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Previously in Strings@Dunes

Holographic milestones

• predictions of N = 4 SYM [lectures of H. Nastase]

η

s
=

1
4π

• hadrons [lectures of J. Sonnenschein]

• strongly correlated fermions, superconductors etc. [lectures of C. Hoyos]

G(w, k) ∼ Z(ω)
ω − vf k⊥ + Σ(ω)

• holographic entanglement entropy [lectures of H. Casini]

SEE(A) =
γ(A)
4GN

• new look on higher spins, AdS3/CFT2 [lectures of D. Grumiller]



Today

More (specific) results in 2D and 3D

• system in external magnetic field: view on quantum Hall

• AdS/BCFT: (boundary) entropies

• towards AdS4/CFT3

• gravity and Chern/Simons: quantum Hall again



2-Dimensional Electrons in Magnetic Field



Quantum Hall Effect

Experiment [von Klitzing et al.’80]
[Störmer,Tsui’85]

The Hall conductivity is quantized

σH =
ρ

B
= ν

e2

h

Fractional plateaux are due to electron interactions



Quantum Hall Effect

Basic theory

At a plateau 2D electrons form a
gapped state (zero DC conductiv-
ity), equivalently, an incompress-
ible fluid

Ingredients (IQHE)

• Discrete Landau levels

• Disorder allowing to vary the chemical potential in the gap between the
levels

• Every filled Landau level contributes a unit of conductivity [Thouless et al’82]

A common explanation of FQHE is the composite fermion model



Quantum Hall Effect

Chern-Simons description of the QHE [Zhang,Hansson,Kivelson’89]

Quantum Hall state can be described by

ji = σijEj , σ =
(

0 σH

−σH 0

)
This can follow from the Chern-Simons action

S =
k

4π

∫
d3x εijkAi∂jAk , k = 2πσH

? How can k be consistently quantized?

• ν = 1
2n+1 – Laughlin series

• ν = n
2n±1 – FQHE principal series

• ν = 5/2, . . . – exotic fractions



Quantum Hall Effect

Edge states

• No bulk transport, all
transport occurs along the
edges (edge currents)

• bulk/boundary
correspondence (edge modes
encode the state in the bulk)

• boundary theory is typically
a 1D CFT (Luttinger liquid)

σH = e
∂J
∂µ

Each edge mode contributes a
quantized value to the conductivity



Quantum Hall Effect

Thermal transport

In the integer QHE we expect Wiedemann-Franz law to be satisfied

κH

σH
= LT , L =

π2

3

(
kB

e

)2

In the interacting case, from the bulk/boundary correspondence it is expected
that

κH = c g0 , g0 =
π2

3
k2

B

h
T

where c – is a central charge of the boundary CFT [Kane,Fisher’96;Read,Green’00]



QHE from black holes



Holographic Models of QHE

Vast literature, including top-down approaches

• Keski-Vakkuri, Kraus’08; Davis, Kraus, Shah’08 Construction of an
effective Chern-Simons theory. D-brane theory of plateau transitions

• Fujita, Ryu, Takayanagi’09 D-brane engineering of an effective
Chern-Simons theory in low dimensions. Model massless edge modes
and stripes of states with different ν. Proposal hierarchical FQHEs,
using IIA string on C2/Zn

• Bergman, Jokela, Lifschytz, Lippert’10 D-brane engineering. Model
a gapped system with massless edge modes. Quantization of
conductivity as a result of quantization of a flux through a compact
manifold. Irrational filling fractions



Black Holes

Black holes in AdS-space

ds2 =
L2

z2

(
−f (z)dt2 +

∑
i

dx2
i +

dz2

f (z)

)
, f (z) = 1− zd

zd
h

In AdS4

T =
3

4πzh

S =
L2∆x∆y

4Gz2
h

– Bekenstein-Hawking entropy

• Black holes are thermodynamical systems

• TD quantities are typically defined for an infinitely remote observer



Black Holes

Introducing charge density

ds2 =
L2

z2

(
−f (z)dt2 +

∑
i

dx2
i +

dz2

f (z)

)
Charge density/Chemical potential←→ bulk gauge field

A0 = µ−〈ρ〉zd−2, µ = 〈ρ〉zd−2
h , f (z) = 1−(1 + Q2) zd

zd
h

+Q2 z2d−2

z2d−2
h

In AdS4

T =
3− Q2

4πzh



Black Holes

Magnetic field [Hartnoll,Kovtun’07]

Dyonic AdS black hole

ds2

L2 =
α2

z2

(−f (z)dt2 + dx2 + dy2)+
dz2

z2f (z)

At = µ− ρ

χα
z, Ax = −By

Regularity at the horizon At = 0 relates µ = µ(ρ)

