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Background Field (BF) Model

Topological Quantum Field Theories

Topological Quantum Field Theories:

e Witten (Cohomological) Type.
@ Schwarz Type.

Schwarz Type: Chern-Simons

@ Topologically Massive Gauge Theories: S. Deser, R. Jackiw, S.
Templeton, Annals Phys. 140 (1982) 372.

@ (2+41)—Dimensional Gravity as an Exactly Soluble System: E.
Witten, Nucl. Phys. B311 (1988) 46.

Schwarz Type: BF model

@ Topological Field Theory, D. Birmingham, M. Blau, M.
Rakowski, G. Thompson, Phys. Rep. 209 (1991) 129.
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Background Field (BF) Model

Background Field (BF) Model

Ingredients:

e n—dimensional Manifold .Z.

o Gauge Group G.

e Gauge field (or Connection) 1—form A.

@ 2—form Field Strength (or Curvature) F = DA=dA+AAA.

e (n—2)—form B.

SBF:/ Tr(BAF).
M
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Background Field (BF) Model

Background Field (BF) Model

Equations of Motion:

5S = / Tr [53/\ F+(—1)"" DB/\(SA} .

@ F =0: The connection A is flat.
e DB =0.

Gauge Transformation
o Gauge: A= Dn.
e Shift: 6B = Dy. (Due to Bianchi Identity DF = 0)
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Background Field (BF) Model

Background Field (BF) Model

BF in Two Dimensions

Zp=tr(BAF).

4

BF in Three Dimensions

Lp=tr(BAF)+aitr(BABAB).

BF in Four Dimensions

Zyp =tr(BAF)+axtr(BAB)+ostr(FAF).

A\
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Two-Dimensional BF Gravity

Einstein-Hilbert Action

Einstein-Hilbert Action:

1 n
SEH—m/d X VE(R—2N).

Equation of motion:

|

Ruv — EgIJVR +guvA =0.

Considerations in two dimensions:

@ For A =0 the metric is undetermined.
@ For A # 0 the metric is zero.

@ Two-dim Gravity cannot be described by a Einstein-Hilbert
Action!
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Two-Dimensional BF Gravity

Jackiw-Teitelboim Gravity

Jackiw-Teitelboim

SJT:/dzx\/EX(R—Q/\).

e R. Jackiw, C. Teitelboim, Quantum Theory of Gravity (1984).
e EoM: R—2A =0.

JT from BF Theory

@ Gauge Theory of Two-Dimensional Quantum Gravity, K. Isler,
C. A. Trugenberger, Phys. Rev. Lett. 63 (1989) 834.

@ Gauge theory of Topological Gravity in 1+ 1 dimensions, A. H.
Chamseddine, D. Wyler, Phys. Lett. B 228 (1989) 75.

e Quadratic gravity from BF theory in two and three dimensions,
R. Paszko, R. da Rocha, Gen. Rel. Grav. 47, (2015) 94.
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Two-Dimensional BF Gravity

Two-dimensional BF (1)

e Group: SO(3).
e Generators: M;; = —M,.
o Algebra: [M;, Mkr] = ni Mk — ik My + Muk MiL — nue Mik.

Ingredients: Fields

1 1
A= 5A{{/\/I,de“, B= 5B”/\/I,J.

Ingredients: Field Strength

Fiiv = uAY — Al + A AV — AL AL
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Two-Dimensional BF Gravity

Two-dimensional BF (2)

1
— [ PxerBuFl - /d2 enV By (9uAl + Al AL

Characteristics of the BF action

o It is first-order: Linear in the velocities dpA%.
o There is no dyAY (like electromagnetism).

@ The system is constrained.
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Two-Dimensional BF Gravity

BF model is constrained

Dirac’s Constraint Analysis

e P. A. M. Dirac, Lectures on Quantum Mechanics (New York:
Yeshiva University) (1964).

@ M. Henneaux, C. Teitelboim, Quantization of Gauge Systems,
Princeton Univ. Press (1992).
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Two-Dimensional BF Gravity

BF and Gravity (1)

Generators
@ Generators: MIJ = (Mab = éabMy Mag = Pa).
o Algebra: [M,P,] = —&LPy, [Ps, Pp] = —EapM.

