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Integrable Models:

Quantum models which can be exactly solved by Bethe Ansatz

IM can be found in different areas, such as:
* Statistical Physics
* Quantum Field Theory

o ***(Condensed Matter

o ***Jltracold Atoms

Present some integrable models in CM and UA,
focusing on some prominent examples
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OUTLINE

1- Introduction

2- Integrable models in Condensed Matter
* Spin ladder model

3- Integrable models in Ultracold Matter
* Bosonic quantum tunneling models

* Fermi gas with polarization

* Few particles system
4- Breaking the integrability
5- Conclusions

Main emphasis: results and physical properties
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1 - INTRODUCTION



Importance of the study of integrable models:

* They serve as a test for computer analysis and analytic
methods for realistic systems, where only numerical

calculations and perturbative methods may be applied;

* They serve as a laboratory for investigations for the
situations (1) where the mean field treatment fails (quantum
fluctuations are large) or (2) which cannot be described via
perturbation theory (strong coupling);

* From the mathematical point of view, they provide explicit
realization of algebraic structures, such as Lie algebras and

quantum groups;

Inteorable Models in Phvsics — n. 5/87



Importance of the study of integrable models:

* From the experimental point of view, there are materials
which behave like (quasi) 1D systems, such as K CuF3,
SroCuQOs, (C5D12N)sCuBry, (51 AP,CuBry2H50),
Cug(C5H19N3)oCly, ...... which can be well described by
integrable spin chains and ladders;

* Some integrable systems have been realized in the lab in

the context of ultracold atoms.
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2 - Integrable models in Condensed
Matter
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Spin ladder systems

Importance:
Some compounds have been realized experimentally
with a ladder structure:

STCUQO?,

Lay_,;Sr;Cu0s9,5
Sr14_-Ca,CusdOyq
Cus(CsH19N5)Cly
C'aV50x5
KCuCls
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 Different experiments using these compounds do
report on the existence of a spin gap in the energy
spectrum: magnetic susceptibility, NMR technigq.

* In some of these even leg-ladder compounds
superconductivity has been detected upon hole
doping (chemical substitution)
detected in resistivity curves

It has been observed that:
Even leg ladders exhibit a gap;
Odd leg ladders do not exhibit a gap.
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DEFINITION: Spin ladder

P S

® ® ®
/

® ® ®

® ® ®

> 9

rung

leg

* construction: put some 1D spin chains together, in such a

way that the n° of legs (L) << n° of rungs

* interpolates between 1 and 2 dimensions

historically, the name came from the 2-legs, and it was extended after for n-legs
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A SIMPLE INTEGRABLE SPIN LADDER MODEL:

L L
H =L Hey + 10> STy — pupgH > (S +T5),
i g=l 71=1
L
Hios = D (53551 + TTjsa + 4550 TiT 1 )
j=1

Yupeng Wang PRB60 (1999)

® S;, T} are Pauli matrices acting on site j of the left and right legs
¢ J | and J are the leg and and rung couplings and -y 1s a rescaling constant
® H is the magnetic field, L is the number of rungs and PBC are imposed

® It differs from the usual Heisenberg ladder by the presence of biquadratic interactions
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Properties:

* this model can be exactly solved by the BA:
the leg part is simply the permutation operator corresponding to the su(4) algebra and the

rung term becomes diagonal after a convenient change of basis;
* the gap and critical fields can be derived using the TBA;

* the thermal and magnetic properties can be obtained using
the Quantum Transfer Matrix (QTM) method:

the free energy is written in terms of the eigenvalue of the QTM and from it we derive the

thermodynamical properties by standard thermodynamics;

* this integrable ladder model can be used to describe the
physics of some strong coupling ladder compounds.
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Comparison with experimental curves:

We can use this integrable spin ladder model to fit experimental curves
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FIG. 1 (color online). The susceptibility versus temperature
for B512aT at H = 1 T [13]. The solid line denotes the suscep-
tibility evaluated directly from the HTE. A parameter fit
suggests the coupling constants J; = 13.3 Kand J = .15 K
with y =4, ¢ = 2.1, and uz = 0.672 K/T. The inset shows
the same fit to the susceptibility at low temperature.

C. Landee, PRB63 (2001); M. Batchelor et al, PRL (2003)
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Comparison with experimental curves:

¢ (5]APQCUBT42HQO>
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FIG. 2 (color online). Magnetization versus magnetic field for
B5i2aT [13] with the same constants as in Fig. 1. The discrep-
ancy in the magnetization curves at 7 = 0.4 Kand 77 = 1.59 K
is due to paramagnetic impurities which become negligible for
higher temperature. The inset shows the one-point correlation
function versus magnetic field.

C. Landee, PRB63 (2001); M. Batchelor et al, PRL (2003)
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Comparison with experimental curves:

- CU2(05H12N2)QCZ4

=) =)
o )

'S

Magnetic Moment M

©
b=
=
=
=
5
>
2
B
=
o,
5
31
172}
=
n

40 50 60 70
Temperature T(K)

FIG. 3 (color online). Susceptibility versus temperature for
the compound Cu(Hp)Cl [12]. The solid line denotes the
susceptibility evaluated directly from the HTE with ug =
0.672K/T, J;, = 135K, Jy =24K, y=15, and g = 2.03.
The inset shows the magnetization versus magnetic field at
different temperature. At 7= 0.6 K, the critical fields are
H., =78T and H,, = 13.0 T, in good agreement with the
experimental results [11,12].

