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Previously in Strings @ Dunes

Holographic milestones

(] predictions Of./\[ =4 SYM [lectures of H. Nastase]
n 1
s 4w
e hadrons [lectures of J. Sonnenschein]
e strongly correlated fermions, superconductors efc. [lectures of C. Hoyos]
Z(w
G(w, k) ~ (—)
w— vk + X(w)
e holographic entanglement entropy [lectures of H. Casini]
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e new look on higher spins, AdS;/CFT, [lectures of D. Grumiller]



Today

More (specific) results in 2D and 3D

e system in external magnetic field: view on quantum Hall

AdS/BCFT: (boundary) entropies
towards AdS4/CFTj3

gravity and Chern/Simons: quantum Hall again



2-Dimensional Electrons in Magnetic Field



Quantum Hall Effect

Experiment [von Klitzing ef al.’80]
[Stormer, Tsui’85]
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Fractional plateaux are due to electron interactions



Quantum Hall Effect

Basic theory

At a plateau 2D electrons form a
gapped state (zero DC conductiv-
ity), equivalently, an incompress-
ible fluid

Landau levels

N
Position Potential

Ingredients (IQHE)
e Discrete Landau levels

e Disorder allowing to vary the chemical potential in the gap between the
levels

e Every filled Landau level contributes a unit of conductivity [Thouless er ars2]

A common explanation of FQHE is the composite fermion model



Quantum Hall Effect

Chel‘n—Simons deSCriptiOn Of the QHE [Zhang,Hansson,Kivelson’89]

Quantum Hall state can be described by

. 0 ou
This can follow from the Chern-Simons action

k )
S= = /d3x e”kA,@jAk, k =2moy

? How can k be consistently quantized?

_
® V=5

— Laughlin series

v = 5 — FQHE principal series

v =15/2,...—exotic fractions



Quantum Hall Effect

Edge states

e No bulk transport, all
transport occurs along the
edges (edge currents)

¢ bulk/boundary Londas evely

correspondence (edge modes
encode the state in the bulk)

e boundary theory is typically
a 1D CFT (Luttinger liquid)

Position

Each edge mode contributes a
quantized value to the conductivity

N
Potential

= Magnetic
_| field



Quantum Hall Effect

Thermal transport

In the integer QHE we expect Wiedemann-Franz law to be satisfied
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In the interacting case, from the bulk/boundary correspondence it is expected
that
2k T
=C = — —
KH 80 5 80 3 n

where ¢ — is a central charge of the boundary CFT [Kane,Fisher'96:Read, Green’00]



QHE from black holes



Holographic Models of QHE

Vast literature, including top-down approaches

e Keski-Vakkuri, Kraus’08; Davis, Kraus, Shah’08  Construction of an
effective Chern-Simons theory. D-brane theory of plateau transitions

e Fujita, Ryu, Takayanagi’09 D-brane engineering of an effective
Chern-Simons theory in low dimensions. Model massless edge modes
and stripes of states with different v. Proposal hierarchical FQHEs,
using IIA string on C?/Z,

e Bergman, Jokela, Lifschytz, Lippert’10 D-brane engineering. Model
a gapped system with massless edge modes. Quantization of
conductivity as a result of quantization of a flux through a compact
manifold. Irrational filling fractions



Black Holes

Black holes in AdS-space

L2 d
ds® = ( 2)dr? +de2 ) flz) = —%

In AdS4
3

T = —-—
47z,

B L>AxAy
4Gz;

— Bekenstein-Hawking entropy

e Black holes are thermodynamical systems

e TD quantities are typically defined for an infinitely remote observer



Black Holes

Introducing charge density

2_L2 . 2 2 dizz
ds _Z2< f(z)dr +Zi:dx,. +f(z)>

Charge density/Chemical potential «—— bulk gauge field

d
Ag=p— (P22 p={(p)z >, f(2)=1—(1+Q2)§7+Q2
h

3-¢0?

47z,

242
2d—2
Zp



Black Holes

Magnetic field [Hartnoll,Kovtun’07]
Dyonic AdS black hole

ds? o2 ) dz?