Cartan variables (eﬁjwﬁb): Zweibein

b
Buv = nabeﬁ ey.

Torsion and Curvature

T2 = de®+ ol neb.
b _ b b
R*® = do®+ w0l No®.
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Two-Dimensional BF Gravity

BF and Gravity (2)

Gauge field:

1 1
Ay = 503" Mo, + 5 €3 Ps.
Field Strength:
1

F:[v’ = Rﬁe 1 (efteéJ — eﬁeﬁ) ,

1
2
Fiv = 7 U e

C. E. Valcarcel Constraint Structure of the two-dimensional Polynomial BF



Two-Dimensional BF Gravity

BF and Gravity (3)

BF action

1
S = / dPx et | BapFit +2B:2F33

BF Action
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Two-Dimensional BF Gravity

BF and Gravity (4)

Implication of the equations of motion

@ Relation zweibein and spin-connection
_ v a_ g@a b
0=eM (duel +€5myel).

o Curvature form and Riemann tensor R,y = Rﬁ"’,eg‘ef.

. = b _
o Furthermore: etVE,pRE = 2eR.

BF and JT Gravity

1/, 2 1
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Two-Dimensional BF Gravity

More on two-dimensional BF (1)

Modifications
e Group SO(2,1) with metric n” = diag (1,—1,1) or
n¥ = diag (1,-1,-1).
@ Inonu-Wigner Contraction.

@ Orthosymplectic group OSP(1,1;1).

Noncommutative FJ

@ Noncommutative Gravity in two dimensions, S. Cacciatori, et
al. Class.Quant.Grav. 19 (2002) 4029.
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Two-Dimensional BF Gravity

More on two-dimensional BF (2)

Constraints Analysis

e Canonical Analysis of the Jackiw-Teitelboim Gravity in the
Temporal Gauge, C. P. Constantinidis et. al. Class. Quant.
Grav. 25 (2008), 125003.

@ Quantization of the Jackiw-Teitelboim model, C. P.
Constantinidis et. al. Phys. Rev. D 79 (2009) 084007.

Constraints from Hamilton-Jacobi

@ Two-dimensional background field gravity: A Hamilton-Jacobi
analysis, M. C. Bertin, et. al. J. Math. Phys. 53 (2012),
102901.

@ Three-dimensional background field gravity: A
Hamilton-Jacobi analysis, N. T. Maia, et. al.
Class.Quant.Grav. 32 (2015), 185013.
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MacDowell-Mansouri Gravity from BF Theory

Palatini formulation

Palatini formulation

_ A
Spa = /d4X gabed <Rab/\ec/\ed— 6ea/\eb/\ec/\ed> .

MacDowell-Mansouri

Swm = /n(ﬁmﬁ) :5pa/+/Tr(R/\*R).

@ Unified Geometric theory o f gravity and supergravity, S.W.
MacDowell, F. Mansouri. Phys.Rev.Lett. 38 (1977) 739.
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MacDowell-Mansouri Gravity from BF Theory

Four-dimensional BF (1)

Ingredients for the Riemannian case

@ Group SO(5): Spherical space A > 0.
@ Group SO (4,1): Hyperbolic space A < 0.
@ Group /SO(4): Euclidean space A = 0.

L. Freidel, A. Starodubtsev (2005)

2
5:/|:B/J/\FUZ@IJKL4B/J/\BKL:|.

@ Quantum gravity in terms of topological observables, e-Print:
hep-th/0501191.

@ General relativity with a topological phase: an action principle,
L. Smolin, A. Starodubtsev, e-Print: hep-th/0311163.
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MacDowell-Mansouri Gravity from BF Theory

Four-dimensional BF (2)

BF Action

2
K
5:/ [Bab/\Fab—i—2Ba4/\Fa4—4£adeBab/\Bcd ,

Equation of Motion

© 6Byy=0—-0=F*=1T3

2 _
® 8B,y =0— Fob =K gabedp = Rb_ L e neb,

MacDowell-Mansouri

1 _
5: m/ 8adeFab/\ch
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MacDowell-Mansouri Gravity from BF Theory

Four-dimensional BF (3)

MacDowell-Mansouri

1 a 1
8 o _2K2l2/8abcd [Rab/\ec/\ed_zlgea/\eb/\ec/\ed
1 _
a4 m/gade[Rab/\Rcd]'

o First line: Palatini Action with Cosmological Constant.
@ Second line: Euler Class (Topological).