M. Hagiwara et al, PRB62 (2000); M. Batchelor et al, PRL (2003)
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Comparison with experimental curves:

- CU2(05H12N2)QCZ4

pecific Heat (J/K Cu-mol)
(3]

FIG. 4 (color online). Specific heat versus temperature for the
compound Cu(Hp)CI [12] with the same constants as in Fig. 3.
The inset shows the field dependent entropy versus temperature.

M. Hagiwara et al, PRB62 (2000); M.Batchelor, PRL (2003)

Excellent agreement 1s found between the theoretical results and
the experimental data for these ladder compounds
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Other integrable models in Condensed Matter

» Heisenberg chain
* Susy t-J model
* Hubbard model

* Kondo lattice and other impurity models
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3 - Integrable models in Ultracold
Matter
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Bosonic quantum tunneling models:

» 2 wells: Two-site Bose Hubbard Hamiltonian
» 3 wells: Triple well Hamiltonian
* 4 wells: Four-well ring model

e Multi-well tunneling models
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Two-site Bose Hubbard Hamiltonian:

K JAN E
H = g(Nl—NQ)Q—%(Nl—NQ)—EJ( J{CLQ"‘CL;CI&)

e N; = ajai: number of atoms in well (¢ = 1, 2)
 K: atom-atom interaction term
* Ay external potential

e &£: tunneling strength
G. Milburn et al, Phys. Rev. A 85 (1997) 4318; A. Leggett, Rev. Mod. Phys. 73 (2001) 307
A. Tonel, J. Links, A. Foerster, JPA 38 (2005) 1235

The quantum dynamics of the model exhibits tunneling X
self-trapping - experiment of Albiez et al - 2005
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Quantum Dynamics:
Time evolution of the expectation value of the imbalance population (N1 — N2)/N for different

ratios of the coupling K/E 5 and Ap = 0 and initial state |[N,0 >

K 1 117N’N2

E; T N2 NV

® the qualitative behaviour does not depend on the number of particles;
®  collapse and revival behaviour, typical of the experiments;
®  between % = % and 1 the system tends to localize
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Quantum Dynamics:
Time evolution of the expectation value of the imbalance population (N1 — N2)/N for different

ratios of the coupling K/E 5 and Ap =0

og

_ HH HWWNW\\ HWW’N T W'WH [T “WHW'
e S

: Tunneling X Self-trapping
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Direct observation of tunneling and self-trapping:
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The two-site Bose Hubbard model describes qualitatively tunneling X self-trapping
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Integrability and exact solution:

e R-matrix:
/1 0 0 O\
R(u) — 0 b(u) c(u) O
0 c(u) b(u) 0]’
\0 0 0 1/
_u _n
o) == ) =

* Yang-Baxter algebra:
Ryg(x—y) R13(z) Ra3(y) = Ras(y) Ras(z) Riz2(z—y)
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* Monodromy-matrix:

* Yang-Baxter algebra:
Ris(u — v)T1(u)Th(v) = To(v)Th(u)Ria(u — v)
* Realization of the monodromy matrix:

L(u) = 7(T(u)) = Li(u +w)Ly(u — w)

N;  ay .
L@(u):(“Z? 770’1) i=1,2
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e Transfer matrix:

r(u) = ©(Tr(T(u))) = 7(A(u) + D(u))

* Integrability:
(), 7(W)] =0 — [H,7(v)] =0
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e Hamiltonian and transfer matrix:

1
H=k (T(u) — Z(T’(O))Q —ur'(0) —n 2 +w® — u2>
with the identification:
K ky AV Eg
2 A
K A E
H == (N —NQ)Q—T“(N1 —Np) — < (alas +ahar)
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Applying the algebraic Bethe ansatz method:
e Energy:

N
_ 7]
E = —r(n 2H<1 'Lv._w>
i=1 ¢

* Bethe Ansatz Equations:
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INTEGRABLE GENERALISED MODELS:

Basic 1dea:

We can construct integrable generalised models
in this bosonic quantum tunneling context by
exploring different representations of some
algebra.

A. Foerster and E. Ragoucy, Nuclear Phys. B777 (2007) 373
A. Tonel, L. Ymai, A. Foerster and J. Links, J. Phys. A48 (2015)
L. Ymai, A. Tonel, A. Foerster and J. Links, arXiv:1606.00816 (2016)
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Triple well Hamiltonian:

H = U(N;+ N3 — No)? + p(Ny + N3 — No)

+ t12(aJ{a2 + alag) + t23(a£a3 T aga;ﬂ,)

* N, = a}ai: number of bosons in well ¢, (i = 1, 2, 3),
N = Nj + N2 + N3 is constant, H is invariant by changing the indices 1 and 3
e [: controls on-site and inter-well interac. bet. bosons

° w: external potential, ¢;;: tunneling strength:

A. Foerster, J. Links, K. Wilsmann, A. Tonel and L. Ymai, in preparation (2016)
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Four-well ring with anisotropic tunneling:

H U(Ny + N3 — Ny — Ny)* + u(Ny + N3 — Ny — Ny)
+ tlg(alag + aJ{ag) + t14(a1a11 + a]ia4)

e t23(a3a£ e agﬁ)ag) e t34(a3a11 e ag;a4)

ti; are not independent: ¢12t34 = t23t14 but still admits sufficient freedom to investigate a range

of anisotropic tunneling regimes

A. Tonel, L. Ymai, A. Foerster and J. Links, J. Phys. A48 (2015)
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Yang-Baxter equation: key ingredient in this construction

Rio(x — y)Riz(x) Ras(y) = Ros(y)Riz(x) Ria(x — y)

® sufficient condition for integrability, proposed independently in different contexts by:

* C. N. Yang (China): Nobel Prize 1957

* R. Baxter (ANU, Australia): Boltzman Medal 1980, Lars
Onsager Prize 2006, Royal Medal 2013
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Experimental realization of the YBE using NMR:

SCIENTIFIC REP{%}RTS

Experimental realization of the
Yang-Baxter Equation via NMR
interferometry

Received: 190ctober2015 £ AnvariVind?, A. Foerster?, I. S. Oliveiral, R. S. Sarthour?, D. O. Soares-Pinto?, A. M. Souzal
Accepted: 12 January 2016 : & |. Roditi!
Published: 10 February 2016

The Yang-Baxter equation is an important tool in theoretical physics, with many applications in
different domains that span from condensed matter to string theory. Recently, the interest on the
equation has increased due to its connection to quantum information processing. It has been shown
that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation.
Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became
significant to pursue its experimental implementation. Here, we show an experimental realization
of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR)
interferometric setup. Our experiment was performed on a liquid state lodotrifluoroethylene sample
which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a
pseudo-pure state from which we are able to apply a quantum information protocol that implements
theYang-Baxter equation.

talk by Fatima Anvari
NMR-Group: coordinated by Ivan Oliveira, CBPF
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Ultracold Fermi gases
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1D 2-component attractive Fermi gas with polarization:

e Hamiltonian
R O H
HZ—%;a—ﬁﬂLng Z 5(5'3i—5’3j)—§(NT—N¢)

* N spin 1/2 fermions of mass m
* constrained by PBC to a line of length L
* H: external field

°* 01D = %C: 1D interaction strength:
attractive for g, p < 0 and repulsive for g;p > 0

* Here: attractive regime
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Properties:

* this model can be exactly solved by the BA

C.N. Yang, PRL 19(1967)1312; M. Gaudin, Phys. Lett. 24 (1967) 55

* using the TBA we can derive thermodynamical properties
and also obtain the phase diagram for strong and weak
coupling.

* using the TBA, we can also obtain the Wilson ratio Ry, an
universal quantity defined as the ratio of the magnetic
susceptibility y to specific heat ¢, divided by 7' ( in the
strong attractive and low T regime)

X
co/T

RWoc
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Phase diagram (7' = 0) and schematic rep. (strong coupling)

R ML, S L S TR
e R
: S s e

Y ¥ Y

BCS

He, Foerster, Guan, Batchelor, NJP2009
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* For low T: Theoretical predictions from low-T TBA + LDA

(solid lines) 1n the strong coupling regime are in

quantitative agreement with experimental measurements
(circles) of density profiles of a 2-spin mixture of ultracold

6Li atoms in 1D tubes

E
=2
o
—
=
=
©
o
=
<

Axial position (pm)

Liao et al. Nature 2010; the black (blue) circles are the density of fermions in the state |1 >
(|2 >) and the red squares the difference between these two states; the solid lines are the

nredictions from TBA+LDA : the vpolarizations are 0.015. 0.055. 0. 10 and 0.33rable Models in Phvsics — p. 38/87



Contour Plot of the Wilson Ratio:

Contour plot of Ry for || = 10 as a function of the temperature and magnetic field using the
TBA. In the region below the dashed lines, Ry is temperature independent. Ry = O for the
paired (PP) and ferromagnetic (F) phases. Near the critical points, the ratio reveals anomalous

enhancement. The inset shows the enhancement at the lower critical point.
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Wilson Ratio:

Ryy vs polarization for |y| = 10 at T' = 0.00001¢p. The ratio exhibits anomalous enhancement
near the two critical points due to the sudden change of the density of states. The values

Ry = 5.53 and Ry = 1.52 agree with the values obtained from the analytic expression.

Guan, Yin, Foerster, Batchelor, Lee, Lin, PRL 2013
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Other integrable models in Ultracold Matter

Advanced experimental techniques in trapping and cooling atoms in 1D have provided the

realization of integrable models in the lab. Some examples:

 the Lieb-Liniger Bose gas
T. Kinoshita et al Science 2004, PRL 2005, Nature 2006, A. van Amerongen et al
PRL2008; T. Kitagawa et al PRL 2010; J. Armijo et al PRL 2010, H. Naegerl et al, 2015

* the super Tonks-Girardeau gas
E. Haller et al Science 2009

 the two-component spinor Bose gas
J. van Druten et al arXiv:1010.4545

e McGuire impurity model in 1D Fermi gas
S. Jochim et al, Science 2011, PRL 2012, Science 2013.
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e Even 1f a system 1s not integrable
we can get inspiration from these methods;

 We can see this, for instance in the case of few

particles systems, which are attracting great
interest due to recent experiments in cold atoms.
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Few particles
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Few Particles System:

®  Very recent experiments: Jochim et al prepared and controlled with high precision a

system of few ®Li atoms (N) in a 1D harmonic trap - Science 2012

Microtrap + tilting the potential

Combining the Bethe ansatz + variational principle we discuss few particles system
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Few-particles system in a 1D harmonic trap:

MOTIVATION: Recent experiments on a system of few atoms in a 1D harmonic trap stimulated

the search for new theoretical methods to deal with few-particles systems.

