Nagaoka physics in kinetically frustrated electronic models

Claudio Gazza
Instituto de Física Rosario (CONICET - UNR)
Rosario, Argentina

Collaborators: Cintia Sposetti, Barbara Bravo, Franco Lisandrilni
Luis Manuel, Adolfo Trumper (Rosario)

Introduction: Hubbard model and Nagaoka ferromagnetism, and kinetic energy frustration
Nagaoka physics in kinetically frustrated electronic models

Claudio Gazza
Instituto de Física Rosario (CONICET - UNR)
Rosario, Argentina

Collaborators: Cintia Sposetti, Barbara Bravo, Franco Lisandrin
Luis Manuel, Adolfo Trumper (Rosario)

Outlines

🌟 Introduction: Hubbard model and Nagaoka ferromagnetism, and kinetic energy frustration
Introduction: Hubbard model and Nagaoka ferromagnetism, and kinetic energy frustration

We have found the generic existence of classical kinetic antiferromagnetism in kinetically frustrated (KF) models.
Outlines

🌟 Introduction: Hubbard model and Nagaoka ferromagnetism, and **kinetic energy frustration**

🌟 We have found the generic existence of **classical kinetic antiferromagnetism** in kinetically frustrated (KF) models.

🌟 We propose a new itinerant antiferromagnetism mechanism: **Release of the kinetic energy frustration** (non trivial spin Berry Phases or vanishing of frustrating loops)
Outlines

🌟 Introduction: Hubbard model and Nagaoka ferromagnetism, and **kinetic energy frustration**

🌟 We have found the generic existence of **classical kinetic antiferromagnetism** in kinetically frustrated (KF) models.

🌟 We propose a new itinerant antiferromagnetism mechanism: **Release of the kinetic energy frustration** (non trivial spin Berry Phases or vanishing of frustrating loops)

Calculations: DMRG on triangular and frustrated square lattices.
Interpretation: slave-fermion mean-field approximation,
Itineracy and Magnetism

Generic magnetic phase diagram of the Hubbard model on a bipartite lattice

virtual kinetic processes

real kinetic processes

\[\hat{H}_{Hubbard} = - \sum_{\langle ij \rangle \sigma} t_{ij} (\hat{c}^\dagger_{i\sigma} \hat{c}_{j\sigma} + \hat{c}^\dagger_{j\sigma} \hat{c}_{i\sigma}) + U \sum_i \hat{c}^\dagger_{i\uparrow} \hat{c}_{i\uparrow} \hat{c}^\dagger_{i\downarrow} \hat{c}_{i\downarrow} \]
Saturated Nagaoka's ferromagnetism

One of the few exact results:
Saturated Nagaoka's ferromagnetism

One of the few exact results:

Conditions

✧ Hubbard $U=\infty$ ($J=0$)
✧ One hole $N = N - 1$
✧ Connectivity $e^{\sum_i (-t_{ij})^n} > 0$
✧ minimum $n \leq 4$

Claudio Gazza,
Instituto de Física Rosario
Saturated Nagaoka's ferromagnetism

One of the few exact results:

Conditions

✧ Hubbard $U=\infty$ (J=0)
✧ One hole $N_e = N - 1$
✧ Connectivity $\langle -t_{ij} \rangle^m > 0$
✧ minimum $n \leq 4$

Y. Nagaoka, Phys. Rev. 147, 392 (1966)

Unique saturated ferromagnetic ground state (total spin $S = N_e / 2$)

Origin: constructive interference between processes in which the hole reaches a given lattice site via different routes.
Saturated Nagaoka's ferromagnetism

One of the few exact results:

Conditions

✧ Hubbard $U=\infty$ ($J=0$)
✧ One hole $N_e = N - 1$
✧ Connectivity $\langle -t_{ij} \rangle^n > 0$
✧ minimum $n \leq 4$

Y. Nagaoka, Phys. Rev. 147, 392 (1966)

Unique saturated ferromagnetic ground state (total spin $S = N_e/2$)

Origin: constructive interference between processes in which the hole reaches a given lattice site via different routes.