T = α
3− Q2

4π
, Q2 =

ρ2 + χ2B2

χ2α4 S =
L2

4G
πα2 ∆x∆y

• Extremal (T = 0) black hole: (ρ2 + χ2B2) = 3χ2α4 has S 6= 0

• Quantity χ = L2

4G can be related to the central charge c of the dual CFT



Transport

Green’s functions [Hartnoll,Kovtun’07]

Find the response of the system to a small perturbation of electric field and
temperature gradient. The holographic prescription for calculation of
correlators gives the following for the retarded Green’s functions:

• for 2 currents 〈[Ji(t),Jj(0)]〉R
GR

ij(ω) = −iωεij
ρ

B
By Kubo formula

σij = − lim
ω→0

Im GR
ij(ω)
ω

= εijσH , σH =
ρ

B
σij is antisymmetric, but not quantized. ρ and B so far independent

• for 〈[Ji(t), Ttj(0)]〉R and 〈[Tti(t), Ttj(0)]〉R

GR
iπj

(ω) = −iωεij
3ε
2B

, GR
πiπj

(ω) =
χs2T2 iωδij

ρ2 + χ2B2 −
9ρε2 iωεij

4B (ρ2 + χ2B2)



Transport

Thermal conductivities [Hartnoll et al’07][DM,Orazi,Sodano’12]

Low temperature expansions of the conductivities yield

αxx = αyy = 0 , αxy = −αyx =
s
B

=
π√
3

√
1 + σ2

H + O(T)

κxx = κyy =
χs2T

ρ2 + χ2B2 −→ χ
π2

3
T + O(T2)

κxy = −κyx =
ρs2T

B(ρ2 + χ2B2)
−→ σH

π2

3
T + O(T2)

Wiedemann-Franz law

κH

σH
= LT , L =

π2

3

(
kB

e

)2



Quantum Hall vs Black Hole

Dyonic black hole

• is dual to a phase similar to a quantum Hall system at a plateau:

σab = εab
ρ

B

• does not impose quantization of σH

• does not exhibit a gap in the geometry

• yields an interesting result for heat conductivities, which alludes to a
presence of a boundary

κ‖ = c
π2

3
T, κ⊥ = σH

π2

3
T



AdS and edges



Edges

If the system has an edge, what kind of geometry must encode that?

• causal wedge

• entanglement wedge

• dynamical principle



Edges

AdS/BCFT [Takayanagi’11]

S =
1

2κ

∫
N

dd+1x
√−g (R− 2Λ) +

1
κ

∫
∂N

ddx
√−hK + S∂N [matter]

hab-induced metric on ∂N, K-extrinsic curvature, Kab = hµa hνb∇µnν

δS =
1

2κ

∫
∂N

ddx
√−h (Kab − Khab + Σhab − Tab) δhab

Neumann boundary conditions [Compere,Marolf’08]

Kab − (K − Σ)hab = Tab

This is a dynamical equation that determines hab and the shape of the wedge



Edges

Simple example: AdS3 [Takayanagi’11]

hab :
L2

z2

(−dt2 + (x′(z)2 + 1)dz2)
Solving “no-fluid” (Tab = 0) Neumann
boundary conditions gives

Q : x(z) = z cot θ , ΣL = cos θ

x

z
y

Θ

N
Q

M

P



Edges

AdS/BCFT at finite T [Takayanagi’11]

ds2 =
L2

z2

(
−f (z)dt2 + dx2 +

dz2

f (z)

)
f (z) = 1− z2/z2

h

The same exercise yields

x(z)− x(0) = zh arcsinh
(

z
zh

cot θ
)

yy0-y0

N'N'

QQ

z

Θ

zh



Boundary Entropy

Thermodynamics [Takayanagi’11]

From
F = T IGH

(IGH – Euclidean action) thermal en-
tropy is

S =
c
3

(πT∆x + arcsinh(cot θ))

assuming T∆x� 1

yy0-y0

N'N'

QQ

z

Θ

zh

• Consists of ’bulk’ and ’boundary’ Bekenstein-Hawking contributions

• Consistent with entanglement entropy SEE = c
6 log l

ε + log g



Higher dimensions

Profiles

• Empty AdS works similarly

• Black hole metrics are generally
incompatible with the boundary
condition

Kab − (K − Σ)hab = 0

yy0-y0

N'N'

QQ

z

Θ

zh

Which Tab are compatible with the planar black hole metrics?