2 <L 9

n
M=o —+c d ' b —a:j)+%zmw2xi2
1=1

1=1 1<i<g<N

* Few bosons /N interacting via a delta-function in an axially

symmetric harmonic trap with angular frequency w;

* c1s the interaction strength, attractive for ¢ < 0 and
repulsive for ¢ > 0

* The harmonic potential term prevents the exact solvability
of H. If we consider just the interaction Hamiltonian
(w = 0) it is exactly solvable by the Bethe ansatz
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h? o 82 e~ 5

1<i<g<N
° N=2:
exact analytical solution - 7h. Busch et al, Found.Phys. 1998
e N >3:

no exact solution 1s available; BA + LDA 1s not possible!

® Our approach: by combining the Bethe ansatz with the
variational principle, we calculate the GS-energy of the
system with good agreement with the analytical result for
N = 2 and numerical results for N = 3.

The central part of the trial function is the BA-wavefunction for the integrable model.
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Ground state energies:

N=2 N=3

—— Geometric Geometric

- - Analytic — - Numeric

Ground state energies € = % — % as a function of the interaction strength c. The case N = 2

matches the analytic result well in all regimes and the N = 3 case matches numerical results.

D. Rubeni, A. Foerster and 1. Roditi, PRA 2012
B.Wilson, A. Foerster, C. Kuhn, I. Roditi, D. Rubeni, PLA 2014
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Probability density for N = 2:

8

—4

(f) — Geometric
--- Analytic
0.2 .
0.0'—— - — —
-2 0 2 4-4 -2 0 2 4 -
r r

1 1

Probability density |¥|? of the relative motion of two bosons in the GS for different values of the
coupling: (a)c = —1,(b)c = —0.5,(c)c = —0.1,(d) ¢ = 0.1, (¢) c = 1 and (f) ¢ = 20. In the
attractive case it exhibits a peak at r; = 0 which increases and gets thinner for higher |c| values,

while for the repulsive case a cusp emerges at 71 = 0 which goes to zero by increasing c
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Probability density for N = 3:

Probability density |¥|? in Jacobi coordinates 1 and 2 for different values of the coupling:
(@)c=—-1,(b)c=—-0.5,(c)c=—-0.1,(d) c = 0.1, (¢) c = 1 and (f) c = 20.

The colors range from purple to red indicating respectively lower values and higher values of
|W|2. In the attractive case a more localized peak is observed by increasing |c|. In the repulsive

case |¥|? reduces along the mirror planes (the points where x; — = j = 0 when c increases.
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Pair correlations:

Pair correlation function p2(z1, z2) for N = 2 (upper line) for different values of the coupling:
(a)c= —5H,(b)c = 0.1, (¢) ¢ = 20 and for N = 3 (bottom line) for: (d) c = —5,(e) ¢ = 0.1
and (f) ¢ = 20. In the repulsive case, the tendency of the particles to stay away from each other by

increasing c; in the attractive case the tendency of the particles to stay together by increasing |c]|.
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4- BREAKING THE
INTEGRABILITY



Breakdown of the integrability: Heisenberg chain

AI P Journal of
Mathematical Physics

Transport and control in one-dimensional systems

Lea F. Santos!-2)

 VIEW AFFILIATIONS

a) Electronic mail: Isantos2@yu.edu.

J. Math. Phys. 50, 095211 (2009); http://dx.doi.org/10.1063/1.3181223 &

* The transport behavior in the integrable system contrasts
with the non-integrable or chaotic chain, suggesting
ballistic transport (integrable case) X diffusive transport
(chaotic case).

* See also related work:
M. Haque, D. Luitz, S. Mukerjee, H. Pastawski, R. Pereira,
A. Polkovnikov, F. Pollmann, T. Prosen, J. Sirker
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Breakdown of the integrability: Bose gas

* /N bosonic atoms of mass m 1n 1D;

 The 1nteraction between each pair g;; may difter.

» Here: repulsive case

o J aStrOW-type Ansatz: W, is the two-body exact solution

P

Study the effect in static properties
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Simplest case: N = 3:

°* g2 =qgi13=¢, @23 =¢ (1:impurity, 2, 3: majority)

* Integrable case: g = ¢'.

Schematics for representative cases: (a) strongly repulsive integrable case, where separation
between atoms 1s maximum (b) Interaction between majority pair is strong, impurity-majority
interaction weak, so impurity appears delocalised across the ring (c¢) Impurity strongly repels

majority pair but majority-majority interaction is weak, so these atoms tend to bunch together
Inteorable Models in Phvsics — n. 54/87



Two-body density:

Two-body density for the majority pair for (c) integrable case and (d) non integrable case, where

pronounced additional minima appear. The light (dark) color indicates high (low) density.

