Introduction to the AdS/CFT correspondence

Horatiu Nastase IFT-UNESP

Strings at Dunes, Natal July 2016

Plan:

•Lecture 1. Conformal field theories, gauge theories and nonperturbative issues

- •Lecture 2. Strings and Anti-de Sitter space
- •Lecture 3. The AdS/CFT map and gauge/gravity duality

Lecture 1

Conformal field theories, gauge theories

and nonperturbative issues

1. Conformal field theories: relativistic

•Classical scale invariance: $x_{\mu} \rightarrow x'_{\mu} = \lambda x_{\mu}$.

•QM scale invariance \rightarrow usually conformal invariance. β fct. =0.

•Conformal transformation of flat space: x'(x) such that

$$ds^{2} = dx'_{\mu}dx'^{\mu} = [\Omega(x)]^{-2}dx_{\mu}dx^{\mu}.$$

•Is an invariance of **flat space** under transformations.

•Conformal invariance is not general coord. invariance \rightarrow in 2d, $\leftrightarrow \exists$ of generalization that is diff. and Weyl invariant

$$\int d^2 z (\partial_\mu \phi)^2 = \int dz d\bar{z} \partial \phi \bar{\partial} \phi \text{ inv.}$$
$$\int d^2 z \ m^2 \phi^2 = \int dz d\bar{z} \ m^2 \phi^2$$

•So: conformal transf. = generalization of scale transf. of flat space that change distance between points by local factor.

•Infinitesimal:

$$x'_{\mu} = x_{\mu} + v_{\mu}(x); \quad \Omega(x) = 1 - \sigma_{\nu}(x)$$
$$\partial_{\mu}v_{\nu} + \partial_{\nu}v_{\mu} = 2\sigma_{\nu}\delta_{\mu\nu} \Rightarrow \sigma_{\nu} = \frac{1}{d}\partial \cdot v$$

•d = 2 Euclidean: $ds^2 = dz d\overline{z} \Rightarrow$ Most general solution is holomorphic transformation z' = f(z),

$$ds^{2} = dz'd\bar{z}' = f'(z)\bar{f}'(\bar{z})dzd\bar{z} \equiv [\Omega(z,\bar{z})]^{-2}dzd\bar{z}$$

•d > 2: most general solution is

$$v_{\mu}(x) = a_{\mu} + \omega_{\mu\nu}x_{\nu} + \lambda x_{\mu} + b_{\mu}x^2 - 2x_{\mu}b \cdot x$$

$$\sigma_{\nu}(x) = \lambda - 2b \cdot x$$

5

• $P_{\mu} \leftrightarrow a_{\mu}, J_{\mu\nu} \leftrightarrow \omega_{\mu\nu}$: ISO(d-1,1) (Poincaré). Also $D \leftrightarrow \lambda$ dilatation; $K_{\mu} \leftrightarrow b_{\mu}$ special conformal

•Form generators of SO(2, d)

$$J_{MN} = \begin{pmatrix} J_{\mu\nu} & \bar{J}_{\mu,d+1} & \bar{J}_{\mu,d+2} \\ -\bar{J}_{\nu,d+1} & 0 & D \\ -\bar{J}_{\nu,d+2} & -D & 0 \end{pmatrix}$$

$$\bar{J}_{\mu,d+1} = \frac{K_{\mu} - P_{\mu}}{2}, \quad \bar{J}_{\mu,d+2} = \frac{K_{\mu} + P_{\mu}}{2}, \quad \bar{J}_{d+1,d+2} = 0.$$

•Symmetry group of AdS_{d+1} : CFT on $Mink_d$ = gravity in AdS_{d+1} ?

•Obs.: Inversion $I: x'_{\mu} = x_{\mu}/x^2 \Rightarrow \Omega(x) = x^2$ is conformal also. I & rotation & translation \Rightarrow all finite conformal: e.g. $x^{\mu} \to \lambda x^{\mu}$ and special conformal

$$x^{\mu} \rightarrow \frac{x^{\mu} + b^{\mu}x^2}{1 + 2x^{\nu}b_{\nu} + b^2x^2}$$

d=2 conformal fields and correlators

•Covariant GR tensor: under $z_i \rightarrow z'_i(z)$, $\vec{z} = (z_1, z_2)$,

$$T_{i_1\dots i_n}(z_1, z_2) = T'_{j_1\dots j_n}(z_1, z_2) \frac{\partial z'^{j_1}}{\partial z^{i_1}} \dots \frac{\partial z'^{j_n}}{\partial z^{i_n}}$$

is generalized to primary field (tensor operator) of CFT, of dimensions (h, \tilde{h})

$$\phi^{(h,\tilde{h})}(z,\bar{z}) \equiv T_{z...z\bar{z}...\bar{z}} = T'_{z...z\bar{z}...\bar{z}} \left(\frac{dz'}{dz}\right)^h \left(\frac{d\bar{z}'}{d\bar{z}}\right)^{\tilde{h}}$$

•Operator product expansion (OPE) \rightarrow in any QFT,

$$\mathcal{O}_i(x_i)\mathcal{O}_j(x_j) = \sum_k C^k{}_{ij}(x_i - x_j)\mathcal{O}_k(x_j)$$

•In CFT, conformal invariance gives for n-point correlators

$$\langle \mathcal{O}_i(x_i)\mathcal{O}_j(x_j) = \frac{C\delta_{ij}}{|x_i - x_j|^{2\Delta_i}} \Rightarrow \langle \mathcal{O}_i(x_i)\mathcal{O}_j(x_j)...\rangle = \sum_k \frac{C^k{}_{ij}}{|x_i - x_j|^{\Delta_i + \Delta_j - \Delta_k}} \langle \mathcal{O}_k\left(\frac{x_i + x_j}{2}\right)...\rangle$$

•Know ALL OPEs \rightarrow can solve CFT for correlators.

•Symmetry algebra is infinite dimensional. Energy momentum tensor (not primary!) decomposes as

$$T_{zz}(z) = \sum_{m \in \mathbb{Z}} \frac{L_m}{z^{m+2}}, \quad \tilde{T}_{\overline{z}\overline{z}}(\overline{z}) = \sum_{m \in \mathbb{Z}} \frac{L_m}{\overline{z}^{m+2}}$$

Then we have the Virasoro algebra

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m, -n}$$

and idem for \tilde{L}_m . Here $L_m^{\dagger} = L_{-m}$ and c=central charge. •{ L_0, L_1, L_{-1} } form a closed subalgebra: $Sl(2, \mathbb{C})$.

