roura/Verdaguer ’08

Since perturbed geometry does not satisfy any EOM, non-local term
does not vanish and gives contribution in the form of a stress tensor
correction δTµν(η, x) = 3αa−2(η)

∫ η0

−∞ Aµν(x ′)H(x − x ′; µ̄) d4x ′

Equation for tensor modes:
h′′TT
ij − 2/η (1− ν) h′TT

ij − (1− 2ν)4 hTT
ij = δTij +O

(
κ4
)

Corrections due to δTij decay faster than in the vacuum case!
(similar for vector and scalar)

Poincaré patch is thus stable for arbitrary linear perturbations due to
conformal fields, including arbitrary, spatial inhomogeneous (but
sufficiently small) perturbations of initial state
Fröb/Papadopoulos/Roura/Verdaguer ’13
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Conclusions

Classifying the space of observables O is difficult

For linearised gravity in cosmological spacetimes, (linearised) Weyl
tensor is a good observable; for de Sitter, even Riemann tensor

Both are IR-finite, including matter loop corrections in de Sitter

Obtain metric correlation functions including matter loop corrections
without ever evaluating an integral, through Riemann tensor
correlator and Bianchi identities (in dS)

Status of graviton self-interactions (or internal graviton lines)
unclear: no good observables known

Poincaré patch stable under quantum perturbations (terms and
conditions apply)
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Thanks for your attention
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