1. Brouzos and A. Foerster, PRA 2014

Inteorable Models in Phvsics — n. 55/87



Breakdown of the integrability: Triple well
H = Hy + b(N; — N3)

Hy = U(N1 + N3 _N2)2+N(N1 + N3 — NQ)
+ t1(a]ia2 =+ alaé) T t3(a£a3 T a2a’§)

* Integrable case: b = 0

The model has 3 modes, so 3 independent conserved quantities are expected.:

Ho,N| = [Hy, Q] = [N,Q] =0

N=N;1+N2+ N3 Q= [t2 N3 + t3N1 — tits(afar + alas)]

* Non-integrable case: b # 0
[H,N] =0, [H,Q] #0, [N,Q] #0
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Level space distribution: Integrable case b =0

Poisson

Energy level spacing distribution as a function of the spacing "s".
N =100, = 0,U = 1/100,t; = t3 = 1/+/2. The distribution has universal behaviour
independent of the choice of coupling parameters and follows the Poisson distribution

P(s) = exp(—s) (red curve)
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Level space distribution: Non-integrable case b =~ 0

/Wigner-Dyson

Energy level spacing distribution as a function of the spacing "s".
N =100, =0,U = 1/100,t; = t3 = 1/+/2,b = 1. The distribution follows the Brody
distribution (red curve), very close to the Wigner-Dyson distribution (green curve).

2 q+1
Py (s) = 5 exp(=%-); Pp(s) = alg+ 1)s?exp(—as?™); a = [F (;HT?)]
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S- CONCLUDING REMARKS



Concluding remarks:

* We have presented some examples in which integrable
models are relevant. This list should be considered
remarkable, not necessarily because of the examples given,

but arguably also because of what has been omitted.

* There are a wealth of integrable models which are yet to

find their way 1nto experiments.

* It is clear that integrable models will continue to offer
valuable insights into the description of physical properties

and experimental results for decades to come.
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Integrability: Formal definition

It 1s generally accepted that an integrable system 1s one which 1s
derived from a set of commuting transfer matrices.

This definition applies to many-body systems.

Transfer matrix 7(w): is a generating function of conserved quantities

* The condition:
7(u), 7(v)] =0
* represents (an infinite set of) conservation laws:
Chyem] =0

* where the series expansion was taken:

T = E CpU"

n
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Integrability: In practice

Means that we can solve the eigenvalue problem of the transfer
matrix and consequently the hamiltonian derived from it.

Method: Bethe ansatz

Problem: Find the spectrum of 7:
U = EU (1)

Ansatz:

U = B(v1)B(vs) ... Bluy)® (2)
Substituting (2) in (1): 7V = EV + u.t.({v; })

The condition of the cancelation of the unwanted terms
implies 1n a set of conditions for the v;, called BAE.

This will ensure that W will be the eigenvector of 7 with
energy Iv.

Inteorable Models in Phvsics — n. 64/87



Integrability:

* (lassical Mechanics
If a system with n degrees of freedom possesses n independent first integrals of motion in

involution (i.e. Poisson-commuting), then the system 1s integrable (Liouville)

* Quantum Mechanics: Common definitions
® 1) A system is quantum integrable if it possesses a maximal set of independent

commuting quantum operators Qq, = 1,...dim(H).

2) A system is quantum integrable if it is exactly solvable, in other words if we can

construct its full set of eigenstates explicitly.

3) A system is quantum integrable if it can be mapped to harmonic oscillators.
4) A system is quantum integrable if the scattering it supports is nondiffractive.
5) A system is quantum integrable if its energy level statistics is Poissonian.

6) A system is quantum integrable if it shows level crossings (i.e. does not show

level repulsion).
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Two-body density or pair correlations:

+00 +00 ;
pg(lCl,Qfg) :/ / ’\If‘ dil?g...dCUN

It gives the probability of finding 2 particles at 2 given positions
at the same time.

®  The two-body density of the majority pair of atoms:

_ [ ||?dz;
f | |2dx;dxm, dTm,

9(37M1 3 3377’L2)

® Jacobi coordinates:

2
5__ (wi_wml ‘|‘5Um2

The & Jacobi coordinate represents the position of the impurity, depending on the position
of the center of mass of the majority atoms.
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Static structure factor:

- k=k =m

k=K =mr/2

k=K =r/6
o (23) k=57/6, k' =7/3
-o- (12) k=m, kK =7/3

Static structure factor S as a function of momentum p for different values of interactions in the
integrable and non-integrable cases. For high p, S converges to 1. For low p, S of the majority

atoms exhibits a peak for strong majority-impurity repulsion, attributed to an effective attraction.