Kab − (K − Σ)hab = Tab



Higher dimensions

Boundary Tab [Magán,DM,Silva’14]

Assuming generic x = x(z) and planar BH geometry

Tab =

 εhtt

pyhyy

pzhzz


generally non-fluid-like stress tensor

yΘy0

z

zh

Condition py = pz uniquely defines the profile x(z)

x(z)− x(0) =

z∫
0

dζ
cot θ√

f (ζ)
, f = 1− zd/zd

h



Higher dimensions

Boundary entropy [Magán,DM,Silva’14]

Two prescriptions

• Compute thermodynamic
potential (free energy) as
Euclidean action

• Integrate the relation ε+ p = Ts
over Q

yy0-y0

N'N'

QQ

z

zh

Entropy S = −∂F/∂T (c = L2/4G)

S = Sbulk + 2Sbdry =
16π2c

9
T2∆x∆y +

32πc
9

T∆y cot θ

Boundary entropy is not BH, Sbdry ' 0.95SBH



Edges as Defects

Refinement of the Takayanagi’s proposal [Erdmenger,Flory,Newrzella’14]
Backreaction

J. Erdmenger, M. Flory, M. Newrzella 1410.7811

Kij � �ijK = TijIsrael junction conditions
A holographic Kondo model (ask Carlos) [Hoyos et al’13-16]

• Entaglement entropy in the presence of impurity

• The length scale ξ in the boundary entropy – correlation length

Sbdry =
c
3

arcsinh (cot θ) =
L

2G
ξ

zh



Edges of Quantum Hall

Adding gauge fields [Fujita,Kaminski,Karch’12][DM,Orazi,Sodano’12]

c1

∫
N

d4x
√−gF2

µν + c2

∫
N

F ∧ F + k
∫

Q
A ∧ F − k

∫
P

d2x AxAt

Neumann boundary conditions imply

c1F + (c2 + k) ∗ F|Q = 0

• Density and magnetic field are
locked together ρ ∼ B

Q

z

AB

AdS



Edges of Quantum Hall

Edge Currents [DM,Orazi,Sodano’12]

Calculate current as the response to a variation of the external field

〈J x(xi)〉 =
δSk

δAx(xi)
= − k

2π
µ

(
δ(y)− Θ(y + cot θ)

cot θ

)
For θ < π/2 there is a non-zero current, which is maximal for θ = 0

Geometrically θ = 0 corresponds to a gap, independent of the position. For
θ > 0 edge current diffuses and disappears for θ = π/2 (no gap).



Low-Dimensional AdS/CFT



Chern-Simons and CFT

Precursors [Belavin,Polyakov,Zamolodchikov’84]

Conformal symmetry in 1 + 1D highly contrains the theory

• Conformal blocks

〈
n∏

i=1

φRi(zi) 〉 =
∑
λ

|Fλ;R1,...,Rn(z1, . . . , zn)|2

can be reconstructed from the constraints imposed by the symmetry

Quantization of Chern-Simons theory in 2+1D [Witten’89]

• States in the Hilbert space of CS←→ conformal
blocks

• Knot invariants are Wilson line correlators in CS



Chern-Simons and CFT

TQFT vocabulary

• Partition function ∂M = 0←→ C-number

Z =
∫
DA exp(−SCS)

• Wilson loop←→ topological invariant

〈WR(C) 〉 =
〈

TrR P exp
∫

C
A dx

〉
CS

• Partition function ∂M 6= 0←→ wavefunction

All the bulk information of CS is encoded in the
boundary (conformal block):

⇒ holographic correspondence



CFT and Quantum Hall

Conformal blocks [Moore,Read’91]

Wavefunctions of QHE⇐⇒ conformal blocks of CFT’s

Ψ =
∏
i<j

(zi − zj)1/ν exp

(
−1/4`2

∑
i

|zi|2
)



Low-dimensional AdS/CFT

Duality triangle

Chern-Simons
↙ ↘

AdS3 gravity
AdS/CFT←→ CFT1+1

⇒ In low dimensions AdS/CFT exists without strings (at least for
classical gravity)

⇒ Chern-Simons provide a compact setup to study AdS3/CFT2
[lectures of D. Grumiller]



AdS3 and Chern-Simons

3d Gravity as Chern-Simons [Witten’88]

A = ω +
1
`

e Ā = ω − 1
`

e

S = SCS[A]− SCS[Ā]

where A, Ā are SL(2,R)-valued flat connections

for SL(N,R)× SL(N,R) one also obtains higher spin fields s ≤ N

gµν = Tr (eµeν) φµνρ = Tr
(
e(µeνeρ)

)
Flat connections are mapped to solutions of Einstein eqs. Gauge transforms
become diffeos



AdS3 and Chern-Simons

Black holes from flat connections

Gauge transformation (w = t + iφ) L0,L±1 ∈ sl(2)

A = b−1ab + b−1 db b = exp(−L0ρ) a = awdw + aw̄dw̄

If one chooses

aw = L1 + ML−1 , āw̄ = L−1 + ML1

one gets

ds2

`2 = dρ2 − (eρ −Me−ρ
)2

dt2 +
(
eρ + Me−ρ

)2
dφ2



Correlators and Wilson lines

Entaglement entropy [Ryu,Takayanagi’06]

Holographic formula for computing entanglement entropy

SEE(A) =
Area(γ(A))

4G
, γ(A) − minimal area surface

In AdS3 it reproduces the known CFT2 result [Calabrese,Cardy’04]

SEE =
c
6

log

√
ε2 + x2/4 + x/2√
ε2 + x2/4− x/2

→ c
3

log
x
ε

• The relation opens up a rich source of speculations about the meaning
of quantum geometry



Correlators and Wilson lines

Entanglement entropy from Chern-Simons [de Boer,Jottar’13][Ammon,Castro,Iqbal’13]

Natural observables in Chern-Simons theory are (vevs of) Wilson loops

WR(C) = TrR P exp
∮

C
A

– gauge invariants, topological invariants.