•Representations: given by "highest weight state" $|h\rangle$. In CFT, \exists operator-state correspondence: $|h\rangle = \lim_{z\to 0} \phi^h(z) |0\rangle$: primary field. L_{-n} : gives "descendants":

$$L_0|h\rangle = h|h\rangle; \quad L_n|h\rangle = 0, \quad L_0(L_{-n}|h\rangle) = (h+n)(L_{-n}|h\rangle)$$

d > 2 conformal fields and correlators

• Eigenfects. of D with eigenv. $-i\Delta$ (like L_0 and "energy" of state)

$$\phi(x) \to \phi'(x) = \lambda^{\Delta} \phi(\lambda x).$$

Then $K_{\mu} \sim L_n$, $P_{\mu} \sim L_{-n}$: *a* and a^{\dagger} : create representations

$$\begin{bmatrix} D, P_{\mu} \end{bmatrix} = -iP_{\mu} \Rightarrow D(P_{\mu}|\phi) = -i(\Delta + 1)(P_{\mu}\phi)$$

$$\begin{bmatrix} D, K_{\mu} \end{bmatrix} = +iK_{\mu} \Rightarrow D(K_{\mu}|\phi) = -i(\Delta - 1)(K_{\mu}\phi)$$

•Inversion generates conf. transf. Defined by orthog. matrix

$$R_{\mu\nu}(x) = \Omega(x) \frac{\partial x'^{\mu}}{\partial x^{\nu}} \Rightarrow \text{ for } x'_{\mu} = x_{\mu}/x^{2},$$
$$R_{\mu\nu}(x) \equiv I_{\mu\nu}(x) = \delta_{\mu\nu} - \frac{2x_{\mu}x_{\nu}}{x^{2}}$$

•For correlators, 3 point functions of scalars.

$$\langle \mathcal{O}_i(x)\mathcal{O}_j(y)\mathcal{O}_k(z)
angle = rac{C_{ijk}}{|x-y|^{\Delta_i+\Delta_j-\Delta_k}|y-z|^{\Delta_j+\Delta_k-\Delta_i}|z-x|^{\Delta_k+\Delta_i-\Delta_j}}$$

amd currents \rightarrow analyze properties under inversion

$$\langle J^a_\mu(x)J^b_\nu(y)\rangle = C \frac{\delta^{ab}I_{\mu\nu}(x-y)}{|x-y|^{2(d-1)}}$$

9

•QCD at high energies \simeq conformal.

•Condensed matter systems: Euclidean CFT appears near critical point. Correlation length $\rightarrow \infty$.

$$C \propto \left(\frac{T-T_c}{T_c}\right)^{-\alpha}; \quad \chi_m \propto \left(\frac{T-T_c}{T_c}\right)^{-\gamma_m}; \quad \xi \propto \left(\frac{T-T_c}{T_c}\right)^{-\nu} \to \infty$$

•Near T_c : conformal field theory: correlation functions defined by

$$\langle \phi_1^{\mathsf{lat}}(r_1)\phi_2^{\mathsf{lat}}(r_2)...\phi_n^{\mathsf{lat}}(r_n)\rangle = Z^{-1}\sum_{\{s\}} \phi_1^{\mathsf{lat}}(r_1)...\phi_n^{\mathsf{lat}}(r_n)\rangle e^{-\beta H(\{s\})}$$

and take scaling limit $a \rightarrow 0$ with ξ fixed, such that

$$\langle \phi_1(r_1)...\phi_n(r_n) \rangle = \lim_{a \to 0} \left(\prod_{i=1}^n \frac{1}{a^{\Delta_i}} \right) \langle \phi_1^{\mathsf{lat}}(r_1)\phi_2^{\mathsf{lat}}(r_2)...\phi_n^{\mathsf{lat}}(r_n) \rangle$$

•So: critical point: relativistic.

2. Conformal field theories: non-relativistic

•Condensed matter $\rightarrow \exists$ also nonrelativistic scaling near "Lifshitz points": $t \rightarrow \lambda^z t, \vec{x} \rightarrow \lambda \vec{x}, z = dynamical critical exponent. e.g. Lifshitz field theory with <math>z = 2$,

$$\mathcal{L} = \int d^d x dt [(\partial_t \phi)^2 - k^2 (\vec{\nabla}^2 \phi)^2]$$

•Lifshitz algebra generated by Poincaré generators

$$H = -i\partial_t; P_i = -i\partial_i; M_{ij} = -i(x^i\partial_j - x^j\partial_i)$$

and generator of scaling transformations

$$D = -i(zt\partial_t + x^i\partial_i)$$

•Algebra is

$$[D, H] = izH, \quad [D, P_i] = iP_i, \quad [D, M_{ij}] = 0, \quad [P_i, P_j] = 0,$$

$$[M_{ij}, P_k] = i(\delta_k^i P_j - \delta_k^j P_i),$$

$$[M_{ij}, M_{kl}] = i[\delta_{ik} M_{jl} - \delta_{jk} M_{il} - \delta_{il} M_{jk} + \delta_{jl} M_{ik}]$$

•Larger algebra: **conformal Galilean algebra**, e.g. cold atoms and fermions at unitarity.

• \exists "Galilean boosts" (nonrelativistic version of boosts) and conserved rest mass (particle number) N.

•Represent them by introducing direction ξ .

$$D = -i(zt\partial_t + x^i\partial_i + (2-z)\xi\partial_\xi)$$

$$K_i = -i(x^i\partial_\xi - t\partial_i); \quad N = -i\partial_\xi$$

and the rest, same. Then, algebra = one before, plus

 $[D, K_i] = (1-z)iK_i$ [D, N] = (2-z)iN, [D, H] = ziH, $[D, P_i] = iP_i$ $[K_i, P_j] = i\delta_{ij}N$, $[K_i, H] = -iP_i$, $[K_i, M_{ij}] = i(\delta_{jk}K_i - \delta_{ik}K_j)$ and rest zero. For z = 2, \exists special conformal generator C for

Schrödinger algebra

$$[C,D] = +2iC, \quad [C,H] = -iD, \quad [C,P_i] = -iK_i, \quad [C,M_{ij}] = [C,K_i] = 0.$$

3. Gauge theory

• \exists gauge field A^a_{μ} , with field strength

 $F = dA + gA \wedge A; \quad F = \frac{1}{2} F_{\mu\nu} dx^{\mu} \wedge dx^{\nu}, \quad A = A_{\mu} dx^{\mu}, \quad A_{\mu} = A_{\mu}^{a} T_{a}$ where $[T_{a}, T_{b}] = f_{ab}{}^{c} T_{c}$ and gauge invariance $\delta A^{a} = (D_{ab})^{a} = \partial_{a} a^{a} + c f^{a} + \delta^{b} c$

$$\delta A^{\alpha}_{\mu} = (D_{\mu}\epsilon)^{\alpha} = \partial_{\mu}\epsilon^{\alpha} + gf^{\alpha}_{\ bc}A^{\circ}_{\mu}\epsilon^{\circ}$$

•The field strength transforms covariantly under a finite transf.