R. Barfknecht, I. Brouzos and A. Foerster, PRA 2015
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Fermi gas: Bethe ansatz method

C.N. Yang, PRL 19(1967)1312; M. Gaudin, Phys. Lett. 24 (1967) 55

* Energy:
-
_ 2
E=_— Z k2,
71=1
* BAE:
M .
ki—Ap+ic/2
exp(ik; L) = J ,
p(ik; L) gkj—Ag—IC/Q
N . M .
HAa—kg+1c/2 B _HAQ—A5+1C
g_lAa—kg—iC/Z 5:1AO‘_A5_10
{kj, 3 =1,..., N} are the quasimomenta for the fermions;
{Aa, a=1,..., M} are the rapidities for the internal spin degrees of freedom
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Thermodynamical Bethe Ansatz - TBA

* clegant method to study thermodynamical properties

* thermodynamic limit: L — co, N — oo with N/L finite:

* consider a distribution function for the BA-roots;

* the equilibrium state 1s determined by the condition of

minimizing the Gibbs free energy:
G=F—-HM?—uN —-TS

* the TBA equations are a set of coupled nonlinear equations
from which we can obtain the phase diagram at 1" = 0 for
strong and weak coupling.
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TBA - equations:

set of coupled nonlinear integral equations

1
®(k) = 2(k* —p-— 102) + Taz *In(1 + e_eb(k)/T)
+Tay = In(1 + e_eu(k)/T)
1
e'(k) = k2 — w— EH + Tay = In(1 + e_eb(k)/T)

-T i an * In(1 4+ n-1(k))

n=1

H u
Innn(A) = nT +ap *xIn(l14+e € (A)/T)

3 T (1 + 771 (V)

n=1

in terms of the dressed energies: €° (k) and €*(k) for paired and unpaired fermions and the
function nn, (X). The Gibbs free energy per unit length is:

Gz—z/ dkIn(1 4+ e~ (R)/T) _ 3/ dkIn(1 +e—¢ (B)/T)

™ — 0 27'(' — 00
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Limit 7" — 0: dressed energy equations

c B
eP(A) = 2(A% — p — Z) — /_B az(A — A)eP(A)dA

Q
—/ a1 (A — k)e®(k)dk
—Q

% (k) = (k% — p — g) = /_E; a1(k — A)eP(A)dA

1 m)c|
21 (me/2)2 + x2’

am () e?(£B) = *(£Q) =0

The Gibbs free energy per unit length at zero temperature is given by

B

G =~ [

1 Q
e?(A)dA + — / e (k)dk
— B 27 —Q

From the Gibbs free energy per unit length we have the relations

—0G(u, H)/Oup=n, —0G(u,H)/OH =m, =nP/2
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Strong attraction

h?n? 2 4(1 — P 4P
2m | 2 7] 31|

72(1 —P)2( 413)}
_ 1+ — )%,
8 il
CRITICAL FIELDS:

Hcl — h2n2 (72 — 7-‘-—2)

hQ 2 2 4
Hy = —/ | L yor?(1- —
2m | 2 3|l
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Direct verification of the YBE using NMR:
SCIENTIFIC REP{%}RTS

Experimental realization of the
Yang-Baxter Equation via NMR
interferometry

Received: 19 October 2015
Accepted: 12 January 2016
Published: 10 February 2016

F. AnvariVind%?, A. Foerster?, I. S. Oliveira?, R. S. Sarthour?, D. O. Soares-Pinto3 A. M. Souza®
&I. Roditi*

TheYang-Baxter equation is an important tool in theoretical physics, with many applications in
different domains that span from condensed matter to string theory. Recently, the interest on the
equation has increased due to its connection to quantum information processing. It has been shown
that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation.
Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became
significant to pursue its experimental implementation. Here, we show an experimental realization

of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR)
interferometric setup. Our experiment was performed on a liquid state lodotrifluoroethylene sample
which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a
pseudo-pure state from which we are able to apply a quantum information protocol that implements
the Yang-Baxter equation.

based on a proposal by Mo-Lin Ge et al, PRA 2008

PHYSICAL REVIEW A 78, 022319 (2008)

Optical simulation of the Yang-Baxter equation

. 1 2 .
Shuang-Wei Hu,” Kang Xue,” and Mo-Lin Ge

Theoretical Physics Division, Chern Institute of Mathematics, Nankai Unive
2 ~ . s
“Department of Physics, Northeast Normal University, Changchun, Jilin 13

(Received 4 December 2007; published 12 August 2008)

In this paper, several proposals of optically simulating
vated by the recent development of anyon theor
four-dimensional Yang-Baxter equation into its two-dimensional counterpart. In accordance with both repre-

sentations, we find the corresponding line

Both the degrees of freedom of photon polarization and location are utilized as the qubit basis, in which the

unitary Yang-Baxter matrices are decomposed into a combination of acti

sity, Tianjin 300071, People’s Republic
24, People’s Republic of China

ng-Baxter equations have been presented. Moti-
, we apply Temperley-Lieb algebra as a bridge to recast a

optical simulations, based on the highly efficient optical elements.

of China
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Direct verification of the YBE through an NMR setup

®  Our experiment is performed on a liquid state Todotrifluoroethylene (Co F31) sample
which contains molecules with three qubits.
F1, F2 and F3 are denoted as qubit 1, qubit 2 and qubit 3, respectively.
Quantum circuit diagram for implementation of the YBE.

® LHS and RHS of the YBE are applied on qubits 1 and 3, respectively. The YBE can be
reduced to a sequence of single spin rotations, which is the sequence implemented in the
experiment. The qubits 1 and 3 are left in the output states &1 and ®3, respectively. To
verify the YBE we need to measure the overlap , if this quantity is equal to 1, then the
YBE is satisfied, otherwise the YBE is not satisfied.

