The time-dependent DMRG and its
applications
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Solving the t-d Schrodinger Equation

ih%\\y(z» - HW(0)) = |W(0)) =

W(t =0))
Let us assume we know the eigenstates of H
W(t=0))=Yc,lw,)

W) = Wt = 0) = [W(0) = Te,e

n

¥,)

In reality, we work in some arbitrary basis

‘qj(f = O)> = de‘¢k>

— “P(t)> = dee_iﬂ{
= Z d, E a,me_itE” Z/Jn> Mixture of excited states with
n oscillating terms with

— de (t)‘%> with d,(¢) = dkzakne-iﬂn different frequencies

¢k>

Typically we avoid high freq. oscillations by adding a phase ¢ — ¢ (1=f0)



Time evolution and DMRG: First attempts

Cazalilla and Marston, PRL 88, 256403 (2002) use the infinite system
method to find the ground state, and evolved in time using this fixed
basis without sweeps. This is not quasi-exact. However, they found that
works well for transport in chains for short to moderate time intervals.

[¥(t=0)@ . . . . |2(t))

=0 =1 =2t =3t =4t

Luo, Xiang and Wang, PRL 91, 049901 (2003) showed how to target
correctly for real-time dynamics. They target

w(t=0), y(=1) , w(=21) , y(=37)...

[%(t = 0)@ - - o @®— v(1)

=0 =7 =21 =3t =4t

This is quasiexact as 1—0 if you add sweeping.

The problem with this idea is that you keep track of all the history of the
time-evolution, requiring large number of states m. It becomes highly
inefficient.



The Density Matrix Renormalization

Group. “Classical” analogy
Image compression algorithms (e.g. Jpeg)

We want to achieve “lossless compression”
... or at least minimize the loss of information



Density Matrix Renormalization Group

A variational method that follows the principles of
exact diagonalization and NRG.

«Similar capabilities as exact diagonalization, but able to study
larger systems.
*Yields variational solution in the form of a matrix-product State.

)= Als], Als, 1, - AlS ], o Als, 1, 1s.05,)

{s}
S 8, 8 8, S,

o fe] | | ,

*No a-priori assumptions about the physics.

*Can calculate properties of very large systems (1D and quasi-2D)
with unprecedented accuracy.

*Results are variational, but “quasi-exact”: Accuracy is finite, but
under control



Adaptive Time-dependent DMRG:

—z'rH —z'rH —LTH

H/i

In a truncated basis:

[%(2))

We need to
“follow” the state
in the Hilbert
space adapting
the basis at
every step

Hilbert
space

S.R.White and AEF, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. (2004); AEF and S.R.White,
PRB (2005), Rapid Comm. Based on TEBD ideas by G. Vidal, PRL (94).



Evolution operator

——z'rH —z'rH —I'TH -—z'rH

S ILINE

H=  H, + H, + Hy + H, + H; + H,

We would feel tempted to do something like:

—itH,

—itH,

-t e—ir(H1+H2+H3+H4...) —irH3e—irH4

€ =~ € € €

But it turns out that e_iT(H1+H2) Z e_iTHle_iTHz because [1171,[1’2];‘ﬁ 0

This actually would give you an error of the order of t2, similar to a 15t
order S-T expansion...



Suzuki-Trotter approach

—LTH —LTH —LTH —LTH

S I

H= H, + H, + H; + H, + H; + H,

H,= H, + H, + H,
Hy= H, + H, + H;
2
e—zr(HA+HB) _ e—erAe—erB el 9 L4, H ] _ e—erA e—erBQO(rz)



Suzuki-Trotter expansions

We want to write
P
e(A+B)h+C2h2 +CI +Ch* +O(R) 1—[ eapAheprh

with G, =a({a,,b,1)4,B] p=1
C, = Bta,.b, A4, B+ y({a,.b,1)[B.[B, 4]

We want to choose the a’s and b’s such that they kill the first K coefficients
Cy, minimizing the number of factors P for a given order, to obtain

P
e(A+B)h+O(hK+1) _ 1—[ eapAh eprh

p=l
We will impose the conditions that the operators enter symmetrically in the

decomposition and Ea _ Eb —1
P p '
p P

|.P Omelyan et al., Comp. Phys. Commmun. 146, 188 (2002) and references therein.