(e.g. simple cubic and square lattices with nn hopping only, triangular $t<0$)
Saturated Nagaoka's ferromagnetism

One of the few exact results:

Conditions

✧ Hubbard $U=\infty$ ($J=0$)
✧ One hole $N_e = N - 1$
✧ Connectivity $(s_{ij})^n > 0$
✧ minimum $n \leq 4$

Y. Nagaoka, Phys. Rev. 147, 392 (1966)
Unique saturated ferromagnetic ground state (total spin $S = N_e / 2$)
Origin: constructive interference between processes in which the hole reaches a given lattice site via different routes.

(e.g. simple cubic and square lattices with nn hopping only, triangular $t < 0$)

Bipartite lattice: particle-hole transformations can absorb t sign, so it is irrelevant.
Saturated Nagaoka's ferromagnetism

One of the few exact results:

Conditions

- Hubbard $U=\infty$ ($J=0$)
- One hole $N = N - 1$
- Connectivity $e^{S \cdot t_{ij}^n} > 0$
- Minimum $n \leq 4$

Y. Nagaoka, Phys. Rev. 147, 392 (1966)

Unique saturated ferromagnetic ground state (total spin $S=N_e/2$)

Origin: constructive interference between processes in which the hole reaches a given lattice site via different routes.

(e.g. simple cubic and square lattices with nn hopping only, triangular $t<0$)

Bipartite lattice: particle-hole transformations can absorb t sign, so it is irrelevant.

Non bipartite lattices: particle-hole asymmetry, t sign is relevant

When the connectivity condition is not fulfilled the kinetic energy is frustrated, and Nagaoka's theorem is not valid.
Kinetic energy frustration

Three-site toy model
Kinetic energy frustration

Three-site toy model

Magnetic frustration:
classical and/or quantum
Kinetic energy frustration

Three-site toy model

Magnetic frustration:
classical and/or quantum

![Diagram](triangle)

But there is also a kinetic energy frustration: quantum origin

Consider one toy model: a tight-binding model on a triangle
Kinetic energy frustration

Three-site toy model

Magnetic frustration:
classical and/or quantum

But there is also a kinetic energy frustration: quantum origin
Consider one toy model: a tight-binding model on a triangle

For one electron, we expect

\[E_{\text{min}} = -z |t| \]

where \(z = 2 \), however →

<table>
<thead>
<tr>
<th>Unfrustrated</th>
<th>Frustrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>For (t > 0):</td>
<td>For (t < 0):</td>
</tr>
<tr>
<td>(</td>
<td>t</td>
</tr>
<tr>
<td>(-2</td>
<td>t</td>
</tr>
</tbody>
</table>
Kinetic energy frustration and magnetism

Another toy model: 3-site Hubbard with 4 electrons
Kinetic energy frustration and magnetism

Another toy model: 3-site Hubbard with 4 electrons

\[U > 0, \ t > 0 : \]

\begin{align*}
\text{triplet} \\
t > 0: \text{triplet} \rightarrow \text{Nagaoka ferromagnetism}
\end{align*}
Kinetic energy frustration and magnetism

Another toy model: 3-site Hubbard with 4 electrons

$U > 0, t > 0$:

$U > 0, t < 0$:

$\cos(\theta)\left(\begin{array}{c}+\end{array}\right)$

$sin(\theta)\left(\begin{array}{c}+\end{array}\right)$

triplet

t>0: triplet \rightarrow Nagaoka ferromagnetism

t<0: singlet \rightarrow resonating valence bond state

Figure taken from J. Merino et al., PRB 73, 235107 (2006)
What happens when theorem is not valid?

... little is known
What happens when theorem is not valid?

... little is known

In a seminal work, Haerter and Shastry [PRL 95, 087202 (2005)] proposed a 120° Neel order in the triangular lattice \rightarrow Kinetic antiferromagnetism
What happens when theorem is not valid?