— = — (—f(2)d® + dx* + dy?) +

L2 Zz ( f( ) Y ) sz(Z)

A=pn—L Ay = —By
xo
Regularity at the horizon A, = 0 relates i = p(p)

3-¢ 2 _ P XB L,
= S=— AxA
47 Q x2at 4G " Y

T=«

e Extremal (7 = 0) black hole: (p*> + x*B?) = 3x%a* has S # 0

e Quantity x = % can be related to the central charge c of the dual CFT



Transport

Green'’s functions [Hartnoll Kovtun'07]

Find the response of the system to a small perturbation of electric field and
temperature gradient. The holographic prescription for calculation of
correlators gives the following for the retarded Green’s functions:

e for 2 currents ([J;(¢), J;(0)])r
Gh(w) = —iwey £

By Kubo formula

ojj is antisymmetric, but not quantized. p and B so far independent
o for ([7i(1), 7;(0)])& and ([Z(1), Z,(0)])
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Transport

Thermal conductivities [Hartnoll et al’07][DM,Orazi,Sodano’ 12]

Low temperature expansions of the conductivities yield

Or = 0y =0, Qry = Qe = 7 = \[ 1407+ O(T)
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Quantum Hall vs Black Hole

Dyonic black hole
e is dual to a phase similar to a quantum Hall system at a plateau:

_ p
Oab = €ab E

e does not impose quantization of oy
e does not exhibit a gap in the geometry

e yields an interesting result for heat conductivities, which alludes to a
presence of a boundary

71_2 7T2

HHZC?T, HLZUH?T



AdS and edges

«Or < Fr «=»

«E>
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Edges

If the system has an edge, what kind of geometry must encode that?
e causal wedge
e entanglement wedge

e dynamical principle

D local geodesic D global geodesic

causal wedge of AC entanglement wedge of AC



Edges

AdS/BCFT [Takayanagi’11]

1
S = / d™x /=g (R—2A) + / d?x/—hK 4 Sgy[matter]
2K K Jon

hap-induced metric on ON, K-extrinsic curvature, K, = hi'hy'V ,n,

1
08 = — / Ay V= (Kap = Khap + Shap — Tay) 5h
26 Jon

Neumann boundary conditions [Compere,Marolf*08]
Kab - (K - E)hab - Tab

This is a dynamical equation that determines #,;, and the shape of the wedge



Edges

Simple example: AdS; [Takayanagi’11]

L2
hap =2 (—dF* + (¥'(2)* + 1)d2?)

Solving “no-fluid” (7,, = 0) Neumann
boundary conditions gives

Q: x(z) =zcotl, 3L = cosf |



AdS/BCFT at finite T

Edges

[Takayanagi’11]

L2 de ; -Yo Yo ! /8 y
ds2:<—fzdt2+dx2+> ; 3
Z (70 f@) o/ e
f@)=1-2/7
The same exercise yields
x(z) — x(0) = z, arcsinh (Z cot 9)
Zh



Boundary Entropy

Therﬁlodynamics [Takayanagi’11]
From
F =TIgu = wNJo
(Igy — Euclidean action) thermal en- e Q
tropy is Y% N
S = g (7T Ax + arcsinh(cot 9))

assuming TAx > 1
e Consists of "bulk’ and "boundary’ Bekenstein-Hawking contributions

¢ Consistent with entanglement entropy Sge = ¢ log é +logg



Higher dimensions

Profiles

e Empty AdS works similarly

e Black hole metrics are generally |
incompatible with the boundary o
condition |

Kipp— (K—X)hgp = 0

Which T, are compatible with the planar black hole metrics?

Kab - (K - E)hab = Tab



Higher dimensions

Boundary T, [Magdn,DM,Silva’ 14]

Assuming generic x = x(z) and planar BH geometry

ehy
T = Pyhyy
ph:

generally non-fluid-like stress tensor

Condition p, = p, uniquely defines the profile x(z)

- :Z cotd 1 _dd
x(z) — x(0) O/dcm, f=1-gd



Higher dimensions

Boundary entropy [Magén,DM,Silva’ 14]

Two prescriptions

e Compute thermodynamic Q 0
potential (free energy) as - .
Euclidean action |

e Integrate the relation e +p = Ts
over Q

Entropy S = —0F /0T (c = L*/4G)