Suzuki-Trotter expansions

First order:;

A+BYh+O(h? Ah _Bh
e(+)+( )—e e

Second order:

e(A+B)h+a(a,b)[A,B]h2+0(h3) _ eaAh eth e(l a)Ah (1 b)Bh

Ah _bBh (1-a)Ah _(1-b)B A+bB l—a) A+(1-b)B
oAk DBh S(1=a) Ak [(1=b)Bh _ (ad+bB)h ,((1-a) A+(1=b)B)

(A+B)h+— ab[A B]h2+ (1 a)(1-b)[ A,B1h* +— a(l—b)[A,B]h2—%(l—a)b[A,B]hz
=~ e

_ e(A+B)h+(ab—b+1/2)[A,B]h2

We Kkill the second order term by choosing a=1/2; b=1

A+BYh+O(h° Ah/2 Bh Ah/2
el ATBIO) _ pAh2oBh g



Suzuki-Trotter expansions

Fourth order:

e(A+B)h+0(h5) _ @A Bk s dh b Bh ardh biBh (1-a-a,=a3) dh (1-b~by=by) Bh

One solution (the most convenient expression) has the form (Forest-Ruth
formula)

A+B)h+O(h’ Ah6/2 B6h (1-8)Ah/2 (1-20)Bh (1-8)Ah/2 6Bh 64h/2
B O7) _ o, B0 p1-0)Ah12 (1-20)Bh ,(1-0)4h /2 ,08h ,

with 6 =1/2-32)



Evolution using Suzuki-Trotter

18t order Suzuki-Trotter decomposition:

—itH —itH , —itH

e ~e ‘e T’
where H = H4 + Hp. Here we make A the even bonds and B the odd, 1D only.
The individual link-terms exp(—é7H;) (coupling sites j and j + 1) within H4 or Hp

commute. Thus
—-iTHp @e—irHl —itH; —iTH; No error
€ € € e introduced!

So the time-evolution operator is a product of individual link terms.
Each link term only involves two-sites interactions => small matrix, easy to calculate!

_1 H 4 E—ITHB —1*H4 6—!71’18 —iTH 4 —iTHg

< DRDROBDB-



The two-site evolution operator

Example: Heisenberg model (spins)

s 5 e e Moo o
H = ESz’ 'S, with §;-§,, =575, + 5 (Si+Si+1 +35, S;rl)
The two-site basis is given by the states
loo”) HIT It LD}
We can easily calculate the Hamiltonian matrix:
(1/4 0 )
-1/4 1/2
H =
1/2 -1/4
\ 0 1/4

Exercise: Exponentiate (by hand) the matrix by following these steps:
1. Diagonalize the matrix and calculate eigenvalues and eigenvectors
2. Calculate the exponential of H in the diagonal basis

3. Rotate back to the original basis




Evolving the wave-function

We want to apply the evolution operator between the two central sites:

Sl+l> S1+2>

o) | @ ¢ |Bs)
—

e-irHij

As we've seen before, the link evolution operator can be written as

_ltHl+1,l+2 _ 814155142

S'14155" 142

| |
S1418142 ><S 1415 142

And the wave function after the transformation:

_ltHl+1,l+2

7//> = Eﬁp(azasmasnzaﬁm) CZ1>®‘S1+1>®‘S1+2>®‘/)’1+3>

Q15814155742 7ﬁl+3

with @(a;, 8,152, 01,3) = E ?,jl ?lfzw(azaSZ+1aS1+2>/31+3)

1
S'14158 142



tDMRG: The algorithm

S.R.White and A.E. Feiguin, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp.
(2004)

We turn off thgedingoe abizetioarhtbsdarttanplyiegdieiewolution operator

COOLOLIOLOLOLILOLVOLOUL
—

e-irHij




tDMRG: The algorithm

S.R.White and A.E. Feiguin, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp.
(2004)

COOLOLOLOLOLOLOLOLOL L
T T T

e-irHij e-irHij e-irHij e-irHij e-irHij

Depending on the S-T break-up, a few sweeps
evolve a time step

Each link term only involves two-sites interactions: small
matrix, easy to calculate! Much faster than Lanczos!