$$U(x) = e^{g\lambda^a(x)T_a}, \ \epsilon^a \to \lambda^a$$

$$F'_{\mu\nu} = U^{-1}(x)F_{\mu\nu}U(x)$$

•Couple to fermions and scalars. In Euclidean space,

$$S^E = S^E_A + \int d^4x [\bar{\psi}(\not D + m)\psi + (D_\mu \phi)^* D^\mu \phi]$$

where $D \equiv D_{\mu} \gamma^{\mu}$ and

$$D_{\mu} = \partial_{\mu} - ieA_{\mu} \Rightarrow (D_{\mu})_{ij}\delta_{ij}\partial_{\mu} + g(T_R^a)_{ij}A_{\mu}^a(x).$$

•Green's functions (correlation functions) from partition function = generating functional (in Euclidean space)

$$Z_E[J] = \int \mathcal{D}\phi e^{-S_E[\phi] + i \int d^d x J(x)\phi(x)}$$

by

$$G_n^{(E)}(x_1, ..., x_n) = \frac{\delta}{\delta J(x_1)} ... \frac{\delta}{\delta J(x_n)} Z^{(E)}[J] \Big|_{J=0}$$

= $\int \mathcal{D}\phi e^{-S_E[\phi]} \phi(x_1) ... \phi(x_n)$

•Can be generalized to existence of composite operators, e.g. gauge invariant operators in gauge theory $\mathcal{O}(x)$,

$$Z_{\mathcal{O}}[J] = \int \mathcal{D}\phi e^{-S_E + \int d^d x \mathcal{O}(x) J(x)}$$

giving correlation functions

$$\langle \mathcal{O}(x_1)...\mathcal{O}(x_n) \rangle = \frac{\delta}{\delta J(x_1)} ... \frac{\delta}{\delta J(x_n)} Z_{\mathcal{O}}[J] \Big|_{J=0}$$

=
$$\int \mathcal{D}\phi e^{-S_E[\Phi]} \mathcal{O}(x_1) ... \mathcal{O}(x_n)$$

•Noether theorem: (global) symmetry \leftrightarrow current

$$j^{a,\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} (T^a)^i{}_j \phi^j$$

Classically, $\partial_{\mu} j^{\mu,a} = 0$. Quantum mechanically, if $\mathcal{D}\phi = \mathcal{D}\phi'$,

$$\langle \partial^{\mu} j^{a}_{\mu} \rangle = 0 = \int \mathcal{D}\phi e^{-S_{E}[\phi]} \partial^{\mu} j^{a}_{\mu}(x) = 0$$

•If $\mathcal{D}\phi \neq \mathcal{D}\phi' \rightarrow \exists$ anomaly.

•Chiral anomaly: $\psi(x) \to e^{i\alpha\gamma_5}\psi(x), \overline{\psi}(x) \to e^{i\alpha\gamma_5}\overline{\psi}(x),$

$$j_{\mu}^{5} = \bar{\psi}\gamma_{\mu}\gamma_{5}\psi \Rightarrow$$

$$\langle \partial^{\mu}j_{\mu}^{5} \rangle = (2d)\frac{e}{4\pi 2}\epsilon^{\mu\nu}F_{\mu\nu}^{\text{ext}}$$

$$= (4d)\frac{e^{2}}{16\pi^{2}}\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^{\text{ext}}F_{\rho\sigma}^{\text{ext}}$$

•Global nonabelian: $\delta\psi^i = \epsilon^a (T^a)^i{}_j \psi^j \Rightarrow$

$$j^a_{\mu} = \bar{\psi}^i \gamma_{\mu} (T^a)_{ij} \frac{1+\gamma_5}{2} \psi^j.$$

15

4. Nonperturbative issues

•

•Strong coupling: difficult. In particular, correlators (*n*-point functions). Also for currents

$$\langle j^{a_1\mu_a}(x_1)...j^{a_n\mu_n}(x_n)\rangle = \frac{\delta^n}{\delta A^{a_1}_{\mu_1}...\delta A^{a_n}_{\mu_n}(x_n)} \int \mathcal{D}(\mathsf{fields})e^{-S_E + \int j^{\mu}A_{\mu}}$$

•QCD: conformal at $E \gg \Lambda_{QCD}$. Also, toy model, $\mathcal{N} = 4$ SYM (4 susies): $\{A^a_{\mu}, \psi^{aI}, X^{a[IJ]}, I, J = 1, ..., 4. SU(4) = SO(6)$ global symmetry. Is exactly conformal ($\beta = 0$). From KK dimensional reduction of $\mathcal{N} = 1$ SYM,

$$S = \int d^{10}x \operatorname{Tr} \left[-\frac{1}{4} F_{MN} F^{MN} - \frac{1}{2} \overline{\lambda} \Gamma^M D_M \lambda \right]$$

•CFT easy to define in Euclidean space. But Minkowski? Subtle. •Instantons: nonperturbartive Euclidean solution.

$$S = \frac{1}{4g^2} \int d^4 x (F^a_{\mu\nu})^2 = \int d^4 x \left[\frac{1}{4g^2} F^a_{\mu\nu} * F^{a\mu\nu} + \frac{1}{8g^2} (F^a_{\mu\nu} - *F^a_{\mu\nu})^2 \right]$$

•Only in Euclidean space $F^a_{\mu\nu} = *F^a_{\mu\nu}$ has real solutions, and then $S = S_{\text{inst.}} = 8\pi^2/g^2n$. Solution

$$A^{a}_{\mu} = \frac{2}{g} \frac{\eta^{a}_{\mu\nu} (x - x_{i})_{\nu}}{g(x - x_{i})^{2} + \rho^{2}}$$

where $\eta^a_{\mu\nu}$ ='t Hooft symbol, $\eta^a_{ij} = \epsilon^{aij}$, $\eta^a_{i4} = \delta^a_i$, $\epsilon^a_{4i} = -\delta^a_i$.

•Nonperturbative physics: in Wilson loops,

$$W[C] = \operatorname{Tr} P \exp\left[i \int A_{\mu} dx^{\mu}\right]$$

•For C = reactangle $T \times R$, for $T \to \infty$, we have

$$\langle W[C] \rangle \propto e^{-TV_{q\bar{q}}(R)}$$

• $V_{q\bar{q}}(R) = q\bar{q}$ potential. If $V \sim \sigma R \Rightarrow$ confinement. In CFT, $V_{q\bar{q}}(R) \sim \alpha/R$.

•Finite temperature:

$$Z_E[\beta] = \int_{\phi(\vec{x}, t_E + \beta) = \phi(\vec{x}, t_E)} \mathcal{D}\phi e^{-S_E[\phi]} = \operatorname{Tr}\left(e^{-\beta \widehat{H}}\right)$$

• $\mathcal{N} = 4$ SYM at finite T similar to QCD at finite T. Universality? Finite T QCD: at RHIC, LHC \rightarrow strongly coupled plasma \rightarrow like finite T $\mathcal{N} = 4$ SYM at $g_{YM}^2 \rightarrow \infty$.