@ Conserved charges for Gravity with locally AdS asymptotics, R.
Aros et. al. Phys. Rev. Lett. 84 (2000),1964.
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MacDowell-Mansouri Gravity from BF Theory

Extensions

Adding more topological invariant terms:

@ The presence of the term Tr[B A B] adds more topological
term: Euler, Pontryagin, Nieh-Yan. We also obtain the Holst
term.

@ The BF action reduce the number of parameters of this theory.

@ The ratio of the cosmological term and the interaction is
related to the Immirzi parameter.

Another formulations:

@ Supergravity as constrained BF theory, R. Durka, J.
Kowalski-Glikman, Phys. Rev. D 83 (2011) 124011.

o Gauged AdS-Maxwell algebra and Gravity, R. Durka et. al.
Mod. Phys. Lett. A 26 (2011) 2689.
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Quadratic Gravity from BF Theory

Polynomial BF

Back to two dimensions!

S= /j{ tr [—;B/\F+ K2 (PB)(PB)(QA)AA]| .

@ Quadratic gravity from BF theory in two and three dimensions,
R. Paszko, R. Rocha, Gen. Rel. Grav. 47 (2015) 8, 94.

N T 1
PukL= 5 1J2EKL2; QIJ,KL = ESIJMSKLNEI\/INZ

Action of the projectors

o (PM),, = M,p, (PM),, =0.
° (QM)aZ = ‘(‘_;abe2 (QM)ab =0.
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Quadratic Gravity from BF Theory

Polynomial BF (2)

Polynomial BF Action

2 1 2k2
2 = ab a 2
S= /d { ( e"VE, Ruv/2e>+2/8 VB Tiv+ 5 Be]

@ Torsion free condition: g*Vv Tﬁv =0.

o B=— 5 (R-3).

8K?2 I2

Quadratic Gravity from Polynomial BF: 2A = 1//?

_i 2 _ _ 1 2 2
S=a0 [ PxVER-20 - s [ dxER.
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Quadratic Gravity from BF Theory

Polynomial BF (3)

Some consideretions

@ R?is the lowest order higher derivative term introduced to get
rid of the triviality of the Einstein-Hilbert action in
two-dimensions.

e R?is important in UV renormalization.
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Quadratic Gravity from BF Theory

Canonical Formalism

Foliation of space-time

1 1
5=/d2x [B&ow—f—/Baaoef—f—a)o%—i—leSga] .

Where: 4 = D1B and ¥4, = DB, + %éabe{’Bz.
We do not have dyayp and doej.

Canonical Momenta M°% =0, 7172 =0.

Primary Constraints: ¢ =M%~ 0, ¢, =m0 ~ 0.

o {o(x),B(y)} =6(x—y) {ef (x),Bo} =166 (x—y).
@ Canonical Hamiltonian: 74 = —a)og—7 €5, .
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Quadratic Gravity from BF Theory

Secondary Constraints

Consistency Condition: Primary Constraints must be conserved in
time

@ Primary Hamiltonian: 7p = 74+ vo + v39,.

o Consistency: ¢ = {¢,.#p} = 0.

Secondary Constraints

0=0—-9 ¢°=0-9,.
Algebra of Constraints

(). %)} = —&%((x).
{9(x),%(v)} = —&b(1-4K*B)¥(x).
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Quadratic Gravity from BF Theory

Generators of gauge transformations

Smeared constraints:

/dx X)% (%), %(ga)z/dxga(x)%(x),
E/dxﬂt (x) 6 (x), gﬁ,(za);/dxaa(x)%(x).

Generators

5 (1%)} = 2% {90} =2,
{ef,%(CH%(C")} — DL,
C)} = —D1C+4l’<2§abg’ae1b5

C. E. Valcarcel Constraint Structure of the two-dimensional Polynomial BF



Quadratic Gravity from BF Theory

Degrees of Freedom

Counting degrees of freedom (d.o.f) in Dirac’s canonical formalism:

dof=N-2M-S.

@ N is the dimension of the phase-space.

@ M is the number of first-class constraints.