Time-step targeting method

What if we don’t have a “nice” Hamiltonian, and S-T cannot be applied

The time-evolution can be implemented in various ways:

1) Krylov basis: Calculate Lanczos (tri-diagonal) matrix, and exponentiate. (time consuming)
2) Runge-Kutta. (non-unitary!)

.We target one time step accurately, then we move to the next step.

-We keep track of intermediate points between ¢ and +T

Wi=00-0 000 I

=0 — =21 =31 =4t

AEF and S. R.White, PRB (05). See also P. Schmitteckert, PRB 70, 121302(2004)



Recall the fourth order Runge-Kutta method for integrating 3/(t) = f(y,t) = f(y):

ki =7f(y); ke=7f(y+k1/2); ks=7f(y+k2/2); ka=Tf(y+ks);

Then 1
y(t+ 1) = y(t) + 6(1‘31 + 2(ky + k3) + ky)

Using Mathematica, we find that to O(7%),

1

1
y(t +27/3) =~ y(t) + 5(1614:1 + 20(k2 + k3) — 2ka)
The recipe is:

e Each half-sweep is one time step. At each step of the half-sweep, do one RK step,
but without advancing t — ¢ + 7.

e At each step, target ¢(t), ¥(t + 7/3), ¥(t + 27/3), and ¥(t + 7).

e At the last step, when the basis fully represents the states of the time step, advance
to ¢t + 7 more accurately using 10 RK steps with step 7/10.



Sources of error

. Suzuki-Trotter error: Can be controlled by using higher order
expansions, or smaller time-steps. If we use a pt" order S-T
decomposition, the accumulated error after n steps is

e(1) = nh" = %h”” — th?

. Truncation error: In principle it can be controlled by keeping more
DMRG states as the entanglement grows. Caveat: only works for “well-

behaved” problems, since typically the entanglement grows
uncontrollably.

. Runge-Kutta/Krylov: the error is dominated by the truncation error.

Recipe: instead of fixing the number of states for the simulation, we fix
the truncation error, and we let the algorithm determine the optimal
number of states... until the basis grows too large and the simulation
breaks down. Hopefully this will enable us to go to large times...



Error

$=1 Heisenberg chain (L=32; t=8)

L
Z (S#(,t) — 3y 00 (@, 1)),

10_1 ; T T " T " T " ! i '
: «— time targeting +RK
10 f
10° F
\Q\
107 A -
i - S,

-5 ] ] ] ] ] ]

1075 50 40 60 80 100 120

]. Ist order S-T

= 4t order S-T




Error

107}

- a Z
/ _ 3 ; 102
1 F Forsmallertime- H10°
step we need -
more iterations—
accumulation of
m=te0 { [ "' {10*
——1st Order S-T |
—0-2nd Order S-T | ~-R-K; m=100
—o—4th Order S-T
P , , L , , | . 105
0.10 0.0 0.1 0.2
T T

FIG. 3: Error E(t = 8) for the Haldane chain for different time
steps 7: a) 1st, 2nd, and 4th order Suzuki-Trotter break-ups
and m = 160; b) Runge-Kutta and m = 100.



Fixed error, variable number of states

1600

—=—4th Order R-K

1400
1200
1000
800
600

400

time

FIG. 4: Number of states required to keep a truncation error
of 1075, as a function of time. The results correspond to a
R-K simulation of a Haldane chain with L = 32.



Comparing S-T and time step targeting

. S-T is fast and efficient for one-dimensional
geometries with nearest neighbor interactions

. S-T error depends strongly on the Trotter error but it
can be reduced by using higher order expansions.

. Time step targeting (Krylov,RK) can be applied to
ladders and systems with long range interactions

. It has no Trotter error, you can use a larger time-
step, but it is more time consuming and you need
more DMRG states.