Less obvious – Wilson lines: looking at the data defining WR one can guess

WR(xi, xf ) ∼ exp
(
−
√

2c2(R)L(xi, xf )
)

Wilson line computes the proper geodesic distance for a particle of mass
m2 = 2c2



Correlators and Wilson lines

Example ds2 = (dτ 2 + dx2 + du2)/u2

W(C) = Tr P exp
(
−
∫

C̄
A
)

P exp
(
−
∫

C
Ā
)

Wilson line between points (u,−x/2, 0) and (u, x/2, 0)

Ax =
(

0 1/u
0 0

)
, P exp

∫ x/2

−x/2
Axdx = exp Ax · x =

(
1 x/u
0 1

)

P exp
∫ x/2

−x/2
Axdx P exp

∫ −x/2

x/2
Āxdx =

(
1 + x2/u2 x/u

x/u 1

)



Correlators and Wilson lines

(AdS/)CFT interpretation

Wilson lines compute the coupling of a probe particle of mass m =
√

2c2(R)
to the classical background provided by the connection A, Ā. From the
AdS/CFT point of view this is

〈OH(∞)OL(0)OL(w)OH(1) 〉 = 〈OH |OL(0)OL(w) |OH 〉

For OL corresponding to the ρ-primary one gets the von Neumann entropy



Correlators and Wilson lines

General behavior [Hegde,Kraus,Perlmutter’15]

SL(N), any representation w = t + iφ

WR(C) −−−→
ε→0

〈 hwR |W| hwR 〉
= e−4hR〈 hwR |e−aww−aw̄w̄| − hwR 〉〈−hwR |eāww+āw̄w̄|hwR 〉

• Entanglement entropy case corresponds to hwR = ρ

• For general R the Wilson line computes a semiclassical (c→∞)
conformal block



Integrability connection

From matrix elements to tau-functions [DM,Mironov,Morozov’16]

Calculation of Wilson lines reduces to determination of matrix elements

〈−hwR |eaww+aw̄w̄|hwR 〉 , aw = L−1 +
N∑

s=2

QsL
(s)
s−1

It turns out that physically interesting matrix elements are described by
special τ -functions

τ (k)(s, s̄|G) = 〈 hwk|eH G eH̄| hwk〉 , eH = exp
s∑

i=1

ssRk(Ls
−(s−1))

Toda recursion relation

τ (k)∂1∂̄1τ
(k) − ∂1τ

(k)∂̄1τ
(k) = τ (k+1)τ (k)



Integrability connection

Skew tau-function [DM,Mironov,Morozov’16]

τ
(k)
− (s,G) = 〈 hwk | eH G | − hwk 〉 =

(
∂

∂s̄1

)k(N−k)

τ (k)(s, s̄,G)

Recursion relation

τ
(k)
−

∂2τ
(k)
−

∂t2 −
(
∂τ

(k)
−
∂t

)2

= τ
(k+1)
− τ

(k−1)
−



3D Gravity and QHE

Is the 3D gravity useful for QHE?

Recent progress in the understanding of the relations between (higher spin)
3d gravity, (SL(N)) Chern-Simons theories and (WN) CFT’s open new
perspectives on the QHE

• rational CFT’s as theories for the edge states?

• black holes as QHE quasiparticle excitations?

• characters of minimal models as QHE wavefunctions?



3D Gravity and QHE

New proposals [Vafa’15]

Q = i
(√

2ν − 1√
2ν

)
c = 1 + 6Q2 = 1− 3

(2ν − 1)2

ν

For rational ν = n/m this corresponds to (2n,m) minimal models. Since m
must be odd:

• unitarity fixes m = 2n± 1

ν =
n

2n± 1
− FQHE principal series



Conclusions

This talk is a subjective recollection of results in low-dimensional
holographic models and their connection to various topics of mathematical
physics. It is aimed to underline the following points

• Symmetries are powerful in low dimensions so that AdS/CFT
conjecture can be tested

• The correspondence can work (be justified) beyond string (top-down)
formulation. In particular, there is no particular need for large N – large
c is enough

• Predictions of holographic models can be relevant for real-life
phenomena.