@ S is the number of second-class constraints.

For Polynomial BF action we have

o N =12: Due to ( a)“) and their canonical momenta.
@ M =6. Since we have (¢,0,,9,9,)
@ S =0. There is no second-class constraints
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Quadratic Gravity from BF Theory

BFV Quantization

Batalin-Fradkin-Vilkovisky Formalism:

e E.S. Fradkin, G.A. Vilkovisky, Phys. Lett. B 55 (1975) 244.
e A. Batalin, G.A. Vilkovisky, Phys. Lett. B 69 (1977) 309.

Conditions for BFV

@ The collection of primary and secondary
constraintsGa = (9, ¢,,9,%,).

o Algebra {GA, GB} = UABCGC and {Ho, GA} = VABGB.
@ It is possible: UABC = UABC(q,p).
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Quadratic Gravity from BF Theory

BFV quantization

For the Polynomial BF action we have

Ush = =82, Uy = —&p (1—4K°B).

1 1
v = -1, v;‘:—75;;’, V34:—7§abe5’.
1_ _
V3 = _7gabe(§’(1—41<28),vfzeabwo.

o Brackets {n*, Zg} =—846(x—y).
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Quadratic Gravity from BF Theory

BRST Charge and Invariant Hamiltonian

BRST Charge

1
Q=nAGa+ 5 PcUspn"n®.

1_ _ o
Q=PY+ P9+ + Gy — SEap (1—4Kx?B) Pc?c® + E3Pcc’.

BRST Invariant Hamiltonian: {#5,Q} =0

A = H+n'VEPg.
%U = %B—G—{W,Q}.
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Quadratic Gravity from BF Theory

Gauge Fermion

Gauge Fermion W = Z ¢

o Gauge functions y* = (y,%?,0,0

e Temporal Gauge y = 5,600, x?

). Then W =¢y+7c.x°.
—L(ef-30).

1

1 1 1
V,Q} = —~apN® — = (e — 87) 7l — =P — = Pc,.
{ } y '}’( 0 1) a y %

Transition Amplitude:

7_ / Bl |l Gl % o / dt [Gip! + 1" T a— ).
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Quadratic Gravity from BF Theory

Path Integral Transition Amplitude

Transition amplitude:

1
Z:/DewaDBaDB expi/dt [éfBa—ka—kl%] X Zgh,

Ty — / DEDcDEDe? expi / dt [—c¢ — I6,¢7]

1_ _
expi/dt [—/831 (1—4K2B)cca—|—£‘icac] :
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Quadratic Gravity from BF Theory

Quadratic Gravity From Dilaton Theory

Two dimensional dilaton theories

S(g.X) :/d2x\/§ [";X;U(X)@X)z v(x)|.

@ Dilaton gravity in two dimensions, D. Grumiller, W. Kummer,
D. V. Vassilevich, Phys. Rep. 369,(2002) 327.

o Jackiw-Teitelboim Gravity: U(X) =0 and V (X)=AX.
o KV Model: U(X)=cteand V(X)=5Xx2—A. (R? gravity
with dynamical torsion).

@ Almheiri-Polchinski model: Quadratic potential and RX?
(2014).
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Quadratic Gravity from BF Theory

Modeling the potential

Let us consider U(X) =0. Then, for the dilaton field we have
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Quadratic Gravity from BF Theory

Dilaton with Cartan variables

Introducing Cartan variables:

1
S = /[Xda)—l—Xa(dea+a)7,/\eb>—2?:abea/\ebV(X)].

@ Dilaton theories englobe a large class of two-dimensional
gravity models.

o BF theory is build as a gauge theory.

@ Dilaton Gravity can be written as a Poisson-Sigma model.
@ The first-order Dilaton Gravity is valid on two dimensions.
°

BF can be build in three and four dimensions.
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Quadratic Gravity from BF Theory

Perspectives

In two dimensions
@ Are valid the same extensions of Jackiw-Teitelboim gravity?

@ Are valid the same extensions of MacDowell-Mansouri gravity?
@ It is possible to introduce a dynamical torsions?

@ Loop quantum gravity as in Jackiw-Teitelboim?

In three dimensions

@ Is it useful to introduce a cosmological term in the three
dimensional Polynomial BF action?.
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