... little is known

In a seminal work, Haerter and Shastry [PRL 95, 087202 (2005)] proposed a 120° Neel order in the triangular lattice → Kinetic antiferromagnetism

We study the infinite U Hubbard model, with one hole doped away half filling, on two kinetically frustrated lattices:

★ Triangular lattice with $t > 0$
★ Square lattice with second neighboor hopping $t_2 = t_1 > 0$
What happens when theorem is not valid?

... little is known

In a seminal work, Haerter and Shastry [PRL 95, 087202 (2005)] proposed a 120° Neel order in the triangular lattice → Kinetic antiferromagnetism

We study the infinite U Hubbard model, with one hole doped away half filling, on two kinetically frustrated lattices:

- Triangular lattice with $t>0$
- Square lattice with second neighbour hopping $t_2 = t_1 > 0$

![Diagram showing lattice configurations](image)

Number of states retained
$m=200$ to $m=300 \rightarrow P_m \sim O(10^{-7})$

Clusters size used: 18, 36, 54, 72 and 90

$L_x=3, 6, 9, 12$ and 15 $L_y=6$

cylindrical boundary conditions
(open in x, periodic in y)

White and Chernyshev, PRL 99, 127004 (2007),
$S^{zz}(k) = \frac{1}{N} \sum_{ij} \langle S^z_i S^z_j \rangle e^{ik(R_i - R_j)}$

Ground state has an AF 120° Neel order, as the triangular Heisenberg
Local magnetization: triangular lattice $t>0$

$$M_s = \sqrt{(1/N) \sum_\alpha \langle \sum_{i \in \alpha} (S_i)^2 \rangle} = \sqrt{(4/N) S^{zz}(q^*)}$$

- Local magnetization extrapolates to the classical value
- Heisenberg model: strong quantum spin fluctuations

- △ Hubbard
- ○ Heisenberg
Local magnetization: triangular lattice \(t > 0 \)

\[
M_s = \sqrt{\frac{1}{N}} \sum_\alpha \left(\sum_{i \in \alpha} (S_i)^2 \right) = \sqrt{\frac{4}{N}} S^{zz} (q^*)
\]

- Local magnetization extrapolates to the classical value
- Heisenberg model: strong quantum spin fluctuations
- \(\triangle \) Hubbard
- \(\triangle \) Hubbard \((B=0.1t) \)
- \(\bigcirc \) Heisenberg
- \(\bullet \) Heisenberg \((B=0.1t) \)
- B: small magnetic field applied in one sublattice to pin the classical order
Local magnetization: square lattice

\[t_2 = t_1 > 0 \]

- Local magnetization extrapolates to its classical value
 - \(\square \) Hubbard (B=0)
 - \(\blacksquare \) Hubbard (B=0.1t)

\[M_s \]

\[N^{-1/2} \]

Antiferromagnetic \((\pi, \pi) \) Neel classical order!

The frustrated J1-J2 Heisenberg model, with J1=J2, has a collinear ground state, \(Q = (\pi, 0) \)
Origin of this kinetic magnetism

Which is the origin of this kinetic antiferromagnetism?

Hole motion in antiferromagnetic backgrounds can release its kinetic energy frustration
Slave-fermions - mean field approximation
Slave-fermions - mean field approximation

Slave-fermion representation:
charge \rightarrow spinless fermion
spin \rightarrow Schwinger bosons

$$\hat{c}_{i\sigma} = \hat{f}_{i}^{\dagger} \hat{b}_{i\sigma}.$$
L. Manuel, et al,
PRB 61, 3470 (2000)

$$\hat{H}_{t,J}^{MF} = \sum_{\mathbf{k}} \varepsilon_{f\mathbf{k}} \hat{f}_{\mathbf{k}}^{\dagger} \hat{f}_{\mathbf{k}} + \sum_{\mathbf{k}\sigma} \left[\varepsilon_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma}^{\dagger} \hat{b}_{\mathbf{k}\sigma} + \sigma \gamma_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma}^{\dagger} \hat{b}_{-\mathbf{k}\bar{\sigma}}^{\dagger} + \sigma \tilde{\gamma}_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma} \hat{b}_{-\mathbf{k}\bar{\sigma}} \right] + \text{Cte.}$$

hole motion on magnetic background
exchange interactions: spin fluctuations $\rightarrow 0$ with J/t
Slave-fermions - mean field approximation