Lecture 2

Strings and Anti-de Sitter space

1. AdS space

•Maximally symmetric spaces in signature (1, d-1): $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \Lambda g_{\mu\nu}$. Minkowski, dS, AdS. Cosmological const. $\Lambda = 0, > 0, < 0$. •Sphere (Euclidean signature): embed

$$ds^{2} = +dX_{0}^{2} + \sum_{i=1}^{d-1} dX_{i}^{2} + dX_{d+1}^{2}$$
$$R^{2} = +X_{0}^{2} + \sum_{i=1}^{d-1} X_{i}^{2} + X_{d+1}^{2}$$

•de Sitter (Minkowski signature): embed

$$ds^{2} = -dX_{0}^{2} + \sum_{i=1}^{d-1} dX_{i}^{2} + dX_{d+1}^{2}$$
$$R^{2} = -X_{0}^{2} + \sum_{i=1}^{d-1} X_{i}^{2} + X_{d+1}^{2}$$

•Anti-de Sitter (Minkowski signature): embed

$$ds^{2} = -dX_{0}^{2} + \sum_{i=1}^{d-1} dX_{i}^{2} - dX_{d+1}^{2}$$
$$-R^{2} = -X_{0}^{2} + \sum_{i=1}^{d-1} X_{i}^{2} - X_{d+1}^{2}$$

20

Poincaré coordinates (Poincaré patch)

•

$$ds^{2} = R^{2} \left[u^{2} \left(-dt^{2} + \sum_{i=1}^{d-2} dx_{i}^{2} \right) + \frac{du^{2}}{u^{2}} \right]$$
$$= \frac{R^{2}}{x_{0}^{2}} \left(-dt^{2} + \sum_{i=1}^{d-2} dx_{i}^{2} + dx_{0}^{2} \right)$$

•Here $u = 1/x_0$. If $x_0/R = e^{-y}$, "warped metric"

$$ds^{2} = e^{2y} \left(-dt^{2} + \sum_{i=1}^{d-2} dx_{i}^{2} \right) + R^{2} dy^{2}$$

•Light ray: $ds^2 = 0$ at constant $x_i \Rightarrow$

$$t = \int dt = R \int^{\infty} e^{-y} dy < \infty.$$

• \rightarrow light takes **finite** time to reach boundary: can reflect back: This is the only *patch* of a *global* space (universal cover)

•Its boundary at $x_0 = \epsilon$: $\mathbb{R}^{1,d-1}$:

$$ds^{2} = \frac{R^{2}}{\epsilon^{2}} \left(-dt^{2} + \sum_{i=1}^{d-2} dx_{i}^{2} \right)$$

21

•Global coordinates (whole space):

$$ds_{d}^{2} = R^{2}(-\cosh^{2}\rho d\tau^{2} + d\rho^{2} + \sinh^{2}\rho d\vec{\Omega}_{d-2}^{2})$$

similar to sphere

$$ds_d^2 = R^2(\cos^2 \rho d\tau^2 + d\rho^2 + \sin^2 \rho d\vec{\Omega}_{d-2}^2) \equiv d\vec{\Omega}_d^2$$

•Also by $\tan \theta = \sinh \rho \Rightarrow$

$$ds_d^2 = \frac{R^2}{\cos^2\theta} (-d\tau^2 + d\theta^2 + \sin^2\theta d\vec{\Omega}_{d-2}^2)$$

•Boundary of space: $\theta = \pi/2 - \epsilon \Rightarrow$

$$ds^2 = \frac{R^2}{\epsilon^2} (-d\tau^2 + \sin^2\theta d\vec{\Omega}_{d-2}^2)$$

•Analytical continuation to Euclidean signature: $AdS_d \rightarrow EAdS_d$. But then, boundary Poincaré vs. global is **radial** time continuation.

$$ds^{2} = dt_{E}^{2} + \sum_{i=1}^{d-2} dx_{i}^{2} = d\tilde{\rho} + \tilde{\rho}^{2} d\vec{\Omega}_{d-2}^{2} = e^{2t_{E}} (d\tau_{E}^{2} + d\vec{\Omega}_{d-2}^{2}).$$

Penrose diagram

•Flat space, under

$$u_{\pm} = t \pm x = \tan \tilde{u}_{\pm} = \tan \left(\frac{\tau + \theta}{2}\right) \Rightarrow$$

$$ds^{2} = -dt^{2} + dr^{2} + r^{2}d\vec{\Omega}_{d-2}^{2}$$

$$= \frac{1}{4\cos^{2}\tilde{u}_{+}\cos^{2}\tilde{u}_{-}}(-d\tau^{2} + d\theta^{2} + \sin^{2}\theta d\vec{\Omega}_{d-2}^{2})$$

where $|\tau \pm \theta| \leq \pi$, $\theta \geq 0 \Rightarrow (\tau, \theta, \vec{\Omega}_{d-2})$ form triangle of revolution.

•AdS space: same, for Poincaré patch (drop $1/x_0^2$).

•Global space: extend to full **cylinder**. Boundary of global space: cylinder $\mathbb{R}_t \times S_{d-2}$. Related to boundary for conformal patch by *conformal* transformation by e^{2t_E} .

2. Holography in AdS space

•In AdS space, the boundary is a finite time away \Rightarrow natural observables on the *boundary* \rightarrow take boundary sources $\phi_0(\vec{x})$, and field

$$\phi(\vec{x}, x_0) = \int d^4 \vec{x}' K_B(\vec{x}, x_0; \vec{x}') \phi_0(\vec{x}')$$

where K_B is the bulk-to-boundary propagator, satisfying

$$(\Box_{x,x_0} - m^2) K_B(\vec{x}, x_0; \vec{x}') = \delta^d(\vec{x} - \vec{x}') K_{B,\Delta}(\vec{x}, x_0; \vec{x}') = \frac{\Gamma(\Delta)}{\pi^{d/2} \Gamma(\Delta - d/2)} \left[\frac{x_0}{x_0^2 + (\vec{x} - \vec{x}')^2} \right]^{\Delta}$$

• Massless scalar kinetic on-shell action

$$S_{\phi} = \frac{1}{2} \int d^{4}x d\vec{x}' \int d^{4}\vec{y}' \int d^{5}x \sqrt{g} \phi_{0}(\vec{x}') \partial_{\mu_{\vec{x},x_{0}}} K_{B}(\vec{x},x_{0};\vec{x}') \partial_{\vec{x},x_{0}}^{\mu} K_{B}(\vec{x},x_{0};\vec{y}') \phi_{0}(\vec{y}')$$

$$= \frac{C_{d}d}{2} \int d^{d}\vec{x}' d^{d}\vec{y}' \frac{\phi_{0}(\vec{x}')\phi_{0}(\vec{y}')}{|\vec{x}-\vec{y}'|^{2d}}$$