. In RK simulations it is a good practice to do an
intermediate sweep without evolving in time to
improve the basis.

. Time evolution using RK is non-unitary (dangerous!).
Krylov expansion is the right choice.



Applications

. Transport in nano-structures
. Spectral properties, optical conductivity...

. Systems driven out of equilibrium,
gquenches.

. Time-dependent Hamiltonians.

. Decoherence Free induction decay,

Hahn echo, Rabi oscillations, pulse
sequences..




Spin transport
Example: half polarized spin S=1/2 chain

Real-Time DMR. T=0.0

0 10 20 30 40 50 60 70 B8O
) R R BUL N RN BRI B RRRENRERR
05 [ ] -1 05
04 I~ -1 04
03 I~ -] 03
02 |- -] 0.2
0.0 - -1 0.0

i 00 [ -] 0.0
-0.1 |- -1 0.1
-02 |- -1 02
03 I -1 -03
-04 I~ - 04
-05 1 -0.5
0 bl Ll b b il e

0 10 20 30 40 50 60 70 80



Spin transport
Example: half polarized spin S=1/2 chain

A=0.0

0.50
0.45
0.40
0.35
0303
0252
o.2o§
0.15
0.10
0.05
0.00

time

site i



The enemy: Entanglement growth

We have seen that the truncation error, or the number of state that we need
to keep to control it, depends fundamentally on the entanglement

S = S(t)

We need to understand this behavior if we want to learn how to fight it!

A
Possible scenarios: V(t)
 Global quench

 Local quench

* Periodic quench

» Adiabatic quench

>

[

All of a sudden, we are no longer in the ground-state, but some high energy
state. Important questions: thermalization vs. integrability



E-growth: global quench

| I I I I |

. — 1=100
. — - L=60 -

Y P P P e =S :_—_%fjg
g [0 2 40 60 80100 =2 .
] ATk

20 — _
L o n - TR W SRl W S
10 - _
................................ — o e st i st i

0 | | | | | | | |

0 20 40 60 80 100

Calabrese and Cardy, JStatM (05)



Global quench: qualitative picture

Region A (lengh /)
B \
( \
2vt 2vt

B time

=0

2vt<]

We assume that entangled pairs of quasi-particles are
created at t=0, and they propagate with maximum velocity

=5 =35,+ct

Calabrese and Cardy, JStatM (05)



Global quench: qualitative picture

Region A (lengh /)
B { | | B time

=0

2vt>|
The number of entangled pairs saturates

Calabrese and Cardy, JStatM (05)



Local quench: qualitative picture

Region A Region B

[’=vt ,
< > fime

=0

The perturbation propagates from the center, splitting the
system into two pieces, inside and outside of the light-cone

=5 =3, +c'log(!") =S, +c'log(v¢)

Calabrese and Cardy, JStatM (07)



Computational cost

Global quench:
S =ct = m=exp(S) = exp(ct)

Local quench:

const.

S =log(vt) = m=exp(S) =t

Adiabatic quench:

S = const. — m = const.



Time-dependent correlation
functions — Spectral properties

o4

| =64;: N=48; J=0.5
610 05

References: AEF and SR White (05)




Calculating spectral functions

To get spectral functions, we Fourier transform a time dependent Green's function
such as

G(t) = (¢|B(t)A(0)|¢)

where ¢ is the ground state. Here is the recipe:

e Use standard DMRG to get |¢) = |¢(t = 0)). Turn off Davidson/Lanczos.

e During a half sweep, apply A to |¢), |¢(t = 0)) = A|¢), targetting both ¢ and 2,
and doing the wavefunction step-to-step transformation.

e Start the sweeps to time evolve, applying the link operators, on both ¢(¢) and #)(t).

e Measure G(t) as
G(t) = (o(1)|Bl¥(t))

To get all momenta at once, let A be, e.g., S;' for the center site 4, and measure with
B =5} for all sites j as you sweep. This gives you, for example

G(i —j,t) = (¢1S™ (1, 1)S" (2, 0)|)

This we can Fourier transform in both space and time to get G(k,w).