Slave-fermion representation:
charge \rightarrow spinless fermion
spin \rightarrow Schwinger bosons

$$\hat{c}_{i\sigma} = \hat{f}_{i}^{\dagger} \hat{b}_{i\sigma}.$$

$$\hat{H}_{t,J}^{MF} = \sum_{\mathbf{k}} \varepsilon_{f\mathbf{k}} \hat{f}_{\mathbf{k}}^{\dagger} \hat{f}_{\mathbf{k}} + \sum_{\mathbf{k}\sigma} \left[\varepsilon_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma}^{\dagger} \hat{b}_{\mathbf{k}\sigma} + \sigma \gamma_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma}^{\dagger} \hat{b}_{-\mathbf{k}\bar{\sigma}}^{\dagger} + \sigma \gamma_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma} \hat{b}_{-\mathbf{k}\bar{\sigma}} \right] + \text{Cte.}$$

hole motion on magnetic background
exchange interactions: spin fluctuations $\rightarrow 0$ with J/t

$$\varepsilon_{f\mathbf{k}} = 4t \left[B_{1} \cos k_{x} + B_{2} \cos \left(\frac{k_{x}}{2} + \frac{\sqrt{3}k_{y}}{2} \right) + B_{3} \cos \left(-\frac{k_{x}}{2} + \frac{\sqrt{3}k_{y}}{2} \right) \right] + \mu$$

Hole (slave fermion) band dispersion

$$B_{R} = \langle \frac{1}{2} \sum_{\sigma} \hat{b}_{i\sigma}^{\dagger} \hat{b}_{i+R\sigma} \rangle \sim B_{R}^{2} = S \cos \frac{Q_{R}}{2}$$

B complex phase around a closed loop \sim spin Berry phases
Slave-fermions - mean field approximation

Slave-fermion representation:
charge → spinless fermion
spin → Schwinger bosons

\[\hat{c}_{i\sigma} = \hat{f}_{i}^{\dagger} \hat{b}_{i\sigma}. \]

L. Manuel, et al,
PRB 61, 3470 (2000)

\[\hat{H}_{MF}^{tJ} = \sum_{\mathbf{k}} \varepsilon_{f\mathbf{k}} \hat{f}_{\mathbf{k}}^{\dagger} \hat{f}_{\mathbf{k}} + \sum_{\mathbf{k}\sigma} \left[\varepsilon_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma}^{\dagger} \hat{b}_{\mathbf{k}\sigma} + \sigma \gamma_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma}^{\dagger} \hat{b}_{-\mathbf{k}\sigma}^{\dagger} + \sigma \tilde{\gamma}_{\mathbf{k}} \hat{b}_{\mathbf{k}\sigma} \hat{b}_{-\mathbf{k}\sigma} \right] + \text{Cte.} \]

hole motion on magnetic background
exchange interactions: spin fluctuations → 0 with J/t

\[\varepsilon_{f\mathbf{k}} = 4t \left[B_1 \cos k_x + B_2 \cos \left(\frac{k_x^2}{2} + \frac{\sqrt{3} k_y}{2} \right) + B_3 \cos \left(-\frac{k_x}{2} + \frac{\sqrt{3} k_y}{2} \right) \right] + \mu \]

Hole (slave fermion) band dispersion

Tight-binding like dispersion with renormalized hoppings

\[\tilde{t}_R \rightarrow \tilde{t}_R B_R \]

i) Bandwidth reduction |B| <= 1/2 (like in double exchange processes)

ii) B can change the kinetic energy frustration of the hole motion, through its sign or modulus.
Release of the kinetical energy frustration
Release of the kinetical energy frustration

Triangular lattice \(t > 0 \)

Ferromagnetic phase:
all B's \(> 0 \) → the magnetic order does not change the kinetic frustration

\[B_3 = B > 0 \quad B_2 = B > 0 \]
\[B_1 = -B < 0 \]