1672¢ 321

S = Svuik + 28bary = TZAxAy + 5 TAycot0

Boundary entropy is not BH, Spary >~ 0.955pn



Edges as Defects

Refinement of the Takayanagi’s proposal [Erdmenger,Flory,Newrzella® 14]
boundary boundary
T T
\ hypersurface
bulk / bulk <=> :
:1:,(? %!L,(Z)
identify points
A holographic Kondo model (ask Carlos) [Hoyos ef al’ 13-16]

e Entaglement entropy in the presence of impurity
e The length scale £ in the boundary entropy — correlation length

L ¢

Sbary = %arcsinh (coth) = Yo



Edges of Quantum Hall

Adding gauge fields [Fujita,Kaminski,Karch’ 12][DM,Orazi,Sodano’ 12]

cl/d“x\/—gFfw+cz/F/\F+k/A/\F—k/d2xAxA,
N N 0 P

Neumann boundary conditions imply

caF +(c2+k)*Fl,=0 /@

0

e Density and magnetic field are
locked together p ~ B



Edges of Quantum Hall

Edge Currents [DM,Orazi,Sodano’ 12]

Calculate current as the response to a variation of the external field

. 88k k O(y + cot )
(X)) = — = —— o(y) - ————=
T = s = g (30 - 22ES
For § < 7 /2 there is a non-zero current, which is maximal for § = 0
0 Y Y
N N ;
2q Q |
Zh Q Zn, !
z \

Geometrically # = 0 corresponds to a gap, independent of the position. For
6 > 0 edge current diffuses and disappears for § = /2 (no gap).



Low-Dimensional AdS/CFT



Chern-Simons and CFT

Precursors [Belavin,Polyakov,Zamolodchikov’84]
Conformal symmetry in 1 + 1D highly contrains the theory

e Conformal blocks

(T ¢r)) =D 1Famim, o2l
i=1

A

can be reconstructed from the constraints imposed by the symmetry

Quantization of Chern-Simons theory in 2+1D  [witens9]
e States in the Hilbert space of CS «— conformal ‘/
blocks ‘\
e Knot invariants are Wilson line correlators in CS ‘



Chern-Simons and CFT

TQFT vocabulary [0\

e Partition function OM = 0 «— C-number [ P

Z = /DA eXp(—Scs)

e Wilson loop «— topological invariant

(Wg(C)) = <TrRPexp/CAdx>CS

e Partition function OM # 0 «—— wavefunction

All the bulk information of CS is encoded in the
boundary (conformal block):

= holographic correspondence



CFT and Quantum Hall

Conformal blocks [Moore,Read"91]

Wavefunctions of QHE <= conformal blocks of CFT’s

U = H(Zi —z)'/" exp (—1/4(2 Z |zi2>

i<j



Low-dimensional AdS/CFT

Duality triangle

Chern-Simons

/ N

. AdS/C
AdS3 gravity ks CFT; 4,

= In low dimensions AdS/CFT exists without strings (at least for
classical gravity)

= Chern-Simons provide a compact setup to study AdSs/CFT,

[lectures of D. Grumiller]



AdS; and Chern-Simons

3d Gravity as Chern-Simons [Witten'88]

1 - 1
A:w—i—ze A:w—ze

S = Scs[A] — ScsA]
where A, A are SL(2, R)-valued flat connections

for SL(N,R) x SL(N, R) one also obtains higher spin fields s < N

8 =Tr (eye) Guvp =Tr (e(uevey))

Flat connections are mapped to solutions of Einstein eqs. Gauge transforms
become diffeos



AdS; and Chern-Simons

Black holes from flat connections

Gauge transformation (w = ¢ + i¢) Lo, Ly € 51(2)
A=blab+b'db b =exp(—Lop) a = a,dw + agdw
If one chooses
ay =L +ML_;,  as=L_;+ML,

one gets

= —dp? — (¢ —Me ") dP + (e + Me?)? dg



Correlators and Wilson lines

Entaglement entropy [Ryu, Takayanagi’06]

Holographic formula for computing entanglement entropy

A A
See(A) = % , ~v(A) — minimal area surface
In AdS; it reproduces the known CFT; result [Calabrese,Cardy’04]

71 2
€ 1o Ve +x/4—|—x/2_>clo x

SEg = —

6 g\/62+x2/4—x/2 3%

e The relation opens up a rich source of speculations about the meaning
of quantum geometry




Correlators and Wilson lines

Entanglement entropy from Chern-Simons [de BoerJottar’ 13][Ammon,Castro.Igbal* 13]
Natural observables in Chern-Simons theory are (vevs of) Wilson loops
Wr(C) = TrRPexpjl{A
c
— gauge invariants, topological invariants.