Time dependent correlation functions

S=1 Heisenberg chain

Time = 0.00

0 6 12 16 24 30 36 42 48 54 60
AR EARR LA L b B R b B B s

<SiHSH)>
L s Y e B s e |
R N T e T s TN 5
;
oo SRR

0.6
-0.8
1.0 -1.0
1.2 -1.2
7Y YTV ITIT FYVRY FEYVPN FOYVRY FRTPVA FRVRTI FRVPVA FRVPTI ROPTI PPF:
0 6 12 16 24 30 36 42 45 54 60

site |

G(z,t) = —i(|T[S; (t)Sy (0)]¢)



Fourier transform to k and o

Gkt),k=0,/2, 7 A(k,m)
S=1 chain k=m, w2

1

VLT

/ dt cos wt Z cos kxG (x,t)
0

Courtesy, SR White.



S=1/2 Heisenberg chain

Cu(C,H,N,)(NO,), tDMRG

0 . L P 1 ) 1 .
0 025 05 075
g/m

%“‘M#‘M 1=80; m=200; t=0.1

R N



S=1/2 Heisenberg ladder 2xL (L=32)

0030 20 1.0 00-30 20 -1.0 0.0
K K

X X



Spin-charge separation

(seen in photoemission — ARPES)

Photo-

photon . electron

& o
% :
| T

The excitations don’t carry the same quantum numbers as the original electron
— zero quasi-particle weight



Real-time simulation
Half-filled Hubbard model (L=160, U=4)

Real-Time DMRG T=0.0
e —
0.2 } 0.2
= 01 -4 01
©
=
] |
" 00 “MWW-‘W-'M'-'M‘?MH'M |'V|'|W;'.w'.w.-.w.-. 0.0
-01 | Spin -1 -0.1
; I ~—Charge | .
o SR Nt | B e
0 40 80 120 160
site |

S.R.White and AEF, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. (2004); AEF and S.R.White, PRB
(2005), Rapid Comm.



time

Lightcones

Spin Charge
20 -
18
16
14
12

awiy

10

n o O @
n A~ OO ©

Co

0 40 80 120 160 0 40 80 120 1
site site

Spin and charge propagate at different velocities



ARPES at T=0; J=0.5

spinon

“Shadow”
610 05 0.0 0.5 1.0 bands



Optical conductivity: Peierls-Hubbard model

3
I
|
N
~
I
I
=
%

6.0

50 I

3.0

1.0

------- Exact, U=0, e=20
—Exact, U=0, e=5
——DMRG, L=196, U=0, &=5
——DMRG, L=64, U=3, e=5

0.0
0.0

7.0

' + +
_) (Cz,act+1,o + ‘1+1,a‘~°l,o) :

o1(w) = " lim Im G j(hw + in)

aw n—0

bol .« "fn>|2 J(h'w+b70--b711)




Finite-temperature DMRG

References: AEF and S. R. White, PRB, Rapid (05)




Liouville representation

Consider an operator .
A= Sa,li)k
J

If the dimension of the Hilbert space is d, we need dxd entries to define A

Another way to define the operator is by working in Liouville space: we

recast it in the form
‘A>> = Zajk‘jk»

J

| jk)) =] J)(k|

Were



Liouville representation (cont.)

If the operator is the density dIO ]
matrix then we can write the — = —Z[H, IO]
equation of motion as dl‘

It can be rearranged as

dp .
I;t]k = _i; [Hjmpmk — IijHmk]= _i; ij,mnIOmn

Were L

= Hjmékn o H;:néjm

Jjk,mn

The Liouvillian L is a superoperator with d?xd? entries

d IO>> analogous to the
—_ _ZL‘ IO>> Schroedinger equation
dt




From Liouville to Thermo Field
representation

We need dxd entries to define an operator, so we can define an “ancillary”
space, which is a duplicate of our Hilbert space

H—-HeoH )

For each state ‘x> in H, we define a “tilde” state ‘x> living in the
ancillary space (“thermo-field double”).