•In general, on-shell action for boundary sources defines some holographic quantities (on the boundary)

•Bulk-to-bulk propagator: $(\Box_x - m^2)G(x,y) = -\frac{1}{\sqrt{g_y}}\delta^{d+1}(x-y)$ is $(\nu \equiv m^2R^2 + d^2/4)$

$$G(x,y) = (x_0y_0)^{d/2} \int \frac{d^d k}{(2\pi)^d} e^{i\vec{k}\cdot(\vec{x}-\vec{y})} I_{\nu}(kx_0^{<}) K_{\nu}(kx_0^{>})$$

Constructed out of the two solutions of $(\Box - m^2)\Phi = 0$,

$$\Phi \propto e^{i\vec{k}\cdot\vec{x}}x_0^{d/2}K_{\nu}(kx_0)\phi_0(\vec{k}) \sim x_0^{\Delta_-} \text{ (non - normalizable)} \\ \propto e^{i\vec{k}\cdot\vec{x}}x_0^{d/2}I_{\nu}(kx_0)\phi_0(\vec{k}) \sim x_0^{\Delta_+} \text{ (normalizable)}$$

•Lorentzian signature: (Poincaré) solution

$$\Phi^{\pm} \propto e^{i\vec{k}\cdot\vec{x}} x_0^{d/2} J_{\pm\nu}(|k|x_0)$$

but now Φ^+ , normalizable mode ($\sim x_0^{\Delta_+}$) is finite in center.

3. String theory

•String theory: generalize QFT in worldline particle formalism. Action

$$S_{1} = -m \int d\tau \sqrt{-\frac{dx^{\mu}}{d\tau} \frac{dX^{\nu}}{d\tau}} \eta_{\mu\nu} \rightarrow$$

$$\rightarrow -mc^{2} \int dt \sqrt{1 - \frac{v^{2}}{c^{2}}} \simeq \int dt \left[-mc^{2} + \frac{mv^{2}}{2} \right]$$

•Equation of motion $\delta/\delta X^{\mu} \Rightarrow \frac{d}{d\tau} \left(m \frac{dX^{\mu}}{d\tau} \right) = 0$. Free particle. •Couple to background fields by adding

$$\int d\tau A_{\mu}(X^{\rho}(\tau)) \left(q \frac{dX^{\mu}}{d\tau}\right) \equiv \int d^{4}x A_{\mu}(X^{\rho}(\tau)) j^{\mu}(X^{\rho}(\tau))$$

•First order particle action in terms of einbein $e(\tau) = \sqrt{-\gamma_{\tau\tau}(\tau)}$,

$$S_P = \frac{1}{2} \int d\tau \left(e^{-1}(\tau) \frac{dX^{\mu}}{d\tau} \frac{dX^{\nu}}{d\tau} \eta_{\mu\nu} - em^2 \right)$$

•Can put m = 0 and choose gauge $e(\tau) = 1$ for reparametrization invariance, but then $e(\tau)$ equation of motion is constraint

$$\frac{dX^{\mu}}{d\tau}\frac{dX^{\nu}}{d\tau}\eta_{\mu\nu} \equiv T = 0.$$

26

•Nambu-Goto action \rightarrow generalization of S_1 :

$$S_{NG} = -\frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{-\det\left(\partial_a X^{\mu} \partial_b X^{\nu} g_{\mu\nu}(X(\xi^a))\right)}$$

•In det, induced metric on *worldsheet* for (σ, τ) .

•**Polyakov action** \rightarrow generalization of S_P :

$$S_P = -\frac{1}{4\pi\alpha'} \int d\tau d\sigma \sqrt{-\gamma} \gamma^{ab} \partial_a X^{\mu} \partial_b X^{\nu} \eta_{\mu\nu}$$

•It has invariances under:

-spacetime Poincar'e

-worldsheet diff. (with $X'^{\mu}(\sigma', \tau') = X^{\mu}(\sigma, \tau)$)

-Weyl invariance $X'^{\mu}(\sigma,\tau) = X^{\mu}(\sigma,\tau)$ and $\gamma'_{ab}(\sigma,\tau) = e^{2\omega(\sigma,\tau)}\gamma_{ab}(\sigma,\tau)$.

•Boundary conditions: -closed strings (periodic in $\sigma \sim \sigma + 2\pi$) or -open strings: Neumann $\partial^{\sigma} X^{\mu}(\tau, 0) = \partial^{\sigma} X^{\mu}(\tau, l) = 0$ or Dirichlet $\delta X^{\mu}(\tau, \sigma = 0.l) = 0$.

•Fix a gauge, e.g. conformal gauge $\gamma_{ab} = \eta_{ab}$. Residual invariance is *conformal invariance*.

•Then, equation of motion is $\Box X^{\mu}(\sigma,\tau) = 0 \Rightarrow X^{\mu} = X^{\mu}_{R}(\tau - \sigma) + X^{\mu}_{L}(\tau + \sigma)$ (left- and right- moving modes). •Constraints: $T_{ab} = 0$ give $T_{+-+} = 0$ and $T_{--} = 0 \Rightarrow$ Virasoro constraints (generated by L_n and \tilde{L}_n).

•Spectrum: closed string

$$X_{R}^{\mu} = \frac{x^{\mu}}{2} + \frac{\alpha'}{2}p^{\mu}(\tau - \sigma) + \frac{i\sqrt{2\alpha'}}{2}\sum_{n \neq 0} \frac{1}{n}\alpha_{n}^{\mu}e^{-in(\tau - \sigma)}$$
$$X_{L}^{\mu} = \frac{x^{\mu}}{2} + \frac{\alpha'}{2}p^{\mu}(\tau + \sigma) + \frac{i\sqrt{2\alpha'}}{2}\sum_{n \neq 0} \frac{1}{n}\tilde{\alpha}_{n}^{\mu}e^{-in(\tau + \sigma)}$$

•Hamiltonian

$$H = \frac{1}{2} \sum_{n \in \mathbb{Z}} \alpha_{-n}^{\mu} \alpha_{n}^{\mu}$$

•Spectrum: act with α_{-n}^{μ} , $\tilde{\alpha}_{-n}^{\mu}$ on $|0\rangle$. But, only α_{-n}^{i} physical. •No quantum anomalies (spacetime Lorentz, Weyl, BRST) \Rightarrow dimension (number of scalars X^{μ}) is D = 26 for (bosonic) string. •Supersymmetry \rightarrow introduce fermions $\Rightarrow D = 10$ for superstring.