10} g, —;!L‘r—}‘ A(th ) B(02)A(0;) Fr—
o), (7]

10} g, —|H - B(6:)A(0:)B(0,) |-

D 118348 6986 47.65
2

0 -1281 | £

-17324.7| F4

£y
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Direct verification of the YBE using quantum optics:

1688 J. Opt. Soc. Am. B/ 30, No. 6 / June 2013 Zheng et al.

Direct experimental simulation of the
Yang-Baxter equation

Chao Zheng,"* Jun-lin Li,' Si-yu Song,' and Gui Lu Long"**

'State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,
Tsinghua University, Beijing 100084, China
?Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
*Corresponding author: gllong@tsinghua.edu.cn

Received February 12, 2013; accepted March 25, 2013;
posted May 2, 2013 (Doc. ID 185232); publisk

Having been introduced in the field of many bodies of statistical mechanics, the requation has become
an important tool in a variety of fields of physics. In this work, we report the first direct experimental simulation of
the Yang-Baxter equation using linear quantum optics. The equality between the two sides of the Yang-Baxter
equation in two dimension has been demonstrated directly, spectral parameter transformation in the
Yang—Baxter equation is explicitly confirmed. © 2013 Optic

OCIS code: 0030) Coherence ¢
http:/dx. ¢/10.1364/JOSAB. 0

AQ) = (68’6 %) =a®

_( cos@ —i sin @\ _
B = (—i sin @ cosg ) =BO

A(61) B(62) A(83) = B(63)A(62)B(61)
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Schematic Representati

SPIN LADDER
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®  Cooper: represented by points, Oxigens: located at the corners

® Intra-ladder coupling is weak
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2-leg ladder: Susceptibility X T

=]
E
\‘h._
3
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=
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Temperature (K)

Shows an exponential decay: (from which we get the gap)

_Aa
e T

VT

Troyer et al, PRL54 (1996); Azuma et al, PRL73 (1994)

Y =C

1" — 0
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3-leg ladder: Susceptibility X T

=
o
=
E
e,
=3
E
LI
¥
[
—
Tt

200 300 400 500 600 700
Temperature (k)

There is NO exponential decay: (There is no gap)
x(T) tends to a finite number as T — 0
Troyer et al, PRL54 (1996); Azuma et al, PRL73 (1994)
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SPIN LADDER: QTM and HTE:

Table 1. Comparison between the experimental values for the critical points H

and H,

r strong coupling ladder compounds and the TBA results obtained from

the su(4) integrable model.

Hc] (C\p)
(T)

13 Wik 8.4
1.5
6.6

I (K) Jy (K)

Cu(Hp)Cl
BPCB

13:2 : B
13.3 8 4

SO RN SO RN S I NS}

H, (exp)
(T)

10.4

13.2

14.6

H. (TBA)
(T)

8.3
7.84
6.6

H., (TBA)
(T)

10.03
11.51
11.95

KCuCly J D.2 22 ~6( )

49.2 2.68

We demonstrate here that the integrable su(4) ladder
model [3.4] is capable of describing the physics of the
ladder compounds. Indeed, the thermodynamic Bethe
ansatz (TBA) applied to the integrable su(4) ladder
model predicts the critical fields H, =J) —4J)/y
and ppgH,y =J) +4J)/y, where y is a rescaling
parameter, which are also good fits for the strong cou-
pling compounds [5]. Very recently the high tem-
perature expansion (HTE) method [6,7] suggested

g8

"”i =P _(v - 1)¢+(U’gl(v

TH)
Qv

+ePmg_(v)d,(v) 00

In this equation the chemical potential terms are

denotes the Trotter-Suzuki number. The fus T,(f,” S

type (a, m) in the auxiliary space carry

224

20 4 B (1), (v)
|(U _:1'

._I)Q]
2(v = i)Q5(v — ’-

~60 224 49

where .S-‘j and T-j are Heisenberg operators, up is the Bohr
magneton, and g is the Landé factor. Throughout, L is the
number of rungs and periodic boundary conditions are
imposed. In the strong coupling limit, the contribution to
the low-temperature ph\ from the multibody term in
}{]ﬂ, is minimal and, as a consequence, the integrable
ladder Hamiltonian exhibits similar critical behavior to
the standard Heisenberg ladder [5]. We adapt the model
into the QTM method [9]. The eigenvalue of the QTM (up
to a constant) is obtained by the nested Bethe ansatz to be

01(v =300y (v)
Ql(v —% Qw(v =)
0s(v
Os(v =

(ST YTV

;

+ ePrag_(v)d (v +i) (2)

=J1/2,m = uBgH w3 =0,and uy = —upgH, with ¢ (v) =
(v = iuy)V/?. The inhomogeneity parameter uy = —(Jy8/yN), with Q,[v) =

]—IM“H(U _ l'u)] fora=1,2,3. Here N

tem [8], which denotes the row-to-row transfer matrix with fusion
symmetric tensor of the ath fundamental representation of the
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SPIN LADDER: QTM and HTE:

week ending

PHYSICAL REVIEW 21 NOVEMBER 2003

VOLUME 91, NUMBER 21 LETTERS

diinto the fused T
v) system suggest the

su(4) algebra, is essentially generated by the QTM eigenvalue T:” in (2). Thus T(l” can be en
system. The analytic nonzero and constant asymptotic properties of the normalized T}y

expansion ansatz
J
me' (“ ! (3)
yT

n=0 =

l1m 79 (v) = E\p|i

with b, (v) = [”'vZJ/[v- + (a+1)*/4]". The QTM eigenvalue satisfies a set of the nonlinear integral equa-

tions [7]
i {Tla lJ

_ B(ul
1
Tilul [‘, .