Now, we can define a “quantum” state
W)= Zajk‘f>‘k>
J

This state encodes the operator A, and the dxd amplitudes
contain all the information.

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975)



Thermo Field representation

If the operator is the density matrix, once again we see ‘Z/Jp> = 2 IOjk ‘ ]>‘ k>
J

d ~ s
‘Z’)> —ilH-A)y,) = |p,@) =y @ -0)
with ﬁ = H+ acting on the ancillary states
It is easy to verify that: dg;k _ _Z.E [Hjm,Omk B pijMk]

But we work with quantum states and Hamiltonians, instead of
operators and superoperators. All the machinery of many-body,
Green’s function, numerics, can be seamlessly generalized to

solve the non equilibrium problem!




Finite temperature

Problem: we want to calculate a thermal average:
(A) = Z71(B)Tr{Ae PH}, Z(B) = Tr{e PH}.

as an average using a wave function instead of density
matrices:

(w,(B)|dy,(B) 1 e
A) = = "(n|A4
“ W, (B, (8) zp 2

with

Z(B)=(w,B|v,(B)

AEF and S. R. White, PRB, Rapid (05), Verstracte PRL 2004, Zwolak PRL 2004



Finite temperature

Let’s consider a two-level system
0= Poo| 0)(0[+ 01| O)(1|+ 03[ 1)(0[ + o1, [ 1)(1]

or

T,Up> = ,000‘0> 6>+ /001‘O>‘T> +plo‘1>‘6>+pll‘1>‘T>

At infinite temperature

o =~ 0)ol+— ||

,(8=0)=210)0)+|1)T)

We can perform a “particle-hole” transformation an rewrite it as:

v,6=0) =3 (o T)+0f5))= 3113}/ )]7)

Note: The sign does not matter, we can also use the singlet as the maximally entangled state




Example: single spin

We introduce and auxiliary spin (ancilla)

|]0>: |T,l>-|l,’r> I “physical” spin

We trace over ancilla:

o

The density matrix corresponds to the physical spin
at infinite temperature!

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975), Verstraete PRL 2004, Zwolak PRL 2004



Evolution in imaginary time

Now, let’s prove that the thermal state is equivalent to evolving the maximally
entangled state in imaginary time.

8_/3H/2‘1/J(ﬁ _ 0)> _ o P2 E n,?f>

all states n

Since this expression does not depend on the choice of basis, we can
assume that the configurations n are actually eigenstates of H

E o PHI2 n,?i> _ E o PEn/2

n n

~~

n,n>

N e

B AP (B) = 3 e A )

n,m
=y e n) (i)
n,m

= Ee"ﬂE"<n

n

Similarly: <1/J([)’)‘2/J(/J))> _ E e PEn = Z(/)’)

n

N

A

N

An>




Evolution in imaginary time

The thermal state is equivalent to evolving the maximally mixed
state in imaginary time.

d H H
GBI == Tl s) = \w</»’>>=exp(—7

)\W - 0))

¥~ T-dependent
entanglement

*The ancillas and the real sites do not interact!

*The global state is modified by the action of the Hamiltonian
on the real sites, that are entangled with the ancillas.

*The mixed state can be written as a pure state in an enlarged
Hilbert space (ladder-like or bi-layer-like in 2D).

*The thermal state is the “square root” of the density matrix.



Maximally mixed state for =0 (T=c0)

CM: thermofield representation, QI: mixed state purification

‘]> =Z‘n,ﬁ> (auxiliary field 7 is called ancilla state)
with [n)=[s;s,85_sy) 2V states!!!

D=1, 10+ LD*IT LT DI L)

each term can be re-written as a product of local “site-ancilla” states:

D=1 D10 L DILDHT DL DHLDITT)

after a “spin-reversal” (flip) transformation on the ancilla we get

[D=|Ig) o) with [Ip)=1[1,1)+]],7)

Exercise: prove that the maximally mixed state |I) =)'|n,/7)
does not depend on the choice of basis or representation




Initial state

We have found that the initial state:

1) =% |n, )

Can be written as:

‘] H‘] ,Wlth‘] E‘SS

sitesi1

The maximally entangled state between system and ancillas is a
product state (totally disentangled) of spin-ancilla pairs!!