•String theory has ∞ number of modes \leftrightarrow worldline particles \leftrightarrow fields. (from α_{-n}^{μ} , $n \in \mathbb{N}$)

•Background fields: from (massless) modes of (super)string. Closed, bosonic $(g_{\mu\nu}, B_{\mu\nu}, \phi) \Rightarrow$

$$S = -\frac{1}{4\pi\alpha'} \int d^2\sigma [\sqrt{-\gamma}\gamma^{ab}\partial_a X^{\mu}\partial_b X^{\nu}g_{\mu\nu}(X^{\rho}) + \alpha'\epsilon^{ab}\partial_a X^{\mu}d_b X^{\nu}B_{\mu\nu}(X^{\rho}) - \alpha'\sqrt{-\gamma}\mathcal{R}^{(2)}\Phi(X^{\rho})]$$

•It also contains nonperturbative objects: D-branes.

4. AdS as a limit of D-branes

•D-branes = enpoints of strings with D-(p+1) Dirichlet boundary conditions $\delta X^{\mu}(\tau, \sigma = 0, l) = 0$. Wall with p+1 dimensions.

•A graviton $\delta g_{\mu\nu}$ (or $\delta \phi$, etc.) can hit wall and excite modes that live on it \rightarrow gives action

$$S_P = -T_p \int d^{p+1} \xi e^{-\phi} \sqrt{-\det\left(\frac{\partial X^{\mu}}{\partial \xi^a} \frac{\partial X^{\nu}}{\partial \xi^b} (g_{\mu\nu} + \alpha' B_{\mu\nu}) + 2\pi \alpha' F_{ab}\right)} + S_{WZ}$$

•But: Dp-branes = (same masses and charges as) p-brane solutions of supergravity (= low energy of string theory)

$$ds_{\text{string}}^{2} = H_{p}^{-1/2}(-dt^{2} + d\vec{x}_{p}^{2}) + H_{p}^{1/2}(dr^{2} + r^{2}d\Omega_{8-p}^{2})$$

$$e^{-2\phi} = H_{p}^{\frac{p-3}{2}}$$

$$A_{01...p} = -\frac{1}{2}(H_{p}^{-1} - 1)$$

•Here the harmonic function is

$$H_p = 1 + \frac{2C_p Q_p}{r^{7-p}} \equiv 1 + \frac{R^4}{r^4}$$

and colorGreen $R^4 = 4\pi g_s N \alpha'^2$.

•Note: "string frame". "Einstein frame" $ds_E^2 = e^{-\phi/2} ds_s^2$.

•D3-branes (p = 3) for $r \to 0$: $H \simeq R^4/r^4 \Rightarrow$

$$ds^{2} = \frac{r^{2}}{R^{2}}(-dt^{2} + d\vec{x}_{3}^{2}) + \frac{R^{2}}{r^{2}}dr^{2} + R^{2}d\Omega_{5}^{2}$$
$$= R^{2}\frac{-dt^{2} + d\vec{x}_{3}^{2} + dx_{0}^{2}}{x_{0}^{2}} + R^{2}d\Omega_{5}^{2}$$

• $\Rightarrow AdS_5 \times S^5$ space! Therefore AdS space appears from N $(N \to \infty)$ D-branes, in the near-horizon limit $r \to 0$.

5. String theory in AdS space

•Supergravity (low energy) limit:

•On $AdS_5 \times S^5 \to KK$ reduction on $S^5 \to gauged$ supergravity in AdS_5 background.

• \exists cosmological constant, SO(6) = symmetry group of S^5 is gauged (local), with coupling $g \neq 0$.

•We have also solitonic objects, e.g. D-instantons in $AdS_5 \times S^5$, charged under $a = a_{\infty} + e^{-\phi} - \frac{1}{g_s}$, with

$$e^{\phi} = g_s + \frac{24pi}{N^2} \frac{x_0^4 \tilde{x}_0^2}{[\tilde{x}_0^2 + |\vec{x} - \vec{x}_a|^2]^4} + \dots$$

•Also D*p*-brane that can wrap cycles in geometry \rightarrow e.g. D5 on S^5 for $AdS_5 \times S^5$.

•We also have long (classical) strings that can end on D-branes

•If the D-brane is on boundary at infinity, and string ends on a contour *C*, the string stretches into AdS by gravity, and is stopped by tension:

$$ds^{2} = \alpha' \frac{r^{2}}{R^{2}} (-dt^{2} + d\vec{x}^{2}) + \dots$$

~ $(1 + 2V_{\text{Newton}})(-dt^{2} + \dots)$

•Quantum strings in AdS space \rightarrow hard to quantize: highly nonlinear worldsheet action.

•e.g. in embedding space for $S^3 \subset S^5$,

$$S = \frac{R^2}{4\pi\alpha'} \int d\tau \int_0^{2\pi} d\sigma \left[-(\partial_a X^0)^2 + \sum_{i=1}^4 (d_a X^i)^2 \right]$$

where $\sum_i X^i X^i = 1$. \rightarrow is actually nonlinear.

•Exception: Penrose limit (near *null* geodesic in $AdS_5 \times S^5$)

$$ds^{2} = -2dx^{+}dx^{-} - \mu^{2}(\vec{r}^{2} + \vec{y}^{2})(dx^{+})^{2} + d\vec{y}^{2} + d\vec{r}^{2}$$

Polyakov string action

•

$$S = -\frac{1}{2\pi\alpha'} \int_0^l d\sigma \int d\tau \frac{1}{2} \sqrt{-\gamma} \gamma^{ab} [-2\partial_a X^+ \partial_\beta X^- -\mu^2 X_i^2 \partial_a X^+ \partial_b X^+ + \partial_a X^i \partial_b X^i]$$

•In light-cone gauge, $X^+(\sigma, \tau) = \tau$,

$$S = -\frac{1}{2\pi\alpha'} \int d\tau \int_0^l d\sigma \left[\frac{1}{2} \eta^{ab} \partial_a X^i \partial_b X^i + \frac{\mu}{2} X_i^2 \right]$$

Lecture 3

The AdS/CFT map and gauge/gravity duality

1. AdS/CFT and state-operator map

•We have seen that $AdS_5 \times S^5$ appears in the near-horizon of N D3-branes, and AdS space is likely holographic.

•More precise: two open strings on D3 collide: closed string peels off into bulk as Hawking radiation \Rightarrow relation between bulk gravity theory and D3-brane field theory in *decoupling limit* of D-branes.

•So: SU(N) at large $N \mathcal{N} = 4$ SYM = gravity theory at $r \to 0$, for $\alpha' \to 0$ (for no string worldsheet corrections) and $g_s \to 0$ (for no quantum string corrections): $AdS_5 \times S^5$.

•More precisely: $\lambda = g_{YM}^2 N = R^4/\alpha'^2$ large and fixed.

•In fact, duality is believed to hold for all g_s and N.

•Map: couplings $4\pi g_s = g_{YM}^2$, $\lambda = g_{YM}^2 N = R^4/\alpha'^2$

•SO(6) R-symmetry \leftrightarrow SO(6) gauge symmetry in $AdS_5 \leftrightarrow$ isometry of S^5 on which we KK reduce.