Less obvious — Wilson lines: looking at the data defining Wy one can guess

Wg(xi, x7) ~ exp (— 2cz(R)L(x,-,xf))

Wilson line computes the proper geodesic distance for a particle of mass
2
m- = 26‘2



Correlators and Wilson lines

Example ds® = (dr? + dx* + du?) Ju?

W(C) = TrPexp (—/CA) Pexp (—/CA>

Wilson line between points (¢, —x/2,0) and (u, x/2,0)

(0 1/u */2 B (1 x/u
Ax<0 0 ), Pexp/ Axdxeprx~x<0 |

—x/2

x/2 —x/2 27,2
Pexp/ Axdeexp/ Aydx = ( Px/us xfu )
—x/2 x/2 .X/M 1



Correlators and Wilson lines

(AdS/)CFT interpretation

Wilson lines compute the coupling of a probe particle of mass m = /2c; (R)
to the classical background provided by the connection A, A. From the
AdS/CFT point of view this is

(O (00)0L(0)OL(W)Ou(1)) = ( Oy | OL(0)OL(W) | On )

For Oy, corresponding to the p-primary one gets the von Neumann entropy



Correlators and Wilson lines

General behavior [Hegde Kraus,Perlmutter’ 15]
SL(N), any representation w=rt+i¢
WR(C) : <hWR |W| hWR >

_ 674hR < hWR |efaww7a.;v’v a,w+azw

— hwg ) (—hwg |e

hWR >

e Entanglement entropy case corresponds to hwg = p

e For general R the Wilson line computes a semiclassical (¢ — oo)
conformal block



Integrability connection

From matrix elements to tau-functions [DM.Mironov,Morozov' 16]

Calculation of Wilson lines reduces to determination of matrix elements

N
hWR> ) ay =L 1+ Z QsLEi)l
s=2

ayw+apw

<—hWR |e

It turns out that physically interesting matrix elements are described by
special T-functions

70 (5,5/G) = (hwy e Geﬁ| hwy) , el = eposst(L"_(S_l))
i=1
Toda recursion relation

709,570 — 9,705,700 = 01 ®



Integrability connection

Skew tau-function [DM,Mironov,Morozov’ 16]

5 \KV=H)
7'9()(s7 G) = (hwi|e G| —hw;) = <5s1) 7-(k)(s’ 5,G)

Recursion relation

2
92 (k) 9 (k) B
T(k) — T_ _ T£k+1),r(k 1)

- o ot



3D Gravity and QHE

Is the 3D gravity useful for QHE?

Recent progress in the understanding of the relations between (higher spin)
3d gravity, (SL(N)) Chern-Simons theories and (Wy) CFT’s open new
perspectives on the QHE

e rational CFT’s as theories for the edge states?
e black holes as QHE quasiparticle excitations?

e characters of minimal models as QHE wavefunctions?



3D Gravity and QHE

New proposals [Vafa’15]

—i b _ 2 v
Q-z(x/ZTx ¢27> c=1+60"=1-3"—

For rational v = n/m this corresponds to (2n, m) minimal models. Since m
must be odd:

e unitarity fixesm = 2n £ 1

n

2n+1

v= — FQHE principal series



Conclusions

This talk is a subjective recollection of results in low-dimensional
holographic models and their connection to various topics of mathematical
physics. It is aimed to underline the following points

e Symmetries are powerful in low dimensions so that AdS/CFT
conjecture can be tested

e The correspondence can work (be justified) beyond string (top-down)
formulation. In particular, there is no particular need for large N — large
¢ is enough

e Predictions of holographic models can be relevant for real-life
phenomena.