The initial state in DMRG language looks like:
[I) = [IL) o) ny2 o) Ny2+1]1R),

In this basis, left and right block have only one state!
As we evolve in time, the size of the basis will grow.



Purification
We have found that the initial state is:
(B =0)=[nn)
It is easy to see that it can be wriri[ten as:

W (B =0))= H\m with [y,) = Y [s.5),

S

The maximally entangled state between system and ancillas is
a product state (totally disentangled) of spin-ancilla pairs!!

At T=0, the system “decouples” from the ancilla: they become totally
disentangled, meaning

W(/?) = OO)> = ‘g.s.>®‘ancillas>



Cv

Thermodynamics of the spin-1/2 chain

0.4

—Bethe Ansatz
o | DMRG L=64
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b |
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Frustrated Heisenberg chain
H =Y JiSiSit1 + J2Si.Siso.

037
0.2
-
O
0.1k — TM-DMRG
. a J2=0.1
o \J2=0.2
A J2=J2C
v J2=040
0'00.0 ‘ 0.1 ‘ 0.2 ‘ 0.3 ‘ 0.4 ‘ 0.5 ‘ 0.6 ‘ 0.7 ‘ 0.8 ‘ 0.9 ‘ 1.0

T

* TM-DMRG results from Wang and Xiang, PRB 97; Maisinger and Schollwoeck, PRL 98.



Frustrated Heisenberg chain
H =Y JiSiSit1 + J2Si.Siso.

0.16 — T T ] T T T T
(@]
. —TM-DMRG
o o J,=0.10
0 gy, o J,=0.20
015 © _
O
q)
o
w8
o
[ o)
b 0.14 n ]
0.13
I I 1 ! ! !

N | . | N | N N N N N N N
01%0 01 02 03 04 05 06 07 08 09 10

* TM-DMRG results from Wang and Xiang, PRB 97; Maisinger and Schollwoeck, PRL 98.



The maximally mixed state in the canonical
ensemble

We need to generate a state: u> =Z‘” >
)

Where the n states are configurations with fixed total 7, or fixed
number of particles N

The previous example was in the grand canonical, all spin projections
contribute:

D=L LO*ITL T+

The maximally mixed state in the canonical with S =0 would look:

D=1 10*L1,01)




The maximally mixed state in the canonical

ensemble (contd.)

Let us focus on the physical spins. Let us generate the symmetric
superposition of all the spin configurations with $-=0 :

[S»=ITL*ILT)

It is a and eigenstate of the operator $? with S =1

In general, we can prove that the symmetric superposition of all spin
configurations is an eigenstate of S with maximum spin S.

Therefore, if we want to generate this state, we calculate the ground state
of the Hamiltonian in desired $* subspace

H=-5= —25’1. -S
L,J

For fixed with $¢ this becomes (except for a constant)
+ Q- - O+
H=-%S'S +5S;

[#]



The maximally mixed state in the canonical
ensemble (contd.)

Now, we need to add the ancilla, so we use:

i3 (5 s )+ 57555 )
[#]
Recipe:
1) We prepare the state at infinite temperature as the ground state

of an artificial Hamiltonian acting on an enlarged Hilbert space
coupling physical spins and ancillas.

2) We evolve the state in imaginary time, using the time-dependent
DMRG

AEF, G. Fiete, PRB (2010)



The maximally mixed state in the canonical
ensemble (contd.)

For fermions:

H = — Z (AZAJ- + h.(:.)

Z#] fermion-
ancilla pair

-.—@—.—.—.—.—.-



ARPES at finite T

t-J chain: L=32. N=24. J=0.05

0.000 0.002 0.004 0.006 0.008 0.010

w—u

abh b A o -

w—u

w—u

| I I | LI . |
D N A o b b b AN o

AEF and G. Fiete, PRB (2010)