•Conformal symmetry $SO(4,2) \leftrightarrow$ isometry of AdS_5 .

•Supergravity modes couple to (are sources for) boundary gauge invariant operators. e.g. scalar ϕ with KK expansion (on S^5)

$$\phi(x,y) = \sum_{n} \sum_{I_n} \phi_{(n)}^{I_n}(x) Y_{(n)}^{I_n}(y)$$

then $\phi_{(n)}^{I_n}$ couples with operator $\mathcal{O}_{(n)}^{I_n}$ of dimension

$$\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + m^2 R^2}$$

•Gravity dual: string theory in the background ($U \equiv r/\alpha'$)

$$ds^{2} = \alpha' \left[\frac{U^{2}}{\sqrt{4\pi g_{s}N}} (-dt^{2} + d\vec{x}_{3}^{2}) + \sqrt{4\pi g_{s}N} \left(\frac{dU^{2}}{U^{2}} + d\Omega_{5}^{2} \right) \right]$$

$$F_{5} = 16\pi g_{s} \alpha'^{2} N (1 + *) \epsilon_{(5)}$$

•Solve $(\Box - m^2)\phi = 0$ in background \Rightarrow we obtain $\phi \sim x_0^{\Delta_{\pm}}\phi_0$, where $\phi_0 =$ boundary source, and

$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2 R^2}$$

•Then $x_0^{\Delta_-}\phi_0 = x_0^{d-\Delta}\phi_0$ is non-normalizable mode, and $x_0^{\Delta_+}\Phi_0$ is normalizable mode.

•In non-normalizable mode, ϕ_0 = source for \mathcal{O} = composite, gauge invariant operator \rightarrow need partition function $Z_{\mathcal{O}}[\phi_0]$,

$$Z_{\mathcal{O}}[\phi_0] = \int \mathcal{D}[SYM] e^{-S + \int \mathcal{O} \cdot \phi_0}$$

•Witten prescription for duality: partition function is same

$$Z_{\mathcal{O}}[\phi_0]_{\mathsf{CFT}} = Z_{\phi}[\phi_0]_{\mathsf{string}}$$

•Moreover, in $\alpha' \rightarrow 0$ limit, $g_s \rightarrow 0 \Rightarrow$ classical, on-shell, supergravity limit

$$Z_{\phi}[\phi_0] = e^{-S_{\text{sugra}}[\phi[\phi_0]]}$$

• S_{sugra} is on-shell, for classical $\phi[\phi_0]$ depending on boundary value ϕ_0 , i.e., as we saw

$$\phi(\vec{x}, x_0) = \int d^4 \vec{x}' K_B(\vec{x}, x_0; \vec{x}') \phi_0(\vec{x}')$$

39

Correlators

$$\langle \mathcal{O}(x_1)...\mathcal{O}(x_n) \rangle = \frac{\delta^n}{\delta \phi_0(x_1)...\delta \phi_0(x_n)} Z_{\mathcal{O}}(\phi_0) \Big|_{\phi_0 = 0}$$

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2) \rangle = -\frac{\delta^2 S_{\text{sugra}}[\phi[\phi_0]]}{\delta \phi_0(x_1)\delta \phi_0(x_2)} \Big|_{\phi_0 = 0}$$

•Given the form of the quadratic part of S_{sugra} in lecture 2, we obtain

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\rangle = -\frac{C_d d}{|\vec{x}_1 - \vec{x}_2|^{2d}}$$

as required by CFT.

•In general, "Witten diagrams" from $S_{sugra}[\phi[\phi_0]]$: tree (classical) Feynman diagrams in x space with endpoints on boundary.

•Lorentzian case: \exists good normalizable and non-normalizable modes \Rightarrow normalizable modes \leftrightarrow VEVs (states). For $\phi \sim \alpha_i x_0^{d-\Delta} + \beta_i x_0^{\Delta}$,

 $H = H_{CFT} + \alpha_i \mathcal{O}_i; \quad \langle \beta_i | \mathcal{O}_i | \beta_i \rangle = \beta_i + (\alpha_i \text{ piece})$

Nonperturbative states

•e.g. instanton maps to D-instantons in $AdS_5 \times S^5$, by

$$\frac{\delta S}{\delta \phi_0(\vec{x})} = -\frac{\delta}{\delta \phi_0(\vec{x})} \frac{1}{4\pi \kappa_5^2} \int d^5 x \sqrt{-g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$
$$= -\frac{48}{4\pi g_s} \frac{\tilde{z}^4}{[\tilde{z}^2 + |\vec{x} - \vec{x}_a|^2]^4}$$
$$= \frac{1}{2g_{YM}^2} \langle \operatorname{Tr} [F_{\mu\nu}^2(\vec{x})] \rangle$$

matches exactly.

•

•Also, D5-brane wrapping $S^5 \leftrightarrow$ baryon vertex operator in SU(N)SYM, for connecting N external quarks.

Wilson loops

•Nonperturbative gauge theory \rightarrow encoded in Wilson loops • $\langle W[C] \rangle$ encodes $V_{q\bar{q}}(r)$.

•In a susy theory, susy Wilson loop

$$W[C] = \frac{1}{N} \operatorname{Tr} P \exp\left[\oint (A_{\mu} \dot{x}^{\mu} + \theta^{I} X^{I}(x^{\mu}) \sqrt{\dot{x}^{2}}) d\tau\right]$$

where $X^{\mu}(\tau)$ parametrizes the loop, θ^{I} unit vector on S^{5} . Then

$$\langle W[C] \rangle = e^{-S_{\text{string}}[C] - l\phi}$$

Here $l\phi$ = renormalization \rightarrow exract divergence: straight string forming parallelipiped.

•Non-susy loop can also be defined.

•Calculation in AdS_5 gives

$$V_{q\bar{q}}(L) = -\frac{4\pi^2}{\Gamma(1/4)^4} \frac{\sqrt{2g_{YM}^2 N}}{L}$$

PP wave correspondence

•Penrose limit of $AdS_5 \times S^5 \rightarrow$ worldsheet string is free (massive).

•In SYM, corresponds to large charge J (for $U(1) \subset SO(6)_R$). $Z = \Phi^5 + i\Phi^6$ is charged under it, $\Phi^1, ..., \Phi^4$ aren't. Vacuum of string:

$$|0,p^+\rangle = \frac{1}{\sqrt{J}N^{J/2}} \operatorname{Tr}\left[Z^J\right]$$

•String states \rightarrow insertions of $\Phi^1, ..., \Phi^4$, etc. inside the trace. e.g.

$$a_{n,4}^{\dagger}a_{-n,3}^{\dagger}|0,p^{+}\rangle = \frac{1}{\sqrt{J}}\sum_{l=1}^{J}\frac{1}{N^{J/2}}\text{Tr}\left[\Phi^{3}Z^{l}\phi^{4}Z^{J-l}\right]e^{\frac{e\pi inl}{J}}$$

• \exists Hamiltonian acting on these \rightarrow Hamiltonian of discretized string on the pp wave: only way to obtain quantum string.