120° Neel phase:
one B \(< 0 \), the other 2 B's \(> 0 \) →
the sign of B's (\(\pi \) spin Berry phase)
allows the release of the kinetic frustration
Release of the kinetical energy frustration

Triangular lattice t>0

Ferromagnetic phase:
all B's >0 → the magnetic order does not change the kinetic frustration

\[B_3 = B > 0 \quad B_2 = B > 0 \quad B_1 = -B < 0 \]

120° Neel phase:
one B < 0, the other 2 B's > 0 →
the sign of B's (π spin Berry phase)
allows the release of the kinetic frustration
Release of the kinetic energy frustration

Triangular lattice t>0

Ferromagnetic phase:
all B's>0 → the magnetic order does not change the kinetic frustration

\[B_3 = B > 0 \quad B_2 = B > 0 \]

\[B_1 = -B < 0 \]

120° Neel phase:
one B < 0, the other 2 B's > 0 → the sign of B's (π spin Berry phase) allows the release of the kinetic frustration

Square lattice t2>0

\[t_R = t_R |B_R| \exp(i\phi_R) \]

\[B_R \sim S \cos \left(\frac{Q \cdot R}{2} \right) \]

(π,π) Neel phase
vanishing of the effective hopping amplitude along the frustrating loops releases the kinetic frustration
Finite U: local magnetization vs J/t

DMRG and mean-field results

Triangular lattice, doping=0.0185

For all J/t the ground state has 120° Neel order
$J/t \rightarrow 0$ Classical order parameter
$J/t \rightarrow$ infinite Heisenberg order parameter.

synergy between exchange and kinetic mechanism

\[
\hat{H}_{t,J} = -\sum_{iR\sigma} t_R \hat{c}_{i\sigma}^{\dagger} \hat{c}_{i+R\sigma} + \frac{1}{2} \sum_{iR} J_R \mathbf{S}_i \cdot \mathbf{S}_{i+R}
\]
Here we study anisotropic triangular lattice

\[\frac{t'}{t} = 0 \quad Q = (0,0) \]

\[\frac{t'}{t} = 1 \quad Q = \left(\frac{4\pi}{3}, 0 \right) \]

Magnetic wave vector vs spatial anisotropy
Kinetic magnetism transition

Here we study anisotropic triangular lattice

$t'/t=0$ $t'/t=1$

$Q=(0,0)$ $Q=(\frac{4\pi}{3},0)$

Magnetic wave vector vs spatial anisotropy

Square lattice:
abrupt transition between ferromagnetism and Neel order for
$t_2/t_1 \approx 0.22$
Conclusions
Conclusions

We have found classical kinetic antiferromagnetism in SU(2) invariant kinetically frustrated models.
Conclusions

- We have found **classical kinetic antiferromagnetism** in SU(2) invariant kinetically frustrated models.

- We propose a new itinerant antiferromagnetism mechanism: **Release of the kinetic energy frustration** driven by i) the spin Berry phase acquired by the hole or ii) the vanishing of effective hopping amplitude along the frustrating loops.
Conclusions

- We have found **classical kinetic antiferromagnetism** in SU(2) invariant kinetically frustrated models.

- We propose a new itinerant antiferromagnetism mechanism: **Release of the kinetic energy frustration** driven by i) the spin Berry phase acquired by the hole or ii) the vanishing of effective hopping amplitude along the frustrating loops.

- This kinetic mechanism is relevant at finite doping and finite Coulomb repulsion. Folk wisdom about doped frustrated Mott insulators: strong frustration \rightarrow rapid destruction of magnetic order under doping. This in not always true!
Conclusions

We have found classical kinetic antiferromagnetism in SU(2) invariant kinetically frustrated models.

We propose a new itinerant antiferromagnetism mechanism: Release of the kinetic energy frustration driven by i) the spin Berry phase acquired by the hole or ii) the vanishing of effective hopping amplitude along the frustrating loops.

This kinetic mechanism is relevant at finite doping and finite Coulomb repulsion. Folk wisdom about doped frustrated Mott insulators: strong frustration → rapid destruction of magnetic order under doping. This in not always true!

Kagome lattice: Work in progress!
Thanks for your attention