B(ﬂl ]I')T(](l+l)[}: + ﬁ‘llll _ I-):|
Tllm(y 1 B(]a) -9

T[laJr]')' (m

1
)], a=123.

§ 1
¢o2miy — y+ B'l‘”[

B &)

FollowinU Ref. [7]. the coefficients (”] can be obt .nned
/ from Eq (4) with initial conditions h(

an“') where Ql are constants related to the chemical

The theoretical ¢ the high field magneti
tion shown in Fig. 2 for different temperatures are also

potential terms \1.1 limy_ s ]111]|1,|% T““(v) = Q“” with

'0’ =1 and Q =exp(J./27). In lhls way the spin
Iaddel free energy f(T, H) = —T]nT:l' can be expanded
in powers of Jy/yT. For the first few orders we have

J
j(T H)=In(2B,,) + ( ;)

(A A +1€B“)(J” )
2 B}

where A = B.g(1 +2By,)/B?,

and
)
xcosh +yc
2T

We find that the analytic expression (5) is sufficiently
accurate to evaluate the model’s thermodynamics.
Nevertheless, we have considered the HTE up to fifth
order.

with € = exp(J,/2T)

("”' O ®)
T

in good agreement with the experimental values. The
field dependent magnetization curve predicts the

temperature phase diagram as well as the magnetization
plateaus. For very low temperature the rung singlet forms
adimerized ground state if the magnetic field is below the
critical field H,;. The length of the antiferromagnetic
correlation is finite while the triplet state is gap full. For
finite temperatures the triplet excitations are also in-
volved in the gapped phase. This can be observed in the
high field magnetization curves for 7= 1.59 K and T =
4.35 K in Fig. 2. At the critical field H,, the gap is closed
with uggH., = A. If the magnetic field is above the
critical point H,;, the lower triplet component becomes

(emu/mol)
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SPIN LADDER: THERMODYNAMICAL PROPERTIES

®  The thermal and magnetic properties can be obtained by exact diagonalization or by
analytical methods: the free energy is written in terms of the eigenvalue of the Quantum
Transfer Matrix (QTM) (the QTM eigenvalue satisfies a set on nonlinear eqs. The free
energy can be expanded in powers of .J) /(vT") up to fifth order, using the High
Temperature Expansion - HTE), and from it we derive the thermodynamical properties by
standard thermodynamics:

®  Magnetization

z — a—Hf(T> H)
®  Magnetic susceptibility
82
X = — 5o £(T, H)
®  Specific heat
52
c= _TW (T, H)
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LL-Bose gas: the exact solution:
* BA- wavefunction:

Wy (21, To, . . . Z A(P) exp(i(kprx1+- - +kpyry))

A(P) = ce<P> TT(<p; — kpi +ic)
g<l

* Energy eigenvalues:
N
SN
- J
j=1

* BA-equations:

ki — kg +i
exp(ikjL):—H 3 EJF?C j=1...N
=1
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Geometric Ansatz: the basic idea

* Change to Jacobi coordinates, which allows to remove the
CM-coordinate;

* Change of coordinates to hyperspherical coordinates: radial

component A and the angular part 0 = {01,05,...0§_2}.

e The relative Hamiltonian now takes the form:

~ 2 -
H,..; = _S_MVQ -+ %,uwQ)\Q + 02(5 (dj(ﬁ)) .

J

For small \, H,; is approximately the one solved by the
Bethe ansatz. For large )\ the behaviour is dominated by

that of a harmonic oscillator.
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<¢|Hrel|¢>
(Yl) 2

Geometric Ansatz for the trial wavefunction:

Variational principle: Eqg <

A< A
) A> A

Schematic representation of |¥|? for N = 3. A determines the boundary between 2 regions:
inside (Bethe ansatz) and outside (asymptotic harmonic oscillator). The colors range from purple
to red indicating respectively lower values and higher values of |W|2. Inteorable Models in Phsics — o 84/87



Density Profiles

The equation of state can be reformulated within the local density
approximation (LDA) by a replacement pu(x) = p(0) — smw2a?
in which x 1s the position and w,, 1s the trapping frequency, the

total particle number and the polarization are given by:

=
|
|\
&
S
@
~y
\,%‘32
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Universal Ratios

In condensed matter, dimensionless ratios of
quantities that take universal values can provide
deep physical insights. Some examples include:

» Wiedemann-Franz ratio
 Sommertfeld-ratio
 Kadowaki-Woods ratio

* Korringa ratio

Why universal ratios are important?

* show that the same particles are responsible for
the two different quantities that form the ratio;

* provide significant constraints on theories;

* demonstrate universality.
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Wilson Ratio

Dimensionless ratios of quantities that take universal values
can provide deep physical insights.

The Wilson ratio is defined as the ratio of the magnetic
susceptibility y to specific heat ¢, divided by temperature.

The Wilson ratio has recently been measured in a spin
1/2-1adder compound (C7H1g N )2C, B, .».

Procedure: The main ingredients y and ¢, are obtained
from the TBA-equations.
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