2. Gauge/gravity duality

• $AdS_5 \times S^5$ best understood example. But \exists other cases.

•

•Conformal: -N M2-branes and N M5-branes in 11d M-theory (strong coupling string theory) $\Rightarrow AdS_4 \times S^7$ and $AdS_7 \times S^4$. -orbifolds/orientifolds of $AdS_5 \times S^5 \rightarrow$ less susy.

- ABJM model in 2+1 dimensions: N M2-branes on $\mathbb{C}^4/\mathbb{Z}_k$, IR limit $\leftrightarrow AdS_4 \times S^7/\mathbb{Z}_k \Big|_{k \to \infty} = AdS_4 \times \mathbb{CP}^3$.

•Nonconformal, less (or no) susy: "gravity dual backgrounds" \rightarrow no AdS factor.

•Extra dimension $r \leftrightarrow$ energy scale U. $\exists \beta$ function \rightarrow running with $U \leftrightarrow r \Rightarrow$ nontrivial metric as a function of r.

•To holographically simulate QCD-like gauge theory, need:

-large N gauge theory (e.g. SU(N)): small string corrections -(flat) boundary for field theory, and sections of constant $r \leftrightarrow U$. -compact space $X_n \leftrightarrow$ global symmetry of field theory -RG flow in r between low energy (low r) and high energy (large r).

•Map:

-Gauge invariant SYM operators ("glueballs") \leftrightarrow sugra fields in gravity dual

-Gauge invariant operators with "quarks" ("mesons") \leftrightarrow SYM fields on brane in gravity dual

-Wavefunctions in field theory, e.g. $e^{ik \cdot x} \leftrightarrow$ wavefunctions in gravity dual (times wavefunctions on compact space), e.g.

$$\phi(x, U, X_m) = e^{ik \cdot x} \psi(U, X_m)$$

Phenomenological gauge/gravity duality

•QCD "bottom-up" models or condensed matter models: no decoupling limit of brane theory.

•Instead, gravity dual with some *field theory* on it (not string theory) with right properties. (could be truncation of a low energy sugra limit of string theory)

•Could be nonrelativistic, e.g. Lifshitz system (add $-iu\partial_u$ to dilatation D)

$$ds_{d+1}^2 = R^2 \left(-\frac{dt^2}{u^{2z}} + \frac{d\vec{x}^2}{u^2} + \frac{du^2}{u^2} \right)$$

or gravity dual of Schrödinger algebra (add $-iu\partial_u$ to D)

$$ds_{d+2}^2 = R^2 \left(-\frac{dt^2}{u^{2z}} + \frac{d\vec{x}^2}{u^2} + \frac{du^2}{u^2} + \frac{2dt \ d\xi}{u^2} \right)$$

3. Finite temperature

•For sQGP and condensedf matter applications, need *finite temperature*.

•Hawking radiation from Wick rotation of black hole

$$ds^{2} = +\left(1 - \frac{2MG_{N}}{r}\right)d\tau^{2} + \frac{dr^{2}}{1 - \frac{2MG_{N}}{r}} + r^{2}d\Omega_{2}^{2}$$

has conical singularity $(ds^2 \simeq A(d\rho^2 + \rho^2 d\tau^2))$ near $r = 2MG_N$, unless $\theta = \tau/(4MG_N)$ has periodicity $2\pi \Rightarrow$

$$T_{BH} = \frac{1}{8\pi M G_N} \Rightarrow C = -\frac{\partial M}{\partial T} < 0$$

So it is not thermodynamically stable system.

•But a black hole in AdS space is. $\exists C > 0$ branch.

•For a black hole in AdS space,

•

$$ds^{2} = -\left(\frac{r^{2}}{R^{2}} + 1 - \frac{w_{n}M}{r^{n-2}}\right)dt^{2} + \frac{dr^{2}}{\frac{r^{2}}{R^{2}} + 1 - \frac{w_{n}M}{r^{n-2}}} + r^{2}d\Omega_{n-2}^{2}$$

one finds (r₊ is largest solution to $\frac{r^{2}}{R^{2}} + 1 - \frac{w_{n}M}{r^{n-2}} = 0$)
$$T = \frac{nr_{+} + (n-2)R^{2}}{4\pi R^{2}r_{+}}$$

 $\bullet T(M)$ has a minimum, followed by a uniformly increasing branch \rightarrow stable.

•Need to take also $R \cdot T \to \infty \Rightarrow M \to \infty$.

•More generally, put black hole in gravity dual \Rightarrow Put dual field theory at finite temperature.

4. AdS/CMT and transport

•Strongly coupled CMT field theories \rightarrow not easy to describe \rightarrow phenomenological models.

•Need finite temperature \Rightarrow black holes.

•For transport properties, need spectral functions \rightarrow retarded Green's functions $G^R_{\mathcal{O}_A\mathcal{O}_B}$.

•Linear response theory:

 $\delta \langle \mathcal{O}_A \rangle(\omega, k) = G^R_{\mathcal{O}_A \mathcal{O}_B}(\omega, k) \delta \phi_{B(0)}(\omega, k)$ •Im $G^R_{\mathcal{O}_A \mathcal{O}_B}(\omega, k)$ is spectral functions for χ , since

$$\chi \equiv \lim_{\omega \to 0+i0} G^R_{\mathcal{O}_A \mathcal{O}_B}(\omega, x) = \int_{-\infty}^{+\infty} \frac{d\omega'}{\pi} \frac{\mathrm{Im} G^R_{\mathcal{O}_A \mathcal{O}_B}(\omega', x)}{\omega'}$$

•To calculate $G^R_{\mathcal{O}_A\mathcal{O}_B}$ holographically, prescription by Son and Starinets.

•For asymptotically AdS gravity dual with black hole \leftrightarrow event horizon H, if

$$S = \int \frac{d^d k}{(2\pi)^d} \phi_{(0)}(-k) \mathcal{F}(k,z) \phi_{(0)}(k) \Big|_{z=z_B}^{z=z_H}$$

then, G^R is

$$G^{R}(k) = -2\mathcal{F}(k,z)|_{z_{B}} = \frac{2\Delta_{A} - d}{R} \frac{\delta \phi_{A,\text{norm}}^{(2\Delta-d)}}{\delta \phi_{B,\text{norm}}}.$$

•Results: Kubo formulas:

$$\sigma(\omega, \vec{k}) = \frac{iG_{J_x J_x}^R(\omega, \vec{k})}{\omega}; \quad \eta(\omega, \vec{k}) = \frac{iG_{T_{xy} T_{xy}}^R(\omega, \vec{k})}{\omega}$$

•For gravity duals with black holes, generically one finds $\eta/s = 1/(4\pi)$ (s = entropy density).